
1

Machine learning-based equations for improved body composition estimation in Indian adults

Nick Birk1, Bharati Kulkarni2, Santhi Bhogadi3, Aastha Aggarwal4, Gagandeep Kaur Walia4, Vipin Gupta5, 
Usha Rani6, Hemant Mahajan6, Sanjay Kinra1*, Poppy AC Mallinson1*

1Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical 
Medicine, UK
2Reproductive and Child Health and Nutrition, Indian Council of Medical Research, India
3Indian Institute of Public Health Bengaluru, India
4Public Health Foundation of India, India
5Department of Anthropology, University of Delhi, India 
6Clinical Division, ICMR National Institute of Nutrition, India

*Contributed equally

Correspondence to: 
Poppy AC Mallinson
Email (preferred): poppy.mallinson1@lshtm.ac.uk
Mailing address: Department of Non-Communicable Disease Epidemiology, London School of Hygiene & 
Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
Telephone: +44(0)20 7927 2088

Financial support: 
The Andhra Pradesh Children and Parents’ Study third follow-up was funded by the Wellcome Trust 
[strategic award 084774]. Authors NB, PACM and SK receive part of their salary from the Medical 
Research Council (MRC) UK [grant reference MR/V001221/1]. Neither the Wellcome Trust nor the MRC 
had any role in the design, analysis or writing of this article.

Abbreviations: 

APCAPS - Andhra Pradesh Children and Parents Study; BIA - Bioelectrical impedance analysis; BMI - Body 
mass index; BSI – Body shape index; CAMA - Corrected arm muscle area; DXA - Dual-energy X-ray 
absorptiometry; FMI - Fat mass index; LASSO - Least absolute selection and shrinkage operator; LMI – 
Lean mass index; MAE – Mean absolute error; MAPE – Mean average percentage error; MRI - Magnetic 
resonance imaging; RMSE – Root mean square error 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.17.24315678doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.10.17.24315678
http://creativecommons.org/licenses/by/4.0/


2

1 Abstract

2 Bioelectrical impedance analysis (BIA) is commonly used as a lower-cost measurement of body 

3 composition as compared to dual-energy X-ray absorptiometry (DXA) and magnetic resonance imaging 

4 (MRI) in large-scale epidemiological studies. However, existing equations for body composition based on 

5 BIA measures may not generalize well to all settings. 

6 We combined BIA measurements (TANITA BC-418) with skinfold thickness, body circumferences, and 

7 grip strength to develop equations to predict six DXA-measured body composition parameters in a 

8 cohort of Indian adults using machine learning techniques. The participants were split into training (80%, 

9 1297 males and 1133 females) and testing (20%, 318 males and 289 females) data to develop and 

10 validate the performance of equations for total body fat mass (kg), total body lean mass (kg), total body 

11 fat percentage (%), trunk fat percentage (%), L1-L4 fat percentage (%), and total appendicular lean mass 

12 (kg), separately for males and females. Our novel equations outperformed existing equations for each of 

13 these body composition parameters. For example, the mean absolute error for total body fat mass was 

14 1.808 kg for males and 2.054 kg for females using the TANITA’s built-in estimation algorithm, 2.105 kg 

15 for males and 2.995 kg for females using Durnin-Womersley equations, and 0.935 kg for males and 

16 0.976 kg for females using our novel equations. 

17 These equations may provide improved estimation of body composition in research and clinical contexts 

18 conducted in India and will be made available as an online application for use in future research in these 

19 populations. 

20 Keywords: Body composition, adiposity, bioelectrical impedance, prediction equations, machine 

21 learning, India.
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23 Manuscript

24 Background

25 Measurements of body composition, such as body fat percentage, can provide meaningful health-

26 related insights. Total body fat and intra-abdominal fat have been previously associated with metabolic 

27 syndrome1, while lean body mass can be protective against chronic diseases and age-related adverse 

28 conditions2,3. Further, there is some evidence that these relationships are particularly pronounced in 

29 adults of South Asian ethnicities1,2, underscoring the importance of accurately recording these body 

30 composition metrics in epidemiological studies. While many studies of individuals of South Asian 

31 ethnicities use metrics such as overall weight and body mass index (BMI), these metrics may fail to 

32 distinguish between fat mass and lean mass, and therefore provide an incomplete assessment of body 

33 composition4,5. Thus, there is clinical and public health relevance in more accurately, and separately, 

34 characterizing both fat and lean components of body weight in South Asian populations. It should be 

35 noted that the label of ‘South Asian’ is used throughout this manuscript to refer to people who identify 

36 as having ancestral origin from countries in the South Asian region (defined by the World Bank as India, 

37 Pakistan, Bangladesh, Sri Lanka, Nepal, Bhutan and the Maldives) and may share tradition, diet, and 

38 values. By using this terminology, we do not mean to imply that any such differences are genetic in 

39 origin, or that South Asians, or Indians, represent a single ethnic or cultural group.

40 Bioelectrical impedance analysis (BIA) is commonly used as a feasible, lower-cost measurement of body 

41 composition in population-based studies as compared to dual-energy X-ray absorptiometry (DXA) and 

42 magnetic resonance imaging (MRI)6. Commercially and clinically available BIA devices, such as TANITA 

43 body composition analyzers, utilize inbuilt equations to estimate total and segmental lean and fat mass 

44 from a combination of body segment impedance values, sex, height, and weight7. However, these 

45 prediction equations were generally developed and validated in predominately European ethnic 
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46 populations and may not generalize to other ethnic groups8,9. A study of 200 healthy Asian Indian 

47 individuals found that in-built equations based on white ethnic populations from a TANITA analyzer 

48 underestimated total body fat percentage by 8.3%, or by 5.4% when using equations fit based on 

49 individuals of Japanese ethnicity, compared with DXA-derived values10. A study of 39 Indian adults found 

50 that BIA methods underestimated fat mass as compared to four-compartment model, suggesting 

51 population-specific equations are needed11. Another study of healthy Indian adult men found that 

52 existing BIA equations tended to underestimate body fat compared with deuterium oxide dilution as a 

53 reference method12, while studies among Indian children have reported both under- and over- 

54 estimation of body fat percentage as compared to DXA-derived values13–15.  Validation studies have 

55 previously demonstrated that impedance analysis led to underestimation of total body water, a 

56 component of lean mass, in Indian adults16. 

57 The relative inaccuracy of BIA-based body composition estimation in Asian Indians compared with white 

58 populations may be related to the observed differences in body composition between White and Asian 

59 Indian adults17. In particular, Indian men and women have been found to have higher body fat 

60 percentage than their European ethnic counterparts of the same BMI18–20. The findings of Rush et al 

61 suggest that this difference may be related to the presence of higher abdominal fat mass and lower 

62 appendicular muscle mass among Asian Indian adults as compared to European, Maori, and Pacific 

63 Island ethnic adults after adjustment for age, height, and weight18. Further, a study of multiple 

64 community-based cohorts in the United States found that adults of South Asian ethnicity tended to have 

65 less lean mass overall than adults of other ethnic backgrounds21. Consequently, there is a relatively high 

66 prevalence of “normal weight obesity” in India22,23. The precise mechanisms responsible for these 

67 differences remain subject to debate, though may relate to exposure to common environmental 

68 factors24. Nonetheless, because of these differences in the presentation of adiposity, there is a need for 

69 better methods to estimate body composition in Asian Indian populations17.  We are aware of one study 
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70 that developed a novel BIA-based equation to predict DXA-derived body fat among young adult Indian 

71 males25, and another that developed lean body mass equations in people of Indian Asian ethnicity living 

72 in New Zealand17, but both had relatively small samples. Furthermore, no Indian-specific equations are 

73 available for estimation of central body fat, which may be particularly relevant for understanding 

74 cardiometabolic risks in Indian adults.

75 While BIA-based methods are increasingly popular for measuring body composition in research and 

76 clinical contexts, other prediction equations for body composition based on simple physical 

77 measurements have been previously developed. For example, the Durnin-Womersley equations are 

78 frequently used in epidemiological studies for estimating body fat percentage from skinfold 

79 measurements26. However, studies also suggest these equations perform less well in Asian (and other 

80 non-white) ethnic groups compared with white populations27 and indicate the potential of such 

81 anthropometric measures to further improve body composition estimation equations through 

82 recalibration to specific populations28.  

83 The aim of the current work is to develop novel algorithms to predict DXA-derived fat and lean mass 

84 metrics calibrated for an adult Indian population. We use the BIA-based default predictions from the 

85 TANITA BC-418 (a widely used segmental body composition analyser) as a performance baseline, and 

86 then incorporate additional predictors from the TANITA output alongside potentially relevant 

87 anthropometric measures related to body stature, adiposity, and muscularity (namely age, standing 

88 height, circumferences, skinfolds, and grip strength). We evaluate the performance of the model against 

89 DXA-derived body composition metrics in a held-out sample. We explore various combinations of 

90 predictors and prediction methods, including penalized regression and non-parametric machine learning 

91 algorithms. The best-performing prediction equations for various combinations of predictor variables 

92 will be made available online for clinical and research use. 
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93 Methods

94 Study Population

95 The present analysis makes use of data from the third wave of follow-up in the Andhra Pradesh Children 

96 and Parents Study (APCAPS), in which segmental BIA measurements were obtained. Details of the 

97 APCAPS have been published previously29. In summary, the study’s baseline data collection took place in 

98 2003-2005 for children whose mothers were involved in the Hyderabad Nutrition Trial from 1987-1990. 

99 These children were followed up again in a second wave of data collection in 2009-2010, and the study 

100 expanded to also include their siblings and parents during the third wave of data collection in 2010-

101 2012. During this third wave of data collection, a random subset of the study participants were invited 

102 for DXA scanning except those who reported for pregnancy. The present analysis is restricted to adults 

103 in the APCAPS third wave that consented to DXA scanning, as the second wave of follow-up did not 

104 include any BIA measurements. 

105 The APCAPS third wave follow-up study was conducted according to the guidelines laid down in the 

106 Declaration of Helsinki and all procedures involving human participants were approved by ethics 

107 committees of the Indian Council of Medical Research - National Institute of Nutrition, India (reference 

108 number: A2-2009), the Public Health Foundation of India, India (reference number 52/10), and the 

109 London School of Hygiene and Tropical Medicine, UK (reference number: 6471). Written informed 

110 consent was obtained from all participants (or witnessed thumbprint if illiterate). 

111 Data Collection

112 A portable TANITA bioelectrical impedance analyzer (model BC-418 M57NA, TANITA) was used to 

113 measure segmental impedance values. To take a measurement, researchers entered the participant’s 

114 age, sex, and height into the TANITA machine, then requested participants to stand up straight on the 
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115 weighing platform in bare feet (with feet in contact with the lower electrodes), while holding onto the 

116 hand grips (with hands in contact with the upper electrodes) until a complete impedance reading shows 

117 on the display. To reduce measurement variability, readings were taken in the morning following an 

118 overnight fast. Height was measured twice to the nearest 1 mm using a portable stadiometer (Leicester 

119 height measure), circumferences (hip, waist, calf, head, chest inhaling, chest exhaling, mid arm) were 

120 measured twice to the nearest 1 mm using a non-stretch metallic tape measure, skinfolds (tricep, bicep, 

121 subscapular, suprailiac, calf) were measured three times to the nearest 0.2 mm using Holtain caliper, 

122 and grip strength was measured in kg four times using Lafayette 78010 hand-held dynamometer; the 

123 average of each of these measurements were used as a single value in analysis. DXA body composition 

124 values were measured using a Hologic Discovery A device with Hologic spine phantom 14855 used as a 

125 phantom. The participants were instructed to lay supine with their arms resting by their sides. Standard 

126 Hologic software defined the head, trunk, legs, and arms. DXA L1-L4 regions were defined by marking 

127 the region from the midpoint of the T12 and L1 vertebrae to the midpoint of the L4 and L5 vertebrae in 

128 Hologic software30. The total mass, fat mass, and fat percentage were computed within this bounded 

129 region for each participant. The L1-L4 scan analyses were performed twice for each participant, and the 

130 average of these repeated values was used. This body segment has been used in previous studies as a 

131 more valid measure of abdominal fat than trunk fat, since the trunk includes additional body regions 

132 such as the chest and pelvis as well as the abdomen31,32.

133 Data Preparation and Statistical Analysis

134 Participants were removed from the dataset if they had any missing data or if any of their measurement 

135 values were judged to be implausible suggesting machine or data entry error (see Supplementary 

136 Material (File 1) for a list of the criteria applied). To account for potential bias/overfitting, the dataset 

137 was then split into training and testing groups by randomly selecting rows with 80% of individuals used 
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138 to fit models and the other 20% used to validate the performance of the models. We explored use of the 

139 Least Absolute Selection and Shrinkage Operator (LASSO), random forest, and XGBoost algorithms for 

140 developing our prediction equations, as these represent popular parametric (LASSO) and non-

141 parametric, tree-based (random forest, XGBoost) machine learning algorithms. The LASSO model also 

142 provides the benefit of automatic feature selection, while random forest and XGBoost allow for more 

143 flexible modeling of non-linear relationships between predictors. These algorithms were each used to fit 

144 models predicting 6 different DXA-derived outcomes: total body fat (kg), total body lean mass (kg), total 

145 body fat percentage (%), trunk fat percentage (%), L1-L4 fat percentage (%), and appendicular lean mass 

146 (kg). These six measures were selected as the focus of this paper as they are commonly reported in 

147 published research. For completeness, results based on other measures estimated by the DXA machine 

148 (trunk fat mass (kg), trunk lean mass (kg), L1-L4 fat mass (kg), L1-L4 lean mass (kg), appendicular fat 

149 mass (kg), and appendicular fat mass percentage (%)) are provided in the Supplementary Material (File 

150 4). 

151 The TANITA BC-418 device provides several outputs for the defined body segments of full body, trunk, 

152 left arm, right arm, left leg, and right leg. The following measurements as displayed in the TANITA 

153 output were used as predictors for each of these segments unless indicated otherwise: segment fat 

154 mass, segment fat-free mass, segment muscle mass (all but full body), segment fat percentage, segment 

155 impedance. Additionally, body weight, BMI, and total body water were used as predictors. Additional 

156 covariates included to potentially improve the predictive performance of the equations were age, 

157 standing height, calf circumference, head circumference, exhalation chest circumference, waist 

158 circumference, hip circumference, arm circumference, tricep skinfold, bicep skinfold, subscapular 

159 skinfold, suprailiac skinfold, calf skinfold, dominant hand grip strength, and non-dominant hand grip 

160 strength.
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161 Certain data transformations and interactions were pre-specified for inclusion in the models if deemed 

162 to be relevant by the researchers based on review of the literature and potential utility in measuring 

163 muscle mass. These interactions and transformations were waist-to-hip ratio, waist-to-height ratio, 

164 chest-to-waist ratio, calf-to-height ratio, height-squared-to-impedance ratio for each impedance value, 

165 fat mass index (FMI), lean mass index (LMI), body shape index (BSI), corrected arm muscle area (CAMA), 

166 logarithm of the sum of skinfolds, and the product of age and dominant hand grip strength. Additionally, 

167 we originally included squared terms for each input variable to account for non-linear associations with 

168 the outcome and included additional speculative interaction terms to account for complex relationships 

169 between predictors. However, the inclusion of these terms did not result in considerable performance 

170 improvements, and in some cases worsened model performance due to overfitting. To maintain 

171 parsimony while still including potentially meaningful interactions, we used the reduced set of 

172 interaction terms described above in the present analysis.

173 The models were fit separately by sex and performance was compared in the validation data via mean 

174 absolute error (MAE), mean average percentage error (MAPE), and root mean squared error (RMSE). 

175 RMSE was used to provide comparison to existing studies, while MAE and MAPE were utilized due to 

176 their interpretability. The built-in TANITA estimates for each outcome alone were used as a performance 

177 baseline. Since TANITA does not define the L1-L4 region, TANITA trunk values were used as the 

178 performance baseline for this outcome. Further, we compared the performance of our models to 

179 previously derived prediction equations by Kulkarni et al for use in Indian populations for the total body 

180 lean mass and appendicular lean mass outcomes28 and to Durnin-Womersley equations for total body 

181 fat outcomes26. The lambda value of the LASSO model, the mtry value of the random forest model, and 

182 the max depth, eta, and gamma parameters of the XGBoost model were tuned in the training data using 

183 10-fold cross validation for each outcome.
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184 As a post hoc sensitivity analysis, models were fit using the LASSO algorithm with only the full set of 

185 TANITA inputs and relevant transformations, full set of TANITA inputs along with one of the three sets of 

186 additional anthropometric variables and their transformations (skinfolds, circumferences, and grip 

187 strength), all circumferences alone, and all circumferences and skinfolds and their transformations. 

188 These additional equations and their performance are provided in the Supplementary Material (File 2 

189 and File 3). Age and standing height are still included as predictors in each of these models since it is 

190 assumed these values influence the body composition and can be easily obtained by researchers.

191 All analyses were completed using R software version 4.2.0.

192 Results

193 The details of selecting the study participants are described in a flowchart as Figure 1. The application of 

194 inclusion criteria resulted in a sample size of 1615 males and 1422 females (training dataset of 1297 

195 males and 1133 females and validation dataset of 318 males and 289 females). Individuals who did not 

196 participate in the DXA study within APCAPS 3rd follow-up tended to be younger on average than 

197 individuals who had DXA measurements available (34 years old and 38 years old, respectively), though 

198 BMI was similar in the two groups (data not shown). The characteristics of our final study cohort are 

199 described in Table 1. Males and females were of similar age (37 years and 38 years old on average, 

200 respectively, in both training and test datasets) and with similar BMI (approximately 20-21 kg/m2 in all 

201 groups). Within the same sex, the average value of each mass outcome (total body fat mass, total body 

202 lean mass, appendicular lean mass) did not differ by more than 0.51 kg between training and test 

203 datasets and each percentage outcome (total body fat percentage, trunk fat percentage, L1-L4 fat 

204 percentage) did not differ by more than 0.75 percentage points between training and test datasets.

205 Figure 1: Flow-chart for inclusion in the present analysis 
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206 [Insert Figure 1 here]

207 Table 1: Description of the sample 

Training – 
Females 

(n = 1133)

Test – 
Females 
(n = 289)

Training – 
Males 

(n = 1297)

Test – Males 
(n = 318)

Age (years) 38.17 (11.7) 39.05 (11.3) 37.15 (15.5) 36.68 (15.5)

Standing height (cm) 151.68 (5.89) 151.20 (6.05) 164.26 (6.67) 164.27 (7.01)

Weight (kg) 48.57 (9.20) 48.39 (9.48) 55.46 (10.53) 54.46 (11.42)

BMI (kg/m^2) 21.14 (3.71) 21.22 (3.85) 20.55 (3.43) 20.15 (3.72)

DXA Total body fat mass (kg) 15.61 (5.21) 15.46 (5.25) 10.68 (4.98) 10.26 (5.17)

DXA Total body lean mass (kg) 32.03 (4.56) 32.00 (4.95) 43.52 (6.41) 43.01 (7.13)

DXA Total body fat percentage (%) 30.92 (5.55) 30.73 (5.72) 18.25 (5.64) 17.74 (5.67)

DXA Trunk fat percentage (%) 27.02 (6.98) 26.95 (7.16) 16.84 (6.56) 16.09 (6.52)

DXA L1-L4 fat percentage (%) 25.80 (7.71) 25.75 (7.92) 18.57 (7.69) 17.83 (7.64)

DXA Appendicular lean mass (kg) 13.11 (2.01) 13.01 (2.25) 19.18 (2.95) 19.04 (3.36)

208 All values presented as mean (SD)

209 In general, LASSO models achieved the best performance in the testing data for the 6 outcomes based 

210 on each observed performance metric. The performance as measured by MAE of LASSO, random forest, 

211 and XGBoost algorithms with the full set of predictors can be found in Table 2. In summary, the LASSO 

212 achieved the lowest MAE in the test data for the majority of outcome-sex pairs. The exceptions to this 

213 were for prediction of trunk fat percentage in males (MAE of 2.094% by LASSO vs MAE of 2.090% by 

214 XGBoost), L1-L4 fat percentage in males (MAE of 2.401% by LASSO vs MAE of 2.369% by random forest), 

215 total body fat percentage in females (MAE of 2.165% by LASSO vs MAE of 2.104% by random forest), 

216 and trunk fat percentage in females (MAE of 2.721% by LASSO vs MAE of 2.622% by random forest). 

217 Despite occasional performance gains by the random forest and XGBoost algorithms, we ultimately 

218 favor the LASSO algorithm for its comparative interpretability and ease of application to future data. The 
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219 performance of the LASSO models created for each outcome-sex pair as described by additional 

220 performance metrics MAPE and RMSE is also provided in Table 2.

221 Table 2: Mean Absolute Error (compared with DXA-based measurement) for different prediction 
222 algorithms using all predictors in test data, and additional performance metrics for best model (n = 289 
223 female, 318 male)

Outcome (Sex)

Random 
Forest Mean 
absolute 
error

XGBoost 
Mean 
absolute 
error

LASSO 
Mean 
absolute 
error

LASSO 
Root Mean 
Squared 
Error

LASSO Mean 
Absolute 
Percentage 
Error

Total body fat mass 
(kg) – M 1.057 1.013 0.935 1.19 10.06%

Total body fat mass 
(kg) - F 1.014 1.052 0.976 1.26 6.94%

Total body lean mass 
(kg) - M 1.311 1.378 1.177 1.52 2.76%

Total body lean mass 
(kg) - F 1.308 1.357 1.222 1.55 3.85%

Total body fat 
percentage (%) - M 1.746 1.804 1.668 2.10 9.87%

Total body fat 
percentage (%) - F 2.104 2.125 2.165 2.73 7.44%

Trunk fat percentage 
(%) - M 2.121 2.090 2.094 2.62 13.81%

Trunk fat percentage 
(%) - F 2.622 2.652 2.721 3.42 11.15%

L1-L4 fat percentage 
(%) - M 2.369 2.417 2.401 2.99 14.92%

L1-L4 fat percentage 
(%) - F 2.971 2.970 2.929 3.75 12.41%

Appendicular lean 
mass (kg) - M 0.900 0.853 0.782 1.04 4.18%

Appendicular lean 
mass (kg) - F 0.833 0.860 0.790 1.00 6.17%

224 M is male; F is female.

225 Our novel equations, as well as the other equations previously developed by Kulkarni et al in an Indian 

226 population, performed substantially better than the built-in TANITA estimates and Durnin-Womersley 

227 equations. For 5 out of the 12 outcome-sex pairs, the mean absolute error of our best equation was less 
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228 than half that of the TANITA built-in estimate or Durnin-Womersley equation. For example, mean 

229 absolute error for total body fat mass was 1.808 kg for males and 2.054 kg for females using TANITA 

230 estimation, 2.105 kg for males and 2.995 kg for females using Durnin-Womersley equations, 1.240 kg for 

231 males and 1.061 kg for females using our novel equation with just TANITA values, and 0.935 kg for males 

232 and 0.976 kg for females using our novel equation with TANITA, skinfolds, circumferences, and grip 

233 strength. The mean absolute error for a subset of the LASSO equations (TANITA predictors only, TANITA 

234 and skinfold as predictors, and full set of predictors), TANITA built-in estimates, and existing equations 

235 as compared to the DXA values are presented in Table 3. In all instances, the best performance in the 

236 test data was achieved by our novel equations (built using LASSO algorithm) with all measurements, that 

237 is TANITA, circumferences, skinfolds, and grip strength, included. However, similar performance was 

238 sometimes achieved through inclusion of only TANITA and skinfolds. The performance metrics for 

239 further combinations of measurements are made available in the Supplementary Material (File 3). 

240 Briefly, the combination of TANITA and circumferences occasionally led to improved performance from 

241 TANITA predictors only, though these performance gains were generally not as large as those achieved 

242 by the combination of TANITA and skinfolds. The combination of TANITA and grip strength provided only 

243 marginal improvements upon the use of TANITA predictors alone. Bland-Altman plots are provided in 

244 Figure 2 to compare predictive performance of our full LASSO equations to that of the TANITA default 

245 outputs. Overall, there do not appear to be clear systematic errors in the predictions resulting from our 

246 equations, though total fat percentage in women and trunk fat percentage in both men and women may 

247 be frequently overestimated by our models among individuals with lower trunk fat percentage. Further, 

248 our equations may underestimate appendicular lean mass among women with higher appendicular lean 

249 mass. The TANITA device appears to frequently underpredict the fat mass of women with lower body fat 

250 mass.
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251 Table 3: Mean Absolute Error (compared with DXA-based measurement) for the different prediction 
252 models in test data (n = 289 female, 318 male) 

Mean absolute error compared with DXA measurement

Outcome (Sex)

TANITA 
Built-in 
estimate 
alone

Existing 
skinfold/ 
anthrop-
ometric 
equation

All 
TANITA 
LASSO

All TANITA 
+ Skinfolds 
LASSO

All TANITA + Grip 
strength + 
circumferences + 
skinfolds LASSO 
(I.e., Full LASSO)

Total body fat mass 
(kg) - M 1.808a 2.105f 1.240 1.003 0.935

Total body fat mass 
(kg) - F 2.054a 2.995f 1.061 1.016 0.976

Total body lean mass 
(kg) - M 2.782b 1.746g 1.401 1.230 1.177

Total body lean mass 
(kg) - F 2.670b 1.402g 1.276 1.234 1.222

Total body fat 
percentage (%) - M 3.242c 3.646f 2.202 1.801 1.668

Total body fat 
percentage (%) - F 4.256c 5.656f 2.298 2.193 2.165

Trunk fat percentage 
(%) - M 3.479d --- 2.574 2.298 2.094

Trunk fat percentage 
(%) - F 5.837d --- 2.922 2.823 2.721

L1-L4 fat percentage 
(%) - M 3.883d --- 2.859 2.596 2.401

L1-L4 fat percentage 
(%) - F 5.494d --- 3.184 3.081 2.929

Appenciular lean mass 
(kg) - M 1.778e 0.972g 0.926 0.826 0.782

Appendicular lean mass 
(kg) - F 1.548e 0.888g 0.811 0.804 0.790

253 M is male; F is female. a: TANITA fat mass; b: TANITA fat-free mass; c: TANITA total body fat percentage; 
254 d: TANITA trunk fat percentage; e: Sum of TANITA right arm fat-free mass, left arm fat-free mass, right 
255 leg fat-free mass, left leg fat-free mass; f: Durnin-Womersley skinfold equations; g: Kulkarni et al Indian-
256 calibrated anthropometric equations. 

257

258 Figure 2: Bland-Altman Plots comparing the LASSO with all variables and TANITA Equivalent Measure 
259 alone to DXA values

260 [Insert figure 2 here]

261
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262 The full set of coefficients for LASSO-derived prediction equations are made available online. The 

263 coefficients for each outcome-sex pair in the LASSO model with all sets of predictors are provided in the 

264 Supplementary Material (File 2). Each row of this table contains an input measure, and each column 

265 describes the sex, outcome measure, and intended set of inputs. For example, the column “total fat 

266 percentage male Tanita only” provides the set of coefficients for predicting total body fat percentage 

267 among males using only the set of TANITA inputs. The predicted value is generated by multiplying each 

268 input by its corresponding coefficient from the model of interest and summing together the results 

269 (along with the intercept term), as in a standard linear regression model. The coefficient value appears 

270 as NA in the table for any predictors that are not used in the corresponding model (e.g. skinfolds in the 

271 “Tanita only” model). Estimations can be easily derived from this table using vector multiplication in 

272 statistical software. The MAE values for LASSO models with additional sets of predictors are provided in 

273 the Supplementary Material (File 3). Performance metrics for additional body composition metrics (e.g. 

274 appendicular fat mass) which were not the focus of this manuscript are provided in Supplementary 

275 Material (File 4). The 1st and 99th percentiles of each predictor in the training data are provided in 

276 Supplementary Material (File 5). Further, all LASSO equations can be used through an interactive 

277 application designed by the authors and hosted on GitHub (see data sharing statement).

278 Discussion

279 We have developed and validated the performance of a novel set of equations to predict six different 

280 clinically important DXA-derived body composition metrics through low-cost bioelectric impedance 

281 analyses calibrated for use with men and women living in and near Hyderabad, India, demonstrating 

282 improvement from existing equations developed in other ethnic groups. Accurate measurement of 

283 these metrics is important as both fat and lean mass are strong determinants of chronic disease and 

284 used clinically in diagnosis, risk stratification, and monitoring of interventions1–3. Further, accurate 
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285 classification of trunk and abdominal fat adiposity may help to illuminate their relationships with 

286 cardiometabolic disease among Indian adults, for which direct evidence remains limited1. These 

287 equations will be particularly useful for large-scale epidemiological studies, especially in settings where 

288 expensive DXA scans cannot easily be performed.

289 Where work by Nigam et al found the mean difference of BIA- and DXA-predicted body fat percentage 

290 was 5.4%10, our novel model resulted in a mean absolute difference of 1.7% for men and 2.2% for 

291 women in testing data. While best performance was achieved by making use of a combination of 

292 TANITA, skinfolds, grip strength, and circumferences, our novel equations using only TANITA values as 

293 predictors still performed better in the held-out testing data than the TANITA built-in estimates and 

294 existing prediction equations for all outcomes. Furthermore, we show that even adding a single 

295 measurement to the TANITA values (namely skinfolds, and to a lesser extent circumferences) can 

296 improve body composition predictions markedly. This could be useful in resource-constrained contexts 

297 where collecting all measurements is not feasible. In addition, we have developed predictive equations 

298 for trunk and L1-L4 fat percentage in a cohort of Indian adults, which to our knowledge did not 

299 previously exist. The generally improved performance of LASSO as compared to random forest and 

300 XGBoost models allows us to provide interpretable prediction equations for wider use. The low-cost 

301 nature of the measurements used may be especially beneficial for settings where more expensive and 

302 time-consuming methods like DXA and MRI are not feasible (i.e., primary care and community settings).

303 While we identified several studies validating existing body composition metrics for use in Indian 

304 populations, our study represents one of only a few studies developing novel equations to predict DXA-

305 derived values for use with Indian adults. While Dasgupta et al provided similar equations with lower 

306 reported RMSE than our study, their study sample consisted only of 117 males aged 18 to 22 years old25. 

307 As such, the generalizability of these equations may be more limited than the novel equations presented 
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308 in the current work, developed using a training sample of more than 1000 men and women of a wide 

309 age range, the largest population-based DXA dataset including both men and women available in India 

310 to our knowledge. The work of Grover et al developed equations to predict DXA-derived fat mass and 

311 fat-free mass using BIA, circumferences, and skinfolds separately in a clinical population of 302 adults 

312 with cirrhosis but did not present equations using a combination of all factors33. The equations by 

313 Kulkarni et al utilized skinfolds and waist circumference but did not explore the addition of BIA values 

314 into predictive equations28. However, the equations by Kulkarni et al resulted in MAE for appendicular 

315 lean mass within 0.1 kg of our equations using TANITA only. This is somewhat expected as these 

316 equations were calibrated using DXA as reference values and including data from some of the younger 

317 individuals in the APCAPS study. Prior development of equations for fat-free mass based on a sample of 

318 Black and White individuals by Sun et al reported RMSE of 3.9 kg for males and 2.9 kg for females8. 

319 Further, the equations developed by Rush et al for prediction of fat-free mass in an Asian Indian 

320 population report an RMSE of 2.13 in the study sample17. The RMSE for our LASSO-based equations 

321 predicting total lean mass were 1.5 kg for males and 1.6 kg for females, suggesting improved model fit. 

322 To our knowledge, the current work represents the introduction of the first set of validated BIA-based 

323 equations to predict trunk-specific body composition outcomes for Indian adult men and women.

324 Though we have demonstrated improved performance from the TANITA output in estimating lean mass 

325 in both the full body and appendicular regions, it is unsurprising that the TANITA outputs have a 

326 noticeable systematic error. This is because the TANITA uses a two-compartment model to predict fat-

327 free mass, combining both lean mass and skeletal mass into a single measure, whereas the DXA-derived 

328 outcome specifically uses a three-compartment model to measure lean mass as distinct from skeletal 

329 mass. Additionally, the TANITA provides no direct measure of L1-L4 fat mass as the device cannot detect 

330 this body segment. Finally, the TANITA trunk segment includes the mass of the head, while the DXA 

331 includes the head as a separate body segment. These observed systematic errors may explain the 
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332 performance issues of the TANITA observed in our study, though they also emphasize the relevance of 

333 the current work. Those interested in measuring lean mass without skeletal mass using TANITA now 

334 have a method of doing so despite its use of a two-compartment model.

335 However, the present work is not without limitations. Of note, not all participants from APCAPS 

336 attended the clinic for DXA measurements due to funding limitations or travel distance to the clinic. The 

337 participants who did not attend DXA clinics tended to be younger than the participants who did attend 

338 the clinics, suggesting there could be systematic differences between those included and those not 

339 included due to missing measurements, though no significant difference was found in BMI between the 

340 individuals with and without DXA measurements. Regardless, these equations are not recommended for 

341 estimating body composition among pregnant women since these women were not included in the 

342 sample used for the present development and validation of equations. The validity of these equations in 

343 the presence of values outside the range of the training data is also unclear. The training dataset mostly 

344 consisted of low-BMI individuals (99th percentile for BMI in both men and women ≈ 31 kg/m2). Further, 

345 the 99th percentile for age in our data is 67 years in men and 61 years in women. Therefore, predictions 

346 may not be suitable for adults with obesity as defined by BMI and those older than the study sample and 

347 we recommend interpreting model predictions with caution in such cases. We provide the minimum, 1st 

348 percentile, 99th percentile, and maximum of each predictor in the training data in the Supplementary 

349 Material (File 5). 

350 Beyond the limitations related to the distribution of variables and selection into the DXA study, 

351 limitations to interpretation of results also arise from the use of an internal, rather than external, 

352 validation dataset. Our participants are largely from peri-urban areas in southeastern India, and it is 

353 unclear how well these equations will perform in other populations in India and in the diaspora, as India 

354 is an ethnically diverse country. Additionally, most participants in the APCAPS cohort were between 18-
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355 30 or 40-55 years old, meaning that individuals 30-40 years old were underrepresented in the dataset. 

356 Because of these limitations, future work is needed to validate these equations in other Indian cohorts 

357 and among adults of Indian ethnicity living outside of India. Further, while prior research has shown that 

358 DXA is a good substitute for MRI-derived measures of abdominal fat in Indian populations, researchers 

359 may still prefer equations developed using MRI for measurement of abdominal fat as the gold standard 

360 since DXA may tend to overestimate fat mass in leaner individuals30. Additional research may also 

361 investigate the performance of these equations against MRI-derived measures of each outcome. 

362 Finally, future validation work is crucial to assess the validity of these equations when deriving BIA 

363 estimates from other devices. The present study made use of the TANITA BC-418 device, which although 

364 widespread, has since been discontinued by the manufacturer and replaced with the MC-780U. This 

365 newer model has been described by the manufacturer as a direct replacement and provides the same 

366 50KHz measurement frequency, suggesting our equations could be used across both devices. Further, 

367 the additional measures provided by the new model, such as measurement of impedance using 

368 additional frequency values, may present opportunities for development of equations using an 

369 expanded set of inputs in the future. Additionally, validation work is needed to assess the performance 

370 of these equations when using BIA-based inputs from manufacturers other than TANITA in case of 

371 systematic differences between devices. It is the authors’ expectation that the equations will perform 

372 well with inputs from any BIA device that can provide segmental estimates, as the underlying approach 

373 to impedance estimation is similar, and studies have reported high correspondence in body composition 

374 estimates across manufacturers, though one study suggested estimates from Omron devices may differ 

375 from other manufacturers34. Additionally, it is of note that one study in Finnish adults has demonstrated 

376 differences between estimates of fat mass percentage between TANITA and InBody BIA devices, 

377 suggesting caution may be needed when using our equations with InBody devices35. Our equations are 
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378 not suitable for use with BIA devices which provide only full-body measurements, as information about 

379 the separate body segments are required as input.

380 Conclusions

381 In summary, we have developed and validated several novel prediction equations for a variety of body 

382 composition metrics specifically for an Indian population using a large sample size. We encourage the 

383 use of our equations based on the LASSO algorithm and make these equations available for use. These 

384 equations are expected to deliver improved prediction of various body composition outcomes on 

385 average when used with non-pregnant Indian adults. Differences in body composition between different 

386 ethnicities due to a combination of factors, including differences between different Asian ethnicities, 

387 underscore the importance of developing such equations specifically for adults of Indian ethnicity36.
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