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Abstract  
Atherosclerotic cardiovascular disease, the leading cause of global mortality, is driven by lipid 

accumulation and plaque formation within arterial walls. Carotid plaques, detectable via 

ultrasound, are a well-established marker of subclinical atherosclerosis. In this study, we trained 

a deep learning model to detect plaques in 177,757 carotid ultrasound images from 19,499 UK 

Biobank (UKB) participants (aged 47-83 years) to assess the prevalence, risk factors, prognostic 

significance, and genetic architecture of carotid atherosclerosis in a large population-based 

cohort. The model demonstrated high performance metrics with accuracy, sensitivity, specificity, 

and positive predictive value of 89.3%, 89.5%, 89.2%, and 82.9%, respectively, identifying carotid 

plaques in 45% of the population. Plaque presence and count were significantly associated with 

future cardiovascular events over a median follow-up period of up to 7 years, leading to improved 

risk reclassification beyond established clinical prediction models. A genome-wide association 

study (GWAS) meta-analysis of carotid plaques (29,790 cases, 36,847 controls) uncovered two 

novel genomic loci (p < 5x10-8) with downstream analyses implicating lipoprotein(a) and 

interleukin-6 signaling, both targets of investigational drugs in advanced clinical development. 

Observational and Mendelian randomization analyses showed associations between smoking, 

low-density-lipoprotein (LDL) cholesterol, and high blood pressure and the odds of carotid plaque 

presence. Our study underscores the potential of carotid plaque assessment for improving 

cardiovascular risk prediction, provides novel insights into the genetic basis of subclinical 

atherosclerosis, and offers a valuable resource for advancing atherosclerosis research at the 

population scale. 

 
Keywords: atherosclerosis, carotid artery, vascular ultrasound, cardiovascular disease, machine 

learning, genetics, Mendelian Randomization. 
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Main 
Atherosclerosis, characterized by lipid accumulation and plaque formation within arterial walls1, 
is the primary condition underlying cardiovascular disease (CVD), the leading cause of global 

mortality and morbidity2,3. Despite significant advancements in pharmacotherapies for lipid 

lowering and the management of other vascular risk factors such as diabetes and hypertension, 

the alarmingly high and rising prevalence of CVD highlight the need for novel risk assessment 

and preventive strategies4,5. Atherosclerosis is a chronic disease with subclinical atherosclerotic 

lesions developing silently over decades. Current CVD risk assessment tools used in clinical 

practice, including the Pooled Cohort Equations (PCE)6, Framingham Risk Score7, and 

Systematic Coronary risk Evaluation (SCORE8 and SCORE2)9,10, rely on demographic, clinical, 

and biochemical factors but do not account for the presence of subclinical atherosclerosis11,12. 

Imaging studies that enable screening for subclinical atherosclerotic lesions in asymptomatic 

individuals suggest that atherosclerotic plaques are highly prevalent, even among individuals 

traditionally considered at low CVD risk13–18. Coronary artery calcium (CAC) scoring on computed 

tomography (CT) has gained traction for assessing subclinical atherosclerosis; however, it faces 

limitations as a screening tool due to ionizing radiation exposure and its relatively high costs for 

widespread application19,20. 

In contrast, carotid ultrasound offers a non-invasive, radiation-free, and widely accessible 

modality for assessing subclinical atherosclerotic lesions19,21. While traditional assessment of 

carotid intima-media thickness (cIMT) does not reliably predict incident CVD risk22, the detection 

of carotid atherosclerotic plaques is associated with an increased risk of future events21,23,24. 

Despite promising results, it remains uncertain whether screening for carotid plaques could 

reclassify asymptomatic individuals into higher-risk categories that justify the initiation of 

preventive pharmacotherapies25. Many published studies are constrained by relatively small 

sample sizes or insufficient follow-up24,26–30.  

Several large-scale population-based cohorts have incorporated carotid ultrasound imaging into 

their data collection processes,31–33 but evaluating plaque presence across thousands of images 

remains a labor-intensive task. Recent advancements in deep learning have enhanced medical 

imaging analysis, enabling greater precision and the automation of processing large volumes of 

imaging data34,35. Although previous deep learning models for ultrasound images have shown 

potential in various tasks,  including carotid wall and plaque segmentation36–38, these studies have 

primarily focused on specific populations, such as stroke patients or individuals with known carotid 

artery disease, which limits the generalizability of their findings to the broader population. 

Automating carotid plaque assessment in large population-based cohorts could allow the 

integration of this phenotype with genetic, omics, other imaging modalities, and clinical data 

collected in the context of these studies. This would facilitate in-depth research into the biology of 
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subclinical atherosclerosis, thus enabling explorations into the natural history of the disease and 

potentially uncovering novel drug targets.  

Here, we introduce a computer vision model designed to detect atherosclerotic plaques, applied 

to the largest dataset of carotid artery ultrasound images to date. We utilized ultrasound images 

from 19,499 deeply phenotyped participants in the UK Biobank (UKB), a large-scale population-

based cohort. This study marks the first application of deep learning at a population level for 

assessing subclinical atherosclerosis using carotid ultrasound, offering a valuable resource for 

exploring the biology of atherosclerosis with implications for CVD risk assessment. Our model 

demonstrated high performance in both detecting plaques and quantifying their counts. We 

leveraged the model’s predictions to: (1) estimate the prevalence of carotid atherosclerotic 

lesions; (2) identify predictors of carotid plaque presence; (3) examine the associations of plaque 

presence and count with the risk of future CVD events; (4) assess potential improvements in CVD 

risk prediction and reclassification compared to traditional clinical tools; and (5) investigate the 

genetic underpinnings of carotid atherosclerosis (Figure 1). 

Results 
 
Study population 

A total of 177,757 images from 19,499 participants who underwent carotid ultrasound during the 

first imaging visit of the UKB, were available for analysis (Supplementary Figure 1). The protocol 

for carotid artery examination has been described previously39. For the current study, we used 

38,732 images obtained in the longitudinal axis of the left and right distal common carotid artery 

and the bifurcation, allowing for the assessment of plaque presence along the vessel wall. The 

demographic and medical characteristics of the study participants are presented in Table 1. The 

mean age at the time of the carotid ultrasound examination was 64.6 years (SD = 7.59), and 

50.8% of the participants were female. A total of 1,381 (7.1%) study participants had a baseline 

diagnosis of atherosclerotic CVD. A comparison between UKB participants with carotid ultrasound 

and the rest of the UKB cohort revealed a lower prevalence of CVD risk factors (Supplementary 
Table 1).  
 

Plaque detection model 

To train a deep learning model for the detection of atherosclerotic plaques, we manually 

annotated plaques in 680 randomly selected carotid ultrasound images. Plaques were defined as 

focal protrusions in the arterial lumen with a thickness greater than 50% of the surrounding carotid 

intima-media thickness40. A plaque was present in 253 of these images. We performed transfer 

learning with fine-tuning by employing a pre-trained YOLOv841 object detector as the foundation 

for developing the plaque detection model (Figure 2A). The YOLOv8 object detection algorithm 

generates bounding boxes to indicate the locations of objects of interest. The images with 
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manually annotated plaques were randomly divided into training, validation, and test sets in a 

0.725/0.125/0.15 ratio. This distribution maximized the training set while ensuring a sufficient 

number of images for assessing model performance in the test set. We evaluated the model's 

performance by training it on several subsets of our input development dataset (training + 

validation) in 5-fold cross-validation. The consistent performance metrics , with minimal variations 

in precision and recall, indicated no significant signs of overfitting (Supplementary Figure 2). 

After training, the performance of the model was evaluated in a blind test set of 103 images, of 

which 38 contained at least one plaque (53 plaques in total). The model achieved high 

classification metrics for plaque presence at the image level, with an accuracy, sensitivity, 

specificity, and Positive Predictive Value (PPV) of 89.3%, 89.5%, 89.2%, and 82.9% (Figure 2B), 
respectively, at an iteratively tuned confidence score threshold of 13%. The confidence score 

measures the model's certainty that a box contains an object of interest and was tuned to optimize 

and balance accuracy, sensitivity, and specificity. The Mean Average Precision at an Intersection 

over Union (IoU) threshold of 50% (mAP@50) was 68.4%, indicating the precision with which the 

model can localize objects with at least 50% overlap with the ground truth. The model's detection 

precision and recall were 70.3% and 71.7%, respectively. Prediction examples are illustrated in 

Figure 2C and Supplementary Figure 3.  

 
Prevalence and risk factors of carotid plaques in the UK Biobank 
 
Next, we deployed the model on all available long-axis carotid ultrasound images from the UKB 

cohort (38,732 images, 19,499 individuals, Supplementary Figure 1). This deployment allowed 

us to extract data on plaque phenotypes, including plaque presence and the count of plaques in 

either artery for each individual. The count of plaques was determined by the number of predicted 

bounding boxes in each image.  

Overall, the model detected at least one plaque in 45% of the UKB participants who underwent a 

carotid ultrasound examination. In 14% of the participants, the model detected at least two 

plaques, and in 3.1% of the participants, three or more plaques across both arteries. The 

prevalence of plaques in the left and right carotid arteries is presented in Figure 3A. As a quality 

control step for the model predictions, we explored whether plaque presence was associated with 

cIMT, which was quantified and documented for each individual at the time of the imaging 

assessment. Indeed, cIMT was consistently higher for individuals for whom our model predicted 

a plaque (Wilcoxon test p < 10-60 for maximum, mean, and mean of maximum cIMT 

measurements). Similar results were obtained for the left and right arteries separately 

(Supplementary Figure 4). 

Plaques were more common in male participants (47.5% vs. 42.6%; two-proportions z-test p = 

5.7 x 10-12) and plaque prevalence was significantly associated with older age, increasing from 
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31.1% in participants aged 45–54 years to 62% in participants aged 75 years or older (Cochran-

Armitage trend test p = 1.12 x 10-88, Figure 3B). In a multivariable logistic regression model, male 

sex, older age, current smoking, higher systolic blood pressure (SBP), history of hypertension, 

pre-existing CVD, use of statins, and higher Low-Density Lipoprotein (LDL) cholesterol levels 

were all significantly associated with plaque presence (Figure 3C).  

 
 
Associations of plaque phenotypes with the risk of future cardiovascular events  

To estimate the effects of the presence and count of plaques in carotid ultrasound on the risk of 

future major adverse cardiovascular events (MACE), we conducted a survival analysis. Following 

the first imaging visit, the UKB participants with available ultrasound images were followed up for 

a median of 55 months (range 1-80 months). During this time interval, a total of 430 individuals 

experienced a MACE, defined as myocardial infarction, stroke or death due to any cardiovascular 

cause. Of these, 335 were first-ever events among 18,110 participants (1.8%) without a history 

of CVD at the time of the ultrasound examination, while 95 were secondary events among 1,389 

participants (6.8%) with an existing history of CVD. 

Kaplan-Meier estimates indicated a higher incidence rate of MACE among individuals with carotid 

plaques compared to those without plaques, demonstrating a dose-response pattern of higher 

incidence with an increasing plaque count (log-rank test p-value for all pairwise comparisons < 

0.05, Figure 4). After adjusting for conventional cardiovascular risk factors in Cox regression 

models, plaque presence was significantly associated with future risk of MACE (Hazard Ratio 

(HR) 1.42, 95% CI: 1.16–1.73). The plaque count per individual showed a dose-dependent 

association with future CVD risk (HR for 1 plaque vs. no plaque = 1.30, 95% CI: 1.04–1.63; HR 

for 2 or more plaques vs. no plaques = 1.62, 95% CI: 1.27–2.07). These associations were 

consistent in the subgroup of individuals without an existing history of CVD, as well as in those 

who had neither a history of CVD nor statin use (Supplementary Figure 5). There was no 

evidence of an interaction with sex (p = 0.139). The HRs were comparable when analyzing 

individual MACE components, albeit with wider 95% CIs, probably due to lower statistical power 

(195 myocardial infarction and 172 stroke cases, Supplementary Figure 5). 

 
Predictive power of plaque phenotypes  

To examine whether assessing carotid plaque phenotypes could improve cardiovascular risk 

prediction, we compared the fitness, reclassification, and discrimination of prediction models that 

included conventional vascular risk factors with those that also considered plaque presence and 

count. Both plaque presence and count significantly improved the overall goodness of fit of a Cox 

regression model (P < 0.05), as assessed by the log-likelihood ratio test43. We observed a 
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reclassification improvement for plaque presence (category-free net reclassification improvement 

(cfNRI): 0.331, 95% CI, 0.217–0.445) and plaque count (cfNRI: 0.369, 95% CI, 0.260–0.478, 

Table 2). Briefly, NRI quantifies model improvement by the difference between the net proportion 

of cases for which the new model correctly increases predicted risks and net proportion of controls 

for which the new model correctly decreases predicted risks44,45. Sensitivity analyses confirmed 

these improvements in individuals without a history of CVD and statin use (Table 2). Despite the 

strong associations with the future risk of MACE, none of the plaque phenotypes added to 

conventional risk factors significantly improved model discrimination, as measured by the C-index. 

Specifically, adding plaque presence to conventional risk factors only slightly changed C-index 

from 0.745 (95% CI, 0.723–0.767) to 0.747 (95% CI, 0.725–0.769), while adding plaque count 

changed it to 0.748 (95% CI, 0.726–0.770). However, minor yet significant improvements were 

observed in the integrated discrimination improvement (IDI): 0.0022 (95%CI, 0.0002–0.0050) for 

plaque presence and 0.0023 (95%CI, 2x10-5–0.0063) for plaque count. All the models 

demonstrated good calibration, indicating a strong alignment between observed outcomes and 

predicted risk estimates (Supplementary Figure 6). 

 

To assess whether plaque phenotyping would improve the reclassification of individuals when 

complementing established clinical risk prediction models, we calculated the PCE risk scores for 

UKB participants eligible for assessment according to ACC/AHA guidelines6. Due to the PCE’s 

tendency to overestimate risk in the UKB population, the model was recalibrated (Supplementary 
Figure 7). Incorporating plaque presence and count into the PCE demonstrated significant 

reclassification improvement, with a categorical NRI of 0.034 (95% CI, 0.006–0.062) and 0.04 

(95% CI, 0.010–0.070), respectively, at the threshold of 7.5% 10-year cardiovascular risk, which 

defines intermediate risk and justifies preventive initiation of statin therapy according to current 

guidelines. Overall, adding plaque presence correctly reclassified 17 out of 318 patients who 

developed MACE into a higher risk category. Including plaque count correctly reclassified 20 

patients into a higher risk category (Table 3). In both cases, plaque presence and plaque count,4 

patients were incorrectly reclassified into a lower risk category. 

 
 
Genome-wide association study of carotid atherosclerotic plaque 

As the next step, we investigated the genetic architecture of carotid atherosclerosis, defined by 

plaque presence. To detect single nucleotide variants (SNVs) associated with presence of a 

carotid atherosclerotic plaque, we conducted a genome-wide association study (GWAS) and 

subsequently meta-analyzed our data with the largest available GWAS for carotid plaque from 

the cohorts of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 

consortium46. After quality control and excluding individuals without genetic data, the UKB GWAS 

included 18,203 White British individuals, comprising 8,250 cases with carotid plaque and 9,953 
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controls. The pooled sample from the UKB and CHARGE cohorts included 66,637 individuals 

(29,790 cases; 36,847 controls). We identified seven independent genomic loci significantly 

associated with the presence of carotid plaque, two of which were novel. Five of the loci (mapped 

to the genes EDNRA, LINC02577, CDKN2B-AS1, CFDP1, LDLR) replicated known associations, 

as the lead SNVs were in high linkage disequilibrium (r2 > 0.9) with SNVs previously reported to 

be associated with carotid plaque presence in the CHARGE study (Figure 5, Supplementary 
Table 2). The sixth locus included the LPA gene, which encodes lipoprotein(a) (Lp(a)) and is a 

known locus for atherosclerotic cardiovascular disease47–51. The lead variant at this locus 

(rs56393506), associated with higher odds for an atherosclerotic plaque (OR for T allele: 1.12, 

95%CI: 1.07–1.16), is an intronic variant in the LPA gene that has been previously strongly 

associated with higher Lp(a) levels52. The lead SNV at the seventh locus is located in a non-

coding region (rs1893250, OR for A allele: 0.91, 95%CI: 0.88–0.93) and was previously 

associated with angina pectoris53.  

 
Mendelian randomization analyses 

Finally, we performed Mendelian Randomization (MR) to explore whether genetically proxied risk 

factors and biomarkers of CVD are associated with carotid atherosclerotic plaque. We used the 

largest to-date publicly available GWAS summary statistics for vascular risk factors to generate 

genetic instruments for the risk variables under study (Supplementary Table 3). The inverse-

variance weighted (IVW) MR analyses revealed associations between higher genetically proxied 

SBP, diastolic blood pressure (DBP), LDL cholesterol, interleukin-6 (IL-6) signaling activity, and 

genetic predisposition to smoking initiation and type 2 diabetes (T2D) with the odds of carotid 

plaque presence (Figure 6). Additionally, higher genetically proxied HDL cholesterol levels were 

associated with lower odds of carotid plaque (Figure 6). There was evidence of directional 

pleiotropy, as assessed by a significant Egger intercept (p = 0.036), for the association between 

smoking initiation and carotid plaque, with the MR estimate derived by MR Egger regression being 

in the opposite direction, even after excluding potential outlier instruments detected with 

Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) (Supplementary 
Table 4). The results for the remaining significant IVW associations were generally highly 

consistent in sensitivity analyses, including MR Egger regression and the weighted median 

estimator (Supplementary Table 4).  

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.17.24315675doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.17.24315675
http://creativecommons.org/licenses/by/4.0/


 9 

Discussion 
 
In this study, we developed a computer vision model that accurately detects atherosclerotic 

plaques in carotid ultrasound images and applied it to a population-based cohort of 19,499 

participants from the UKB. The model demonstrated strong performance in detecting carotid 

plaques and classifying plaque-positive carotid ultrasound images, achieving approximately 90% 

in accuracy, sensitivity, and specificity. Consistent with previous studies in comparable 

demographics (mean age 64.6±7.6 years, 53% female)14,55, our model identified at least one 

carotid plaque in 45% of participants. The presence of plaques was associated with conventional 

vascular risk factors and was predictive of future adverse cardiovascular events over a follow-up 

period of up to 7 years. Importantly, both plaque presence and count led to improved risk 

reclassification for future adverse cardiovascular events beyond the established PCE risk 

assessment tool. Leveraging the phenotypic depth of the UKB, we conducted the largest genomic 

analysis of carotid atherosclerosis to date, identifying two novel loci and risk pathways, including 

ones targeted by emerging cardiovascular therapeutics, such as Lp(a) and IL-6 signaling. 

While atherosclerosis can develop long before clinical symptoms appear56, modern risk 

assessment tools do not consider subclinical atherosclerotic pathology. Many studies have 

highlighted the potential of integrating imaging biomarkers of subclinical atherosclerosis into 

conventional risk assessment tools28. CAC assessed through CT is a well-established predictor 

of CVD  risk57. However, CAC has limitations, including insensitivity to early stages of 

atherosclerosis and exposure to radiation19,20,58. In contrast, carotid ultrasound is an inexpensive, 

well-tolerated, radiation-free tool capable of detecting early-stage atherosclerosis14,59. Our results, 

based on a population of almost 20,000 individuals, suggest that both the presence and count of 

plaques are strongly associated with the risk of future acute CVD events. Incorporating plaque 

information into Cox regression models led to significant reclassification improvements, which 

were robust across the full cohort, those without a history of CVD statin-naive participants. The 

reclassification metrics in our study indicate that adding plaque information to conventional risk 

factors and directly incorporating it into the PCE has the potential to improve patient stratification. 

Specifically, incorporating plaque count reassigned 6.3% (20 out of 318) of individuals who went 

on to develop cardiovascular events from a low to a higher risk category, making them eligible for 

preventative statin therapy. 

Despite growing evidence that carotid ultrasound-derived plaque phenotypes—such as total 

plaque area and vulnerability features—are independently associated with future CVD events 
26,60,61, its use in clinical practice remains underutilized. The primary challenges for wider 

adoptions include the time required for assessment and reliance on operator skill23. However, an 

efficient artificial intelligence model could significantly streamline these labor-intensive tasks. The 

model developed in this study demonstrates high performance in identifying individuals with 
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carotid atherosclerosis and localizing plaques from a single screenshot of the carotid bifurcation. 

Further model advancements could not only address the issue of labor intensity but also enable 

the extraction of more detailed plaque features, thus enhancing the predictive performance of 

carotid ultrasound. 

Importantly, our model enhances the phenotypic depth of the UKB to subclinical atherosclerosis, 

facilitating integration with the unique resources available in this population, such as multi-omics 

and other imaging data62. Moving in this direction, we leveraged the available genomic data to 

perform the largest exploration to date of the genetic architecture of carotid plaque. We replicated 

five genomic loci previously associated with atherosclerosis endophenotypes46 and also found 

two new loci related to clinical cardiovascular outcomes. Furthermore, downstream MR confirmed 

the effect of genetic predisposition to known vascular risk factors, such as smoking, high blood 

pressure, and LDL cholesterol, on carotid plaque presence. Importantly, the GWAS and MR 

results showed that genetic variation leading to elevated Lp(a) levels and higher IL-6 signaling 

activity is associated with higher odds of carotid plaque. Both pathways are believed to play key 

roles in atheroprogression and are the targets of investigational drugs in advanced clinical 

development47,48,63–65. These results suggest that drugs targeting these pathways could be 

promising, particularly in the preclinical stages of atherosclerosis. Integrating carotid plaque 

phenotypes with additional omics layers may provide further insights into novel drug targets for 

atherosclerotic CVD. 

Our study has several limitations. First, during model development, the low quality of some 

images necessitated contrast enhancement and noise reduction techniques. These adjustments 

may have introduced bias, especially in cases where high noise levels complicated plaque 

detection. However, our model achieved high classification and detection metrics, which could 

potentially be improved further by annotating more images. Moreover, the consistency of 

predicted carotid plaque prevalence with previously reported plaque prevalence in similar 

demographics, along with the associations of predicted plaque presence with known risk factors 

and future CVD risk, supports the model’s reliability55. Second, the UKB is a cohort of healthy 

volunteers with a lower incidence rate of CVD than the general population, particularly within its 

imaging subsample (Supplementary Table 1)66. This discrepancy contributes to an 

overestimation of CVD risk calculated by clinical risk models, such as the PCE tool. To improve 

the reliability of our reclassification evaluation, we recalibrated the model using data from the 

study population to better align predicted risk with observed outcomes. Due to the low prevalence 

of risk factors and events, PCE-derived absolute risk estimates remain notably low. It is worth 

noting that deriving categorical NRI metrics comparable to those from other studies with different 

incidence rates may be problematic67. We addressed this issue by calculating continuous NRI 

estimates using bootstrap estimates, which are threshold-independent and less sensitive to event 

rates68. Third, the carotid ultrasound examination took place 2 to 15 years after the baseline visit 
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and the assessment of cardiovascular risk factors. This gap introduces bias into the effect 

estimates. To account for changes in baseline risk factors over this period, we used, wherever 

available, data from the primary care records of participants collected at the closest date to the 

ultrasound exam. Fourth, our study has a shorter follow-up period of 7 years compared to most 

clinical risk assessment tools, including the PCE, which typically calculate 10-year risk estimates 

for CVD. Fifth, we observed significant heterogeneity in the results of IVW MR analyses for several 

risk factors (Supplementary Table 4), which could indicate the presence of pleiotropy. To explore 

whether the derived estimates could be biased by directional pleiotropy, we conducted several 

sensitivity analyses to test the robustness of the estimates against different MR assumptions. 

Sixth, there was some population overlap between the exposure and outcome GWAS datasets 

used in our MR analyses, which could introduce weak instrument bias into the derived effect 

estimates. We addressed this concern by using the largest available summary statistics for the 

exposure data. Given that the effective population overlap was less than 5% for all exposure-

outcome pairs, we estimated any bias in the effect estimates to be under 5%69. Lastly, this study 

analyzed a sample from the UKB, which predominantly consists of White ancestry volunteers, 

who are healthier than the general population. Therefore, replicating these findings in more 

diverse populations and real-world settings is crucial for improved generalizability and informed 

decision-making. 

In conclusion, we have successfully developed and implemented a deep learning model for 

plaque detection within the population-based UKB, significantly enhancing the phenotypic 

characterization of this cohort. This model sets the stage for automating carotid plaque 

assessment in other large-scale cohorts, thereby enabling broader population-based research in 

subclinical atherosclerosis. Our results highlight the potential of carotid plaque assessment for 

refining cardiovascular risk prediction, offer insights into the genetic architecture of 

atherosclerosis, and provide a valuable resource for advancing atherosclerosis research at the 

population scale.  
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Methods 
 
Study population 

In this study, we utilized data from the UKB, a large-scale prospective cohort study  that recruited 

between 2006 and 2010 502,422 individuals aged 40 to 69 at baseline from across the United 

Kingdom70. Participants underwent detailed assessments, which included comprehensive data 

collection through questionnaires, physical measurements, and biological sample collections. All 

participants provided electronic informed consent. Ethical approval was granted by the National 

Health Service North West Multicenter Research Ethics Committee. 

Following a baseline visit between 2006 and 2010, a total of 82,340 individuals returned for a 

follow-up imaging visit starting 2014, which included a carotid ultrasound. A total of 177,757 raw 

images from 19,768 individuals were released by the UKB and used in this study (Supplementary 
Figure 1). Four anatomic views of the distal common carotid artery and the bifurcation were 

available for each side for nearly every UKB participant who underwent a carotid ultrasound: 

images along the main longitudinal axis, images along the short axis, and images along the main 

longitudinal axis at two different angles for each artery, which were used by the analysts for cIMT 

quantification. Our study focused on images from 19,507 UKB participants derived along the main 

longitudinal axis. Eight individuals withdrew from the study post-recruitment (field 190), resulting 

in a total sample size of 19,499. For participants with repeat imaging visits, only the ultrasound 

data from the first visit were retained for analysis.  

 

Pre-processing 

The flowchart for extracting the carotid ultrasound imaging data for analysis is summarized in 

Supplementary Figure 1. After developing an algorithm (Supplementary Figure 8) that 

automatically detects images along the longitudinal axis, we extracted 45,210 long-axis images 

without cIMT measurements from the left and right arteries for 19,507 individuals. The obtained 

images were cropped to a size of 480x448 pixels to retain only the ultrasound image while 

maintaining the original resolution. After excluding participants who withdrew from the study and 

keeping only the images from the first ultrasound visit, a total of 19,362 left and 19,370 right 

carotid images from 19,499 individuals remained for analysis.  

In order to enhance contrast and reduce noise in the images, we applied two functions from the 

OpenCV v. 4.7.0 library71: median blur filtering (ksize=5) and Contrast Limited Adaptive Histogram 

Equalization (clipLimit=2.0, tileGridSize=(8,8)), respectively, to facilitate the manual segmentation 

process. These processing steps were applied to the full sample of images in this study.  Plaques 

were manually annotated by two medical doctors with postgraduate training in vascular imaging 

and subsequently validated by a doctor certified in carotid ultrasound imaging. Label Studio 
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version 1.8.2 (https://github.com/HumanSignal/label-studio) was used to segment plaques on the 

ultrasound images. The edge coordinates of the segmentation masks were used to obtain the 

bounding boxes. Plaques were defined according to standards, as focal protrusions in the arterial 

lumen with a thickness >50% of the surrounding carotid intima-media thickness40. If multiple 

longitudinal images were available for the same artery, those where the model detected a plaque 

were prioritized, or a random image was used if plaques were found in more than one. 

 

Model Development and Deployment 

We performed transfer learning with fine-tuning which involves selecting a model pre-trained on 

a large dataset of natural images and then re-training it on a new dataset. This approach allows 

for adjusting the model weights and biases to better suit the task related to the new dataset. Here, 

we employed the YOLOv8l41 model for object detection, pre-trained on over 330,000 images, and 

re-trained it on our dataset of 680 carotid ultrasound images. The dataset was divided into training, 

validation, and test sets at a ratio of 0.725/0.125/0.150, resulting in 103 images allocated to the 

test set. To enhance model generalizability and predictive power, we randomly selected 50% of 

the training set (490 images) and applied various augmentation techniques from Albumentations72 

Python library: GridDistortion (p=0.15), RandomBrightnessContrast (((0,0.5),(0,0.5)), 

HorizontalFlip(p=0.2), GaussNoise(p=0.15), and RandomSizedCrop (min_max_height=(384, 

384), p=0.4). These augmentations increased the variability of the training set, making the model 

more invariant to noise and other distortions. This augmented dataset, along with the rest of the 

images, was processed in batches for further augmentation within the YoloV8 framework, as 

detailed below. 

The model was trained with a batch size of 44 images. Early stopping was set to 5 epochs, and 

training concluded after 14 epochs, with peak performance observed at epoch 9. The following 

loss function parameters were selected based on a grid search, as detailed in Supplementary 
Table 5: distribution focal loss (DFL) = 2.5, box loss = 10, and binary cross entropy loss (CLS) = 

1.1.  Default augmentation techniques in the YOLOv8 framework were partially suppressed due 

to prior augmentation efforts; specifically, mosaic, copy-paste, shear, close mosaic, flip up-down, 

and mix-up were disabled. However, flip left-right (p=0.1), degrees (10), HSV-Saturation (hsv_s: 

0.05), HSV-Value (hsv_v: 0.05), translate (0.1), and scale (0.1) were retained. Training was 

conducted using an NVIDIA QUADRO RTX 5000 GPU (16GB). PyTorch73 version 1.12.1 and the 

Ultralytics41 framework version 8.1.16 were used for model development.  

Model’s classification metrics for detecting plaque-positive images were estimated in a confusion 

matrix by comparing ground truth annotations with bounding box predictions. A true positive was 

recorded when both annotation and prediction contained a bounding box.  
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Demographic and Clinical Variables 

Age at carotid ultrasound assessment was derived by subtracting the participant's date of birth 

(field 33) from the carotid ultrasound assessment visit date (extracted from the manifest files 

linked to the ultrasound images). Ethnicity for the PCE risks score calculation was determined by 

field 21000. Observations with missing data or responses of “Do not know” or “Prefer not to 

answer” were encoded as “Other”. Pre-existing CVD was defined based on self-reported history 

(UKB field 20002, with 1075 - heart attack/myocardial infarction, 1081 - stroke, 1583 - ischemic 

stroke, 1491 - brain haemorrhage); general practice records (131298, 131300, 131302, 131368, 

131366); hospital data records (defined using ICD-10 codes I20-I25, I60-I61, and ICD-9 codes 

410-412, 429-431, 434, 436, as well as operation codes K40-46, K49, K471, K49, K50, K75,  L294 

and L295 observed before the initial ultrasound visit). SBP was quantified using fields 4080 and 

93 by averaging the observations from each field, followed by taking the mean of the resulting 

values. Smoking status was categorized as "current" or "other", with missing data (<0.5%) treated 

as "other" (field 20116). Total cholesterol, LDL and HDL cholesterol levels were obtained from 

fields 30690, 30780 and 30760, respectively. When available, values from the assessment closest 

to the ultrasound visit were extracted; otherwise, baseline measurements were used. Missing 

values were imputed using the multivariate imputation by chained equations method74, affecting 

12% of HDL-cholesterol values and 6% of total and LDL-cholesterol values, based on other CVD 

risk factors. Diabetes was defined by self-reported cases (UKB field 20002 – codes: 1220, 1222, 

1223), use of glucose-lowering medications (field 20003), and hospital records prior to the first 

carotid ultrasound exam (ICD-9 codes: 250* and ICD-10 codes E10, E11). Information on the use 

of antihypertensive drugs, diabetes medications, and statins was obtained from field 20003 

(Supplementary Table 6). 

 

Assessment of major adverse cardiovascular events 

MACE endpoints were defined as follows: myocardial infarction (ICD-10 codes I21, I22 from 

hospital inpatient data, UKB data-fields 131298 and 131300), stroke (ICD-10 codes I60-64 from 

hospital inpatient data, UKB data-fields 131368 and 131366), or death due to any cardiovascular 

cause (defined as the cause of death with an ICD-10 code starting with 'I' extracted from the death 

registry). The date of the first episode observed after the carotid ultrasound assessment was 

considered as the date of the event of interest.  

 

Carotid intima media thickness 

We calculated three types of cIMT measurement characteristics between groups with and without 

carotid plaque, as predicted by the model. Measurements of mean and maximum cIMT were 

obtained using UKB data fields 22670-22681, as described by Strawbridge et al75. 
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• cIMT mean: average of the mean values from four mean cIMT measurements (two angles 

for each carotid artery: left and right). 

• cIMT max: The maximum value of the cIMT measurements across both arteries. 

• cIMT mean-max: The mean of the maximum cIMT values per artery. 

All the obtained values were log-transformed for the analysis. Individuals with more than one 

missing cIMT measurement were excluded, resulting in a total of 18,497 individuals for this 

analysis. The analysis was repeated separately for the right and left arteries. 

 

Logistic regression for plaque presence and Cox regression for future events 

To estimate the associations between model-derived plaque presence and CVD risk factors, we 

applied logistic regression, using plaque presence as the outcome variable. A history of 

hypertension was defined by the use of antihypertensive treatment at the time of the carotid 

ultrasound assessment. Definitions of other clinical and demographic variables are described 

above. 

For each subset of the cohort (full sample, primary events with and without individuals on statin 

therapy), two separate Cox regression models were constructed: one with plaque presence as a 

binary variable and another with the count of plaques as a categorical variable with three levels 

(no plaques as the reference, one plaque, and two or more plaques). The time variable in the 

survival analysis was calculated as the duration from the first ultrasound visit to the event of 

interest or to the censoring date, which included date at death from causes other than CVD or the 

date at the last observed event (2022-10-30) available at the time of the analysis. Controls were 

censored at the time point of the latest observed event. The fitted Cox regression models included 

all vascular risk factors included in the PCE (age, sex, SBP, smoking status, history of diabetes, 

antihypertensive therapy, cholesterol, and HDL cholesterol), as well as statin usage. Ancestry 

was not included due to its very low variance in our sample (Table 1). The proportional hazard 

assumptions were tested with the scaled Schoenfeld residuals, and no violation of the 

assumptions was detected.  

All analyses were conducted using R software, version 4.4.0. We considered two-sided p-values 

less than 0.05 to be statistically significant. The category-free NRI was calculated using the 

nricens v.1.676 package with confidence intervals and p-values based on 1000-fold bootstrap 

standard errors. The IDI metric was calculated using the survIDINRI library v.1.1-277. Harrell’s C-

statistic, along with its 95% confidence interval, was used to evaluate the discriminative ability of 

the time-to-event models78. Comparisons between models based on the C-statistic were 

conducted using the CsChange package79. 
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PCE risk estimation  

The calculation of the PCE risk score was performed using published equations6. PCE eligibility 

included the following criteria:  

1)  40£Age£79, 

2)  130 £ Total cholesterol £320 mg/dL; 

3)  20 £ HDL-cholesterol £ 100; 

4)  90 £ Systolic blood pressure £ 200 mmHg  

To enable fair model comparison and justify the recommended threshold usage, the original PCE 

was calibrated to the UKB population. This recalibration was achieved by fitting calculated log-

hazards from the published PCE coefficients in a Cox regression stratified by sex to obtain 

recalibrated probabilities. The calibration of the predicted risk values from the original and 

recalibrated models was assessed using Greenwood-Nam-D’Agostino statistics and the 

integrated calibration index80,81. Calibration plots for the PCE are presented in Supplementary 
Figure 7.  

The plaque variables were incorporated into the PCE, with plaque presence as a binary variable 

and plaque count as an ordinal variable, as previously described82. Briefly, the recalculated risk 

is derived from the relative risk estimate for the novel risk factor, the baseline risk, and the 

prevalence of the novel risk factor. As an example, the presence of plaque was incorporated using 

equation (1), adapted from Kooter et al82:  

(1)                                               [𝑟] = 𝑝 × 𝐻𝑅 + (1 − 𝑝) 

𝑀𝐹(") = 𝐻𝑅/[𝑟] 

𝑅(") = 𝑅$%/[𝑟] 

𝑅(&) = 𝑅"/𝑅𝑅 

where [r] represents the weighted mean risk; p is the plaque prevalence; HR is the hazard ratio 

for plaque presence; MF(+) is the multiplication factor; R(+) is recalculated risk in the presence of 

plaque; Rbl is the baseline risk estimated from the baseline hazard and log-HRs estimated from 

the fitted Cox model ; and R(−) is the recalculated risk in the absence of plaque. 

HRs for both plaque presence and plaque count, used to enhance the recalibrated PCE risk model 

with plaque information, were estimated from a Cox regression model fitted on the sub-cohort 

eligible for PCE risk assessment. The model was adjusted for sex, age, HDL and total cholesterol 

levels, antihypertensive drug use, smoking status, SBP, and statin use at the time of the initial 

ultrasound assessment. Plaque information was incorporated separately for males and females, 

with prevalence estimates calculated for each cohort.  

Model calibration was estimated using the survival.calib83 package in R. Reclassification tables 

and NRI statistics were calculated using the PredictABEL v.1.2-484 library in R. 
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Genome-wide association study and meta-analysis 

Genomic quality control in the UKB was performed as previously described85. For the GWAS 

analysis Regenie86 v3.3 was employed. In step 1, we used directly genotyped variants with 

MAF > 1%, <10% missingness, Hardy–Weinberg equilibrium test P > 1 × 10−15, and a minor allele 

count > 100. Age at the time of the ultrasound exam, along with sex, the first 10 genetic principal 

components, and the genotyping chip were used as covariates. Fixed-effect meta-analysis was 

conducted with METAL87, using effect size estimates and standard errors (option SCHEME 

STDERR). Results were clumped using the clump_data function of TwoSampleMR88,89 R package 

version 0.5.6) at an r2<0.001 based on the European 1000 Genomes Project reference panel with 

10,000 kb window90. Results were then visualized in a Manhattan plot, which was constructed 

using the gwaslab Python package91. 

 

Mendelian randomization 

Summary-level data sources for exposures, along with their descriptions, are provided in 

Supplementary Table 3. Two-sample MR was conducted using the TwoSampleMR package in 

R. The instrumental variable for each exposure was constructed by selecting SNVs from summary 

statistics files with a significant association (p < 5×10⁸), followed by clumping for linkage 

disequilibrium at an r² < 0.001 threshold within a 10,000 kb window. For IL-6 receptor-mediated 

signaling activity, the genetic instrument was constructed as previously described92, using beta 

estimates derived from a cohort that excluded the UKB to minimize bias. Main association 

estimates were derived using random-effects IVW analysis. To account for potential bias due to 

horizontal pleiotropy, sensitivity analyses were performed using both MR-Egger and the weighted 

median estimator, as these methods are known to be more robust against pleiotropic effects93,94. 

Heterogeneity and horizontal pleiotropy of the genetic instruments were estimated using the 

mr_heterogeneity and mr_pleiotropy_test functions from the TwoSampleMR package. When MR-

Egger indicated significant pleiotropy, we utilized the MR-PRESSO method from the 

MRPRESSO95  package in R to identify and exclude significant pleiotropic instrumental variables 

(P < 0.05), which were considered as “outliers”. Subsequently, IVW, weighted median, and MR-

Egger analyses were carried out on the outlier-corrected models. 

 

Data availability 

The UKB provides an accessible research resource, available to researchers upon submitting a 

research proposal at https://www.ukbiobank.ac.uk. The GWAS meta-analysis data obtained in 

this study will be uploaded to the GWAS Catalog (https://www.ebi.ac.uk/gwas/home) upon the 
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publication of the current manuscript. Additionally, the carotid plaque phenotypes derived from 

the developed model will be returned to UKB for use in future studies. 

 

Code availability  

The code used for this study will be available on GitHub upon publication of this manuscript. 
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Figures 
 
 

 
Figure 1. Summary of the study design. 
ASCVD – Atherosclerotic Cardiovascular Disease, CVD – Cardiovascular disease, PCE – Pooled Cohort 
Equatios, TP– true positive, FN – False Negative, FP – False Positive, TN – True Negative, GWAS – 
Genome-Wide Association Study 
 

Carotid Plaque Phenotype Analysis

Acute ASCVD events:
Association

testing

Cox
regression

Performance
assessment

Myocardial infarction
Stroke 
Cardiovascular death

335 primary, 95 secondary
events
median follow-up: 55 months PCE risk factors

Model Development

TP FN

FP TN

Plaque detection
model development

Plaque manual
annotation

177,757 carotid
ultrasound images 

103 images in
test set

Model
evaluation

19,499 UK Biobank
participants

577 images in
training set

Genomic Analysis

Carotid
atherosclerosis

CVD risk 
factors

U

G

GWAS meta-analysis Mendelian
randomization

29,790 carotid plaque cases
36,847 controls

Model-derived
phenotypes

ID Right 
Carotid

Left 
Carotid

Plaque
 Presence

# of
 Plaques

1 1 0 1 2

2 0 0 0 0

... ... ... ... ...

19499 1 1 1 2

Model inference on the
whole imaging cohort

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.17.24315675doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.17.24315675
http://creativecommons.org/licenses/by/4.0/


 27 

 
 
Figure 2. Development and performance of the plaque detection model. A. General representation of 
the YoloV8 architecture, C – concatenation, C2F – cross-stage partial bottleneck with two convolutions, U 
– up-sampling, Conv – convolutional module, P1-P5 represent future maps; Bbox – bounding box prediction 
branch, Cls – classification branch, BCE – Binary Cross Entropy loss, DFL – Distribution Focal Loss, CIoU 
– Complete Intersection over Union, nc – number of classes, reg_max – maximum value for the bounding 
box regression.  Adopted from Terven & Cordova-Esparza42 and  
https://github.com/ultralytics/ultralytics/issues/189. B. Confusion matrix for model’s classification 
performance for plaque presence at each image. The confusion matrix is based on comparing the presence 
of plaque in the annotations with the model's predictions. Specifically, if there is a plaque annotation for an 
image and the prediction contains a bounding box, then the prediction is annotated as true positive. C. 
Examples of model predictions as compared to manual annotations for three UK Biobank participants in 
the test set. Each image depicts the longitudinal view of the common carotid artery extending toward the 
bifurcation area (the left part of the images). 
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Figure 3. Prevalence and predictors of carotid plaque in the UK Biobank. A. Distribution of plaques in 
the left and right carotid arteries. B. Percentage of plaque presence across age and sex groups. The error 
bars represent 95% confidence intervals. С. Forest plot of the associations of demographic and vascular 
risk factors with the odds of carotid plaque presence, as derived by a multivariable logistic regression model 
that includes all variables in the figure. The results are presented as odds ratios (OR) and 95% confidence 
intervals (CI). SBP – systolic blood pressure; CVD – cardiovascular disease; LDL – low-density lipoprotein 
cholesterol; SD – standard deviation. 
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Figure 4.  Survival curves of cumulative major adverse cardiovascular event (MACE) rates by total 
count of carotid plaques predicted by the model. The presented hazard ratios (HRs) were estimated 
using Cox regression, adjusted for: sex, age, systolic blood pressure, use of statins, history of 
antihypertensive therapy, current smoking, history of diabetes, HDL cholesterol and total cholesterol levels. 
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Figure 5. Manhattan plot of the GWAS meta-analysis for carotid plaque presence (29,790 cases; 
36,847 controls). Loci highlighted in red point to novel significant associations for carotid plaque whereas 
loci highlighted in green represent validation of previously described associations.  
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Figure 6. Forest plot for Mendelian randomization results. The results are presented as odds ratios 
(OR) and 95% confidence intervals (CI) derived from random-effects inverse-variance weighted Mendelian 
randomization analyses. Two-fold increments in prevalence for binary exposures (type 2 diabetes and 
smoking initiation) were derived by multiplying the IVW betas and corresponding confidence intervals by 
0.693, as described by Burgess and Labrecque54. HbA1c – Glycated hemoglobin; BMI – Body Mass Index; 
LDL – Low-Density Lipoprotein Cholesterol; HDL – High-Density Lipoprotein Cholesterol; SBP – Systolic 
Blood Pressure; DBP – Diastolic Blood Pressure; IL-6 – Interleukin-6. 
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Tables 
 
Table 1. Characteristics of the study cohort at the time of initial carotid ultrasound assessment. 

 Total Plaque absent Plaque present P-value for 
comparisons* N 19,499 10,718 8,781 

Female, N (%) 9912 (50.8) 5688 (53.1) 4224 (48.1) <0.001 

Age, mean (SD) 64.6 (7.6) 63.4 (7.4) 66.1 (7.5) <0.001 

Smoking status, N (%)  <0.001 

Never 12169 (62.4) 6951 (64.9) 5218 (59.4)  

Previous 6564 (33.7) 3384 (31.6) 3180 (36.2)  

Current 700 (3.6) 350 (3.3) 350 (4.0)  

Unknown 66 (0.3) 33 (0.3) 33 (0.4)  

SBP (mmHg), mean (SD) 138.6 (17.94) 137.18 (17.43) 140.42 (18.39) <0.001 

DBP (mmHg), mean (SD) 79.32 (9.78) 79.51 (9.75) 79.09 (9.81) 0.003 
Total cholesterol (mmol/L), mean 
(SD) 5.72 (1.09) 5.70 (1.07) 5.74 (1.10) 0.009 

LDL-C (mmol/L), mean (SD) 3.58 (0.83) 3.56 (0.82) 3.59 (0.84) 0.028 

HDL-C (mmol/L), mean (SD) 1.48 (0.37) 1.47 (0.37) 1.48 (0.37) 0.708 

HbA1c (mmol/mol), mean (SD) 35.13 (4.95) 34.91 (4.85) 35.40 (5.05) <0.001 
eGFR (mL/min/1.73m2), mean 
(SD) 93.58 (12.63) 94.52 (12.54) 92.42 (12.65) <0.001 

BMI (kg/m2), mean (SD) 26.60 (4.41) 26.80 (4.54)  26.37 (4.23) <0.001 

History of diabetes, N (%) 1073 (5.5) 511 (4.8)  562 (6.4) <0.001 

Statin usage, N (%) 4631 (23.7) 2131 (19.9) 2500 (28.5) <0.001 

Antihypertensive therapy, N (%) 
 

4826 (24.7) 
 

2312 (21.6) 2514 (28.6) <0.001 

Previous history of CVD, N (%) 1389 (7.1) 568 (5.3) 821 (9.3) <0.001 

Ethnicity, N (%)  <0.001 

White 18932 (97.1) 10371 (96.8) 8561 (97.5)  

Asian 189.00 (1.0) 107 (1.0) 82 (0.9)  

Black 121.00 (0.6) 90 (0.8) 31 (0.4)  

Mixed 77.00 (0.3) 53 (0.5) 24 (0.3)  

Other/unknown 180.00 (0.9) 97 (0.9) 83 (0.9)  

SBP – Systolic Blood Pressure; DBP – Diastolic Blood Pressure; LDL-C – Low-Density Lipoprotein 
Cholesterol; HDL-C – High-Density Lipoprotein Cholesterol; HbA1c – Glycated Hemoglobin; eGFR – 
Estimated Glomerular Filtration Rate; BMI – Body Mass Index; CVD – Cardiovascular Disease. 
* P-values were calculated using a two-sided t-test for continuous and a chi-square test for categorical 
variables. 
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Table 2. Metrics of discrimination, reclassification and overall model fit between Cox regression 
models with and without plaque information.  

Model Control / 
Cases 

Log-
likelihood 

ratio test p-
value  

cfNRI 
[95% CI] 
(p-value) 

IDI 
[95 % CI] 
(p-value) 

C-index 
[95% CI] 

 
 

C-index 
difference 
(p-value) 

 

CVD factors 

19069 / 
430 

ref ref ref 0.745 [0.723; 0.767] ref 

CVD factors 
+ Plaque 
presence 

4.8х10-4 0.331 [0.217; 0.445] 
(1.26x10-8) 

0.0022 [0.0002; 0.0050] 
(0.019) 0.747 [0.725; 0.769] 0.002 (0.222) 

CVD factors 
+ Plaque 

count 
5.6x10-4 0.369 [0.260; 0.478] 

(2.97x10-11) 
0.0024 [2х10-5; 0.0063] 

(0.048) 0.748 [0.726; 0.770] 0.003 (0.173) 

CVD factors 

17775 / 
335 

ref ref ref 0.744 [0.719; 0.770] ref 

CVD factors 
+ Plaque 
presence 

0.003 0.329 [0.206; 0.452] 
(1.65x10-7) 

0.0019 [0.0003; 0.0052] 
(0.0079) 0.746 [0.721; 0.771] 0.002 (0.357) 

CVD factors 
+ Plaque 

count 
0.006 0.330 [0.209; 0.450] 

(7.73x10-8) 
0.0022 [0.0004; 0.0065] 

(0.0139) 0.746 [0.721; 0.772] 0.002 (0.349) 

CVD factors 

14283 / 
234 

ref  
ref  

ref 0.761 [0.732; 0.790] ref 

CVD factors 
+ Plaque 
presence 

0.014 0.308 [0.159; 0.457] 
(4.88x10-5) 

0.0018 [0.0002; 0.0059] 
(0.014) 0.763 [0.734; 0.792] 0.002 (0.453) 

CVD factors 
+ Plaque 

count 
0.039 0.308 [0.159; 0.458] 

(5.31x10-5) 
0.0021 [0.0003; 0.0075] 

(0.0119) 0.763 [0.734; 0.792] 0.002 (0.471) 

CVD – cardiovascular disease; cfNRI – category-free net reclassification improvement; C-index – 
concordance index; IDI – integrated discrimination improvement; ref – reference. 
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Table 3. Reclassification table showing the distribution of individuals who went on to develop or 
not major adverse cardiovascular events into two risk groups based on the recommended 7.5% 
threshold from PCE risk assessment, both with and without incorporating plaque information.  

                    PCE 
PCE + Plaque presence % 

reclassified 
PCE + Plaque Count 

% reclassified 
<7.5% ≥7.5% <7.5% ≥7.5% 

Controls 

 <7.5% 16341 213 1 16300 254 2 

 ≥7.5% 90 485 16 82 493 14 
Cases 

 <7.5% 250 17 6 247 20 7 

 ≥7.5% 4 47 8 4 47 8 
 
Upward movement for cases indicates correct reclassification, while downward movement indicates 
incorrect reclassification. For controls, the opposite applies.  
PCE – Pooled Cohort Equations; blue background indicates correctly reclassified individuals; orange 
background indicates wrongly reclassified individuals. 
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