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Abstract

Accurate mortality risk assessment is critical for decision-making in life insurance,
healthcare, and public policy. Regional variability in mortality, driven by diverse local
factors and inconsistent data availability, presents significant modeling challenges. This
study introduces a novel hierarchical mortality risk model that integrates global and
local data, enhancing regional mortality estimation across diverse regions. The proposed
approach employs a two-stage process: first, a global Light Gradient Boosting Machine
model is trained on globally shared features; second, region-specific models are
developed to incorporate local characteristics. This framework outperforms both purely
local models and standard imputation techniques, particularly in data-scarce regions, by
leveraging global patterns to improve generalization. The model is computationally
efficient, scalable, and robust in handling missing values, making it adaptable for other
domains requiring integration of multi-regional data. This method enhances predictive
accuracy across various regions and provides a more reliable approach for mortality risk
estimation in data-scarce environments.

Introduction 1

Mortality risk assessment plays a crucial role in various sectors, including life insurance, 2

healthcare, and public policy. Reliable estimates of mortality rates are essential for 3

strategic planning, policy formulation, and ensuring the financial stability of life 4

insurance systems. However, accurately estimating mortality risk presents an essential 5

challenge due to the diverse and dynamic nature of regional data availability and factors 6

that affect mortality rates. 7

Hierarchical models have been utilized in mortality studies to account for variations 8

at different levels, including regional, individual and national. Originally developed in 9

fields like education, sociology, and demography, these models have gained significant 10

traction in public health and epidemiology. By generalizing the classical pooling of 11

group estimates, hierarchical or multilevel models offer a flexible framework for 12

analyzing mortality data [50]. This flexibility allows researchers to better understand 13

and interpret the complex factors influencing mortality rates across different 14

populations. 15

Existing models in hierarchical mortality modeling include Bayesian approaches, 16

generalized linear models, and machine learning (ML) techniques. Bayesian hierarchical 17

models estimate mortality rates by incorporating prior distributions to handle 18

uncertainty [48]. Generalized linear models, including multilevel Poisson regression, 19

have been applied to mortality data to account for overdispersion and hierarchical 20
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structure [49]. Although the existing literature predominantly employs random effects 21

for both methodologies, our approach diverges by sequentially processing the residuals. 22

Recent studies have also explored ML methods such as random forests and gradient 23

boosting for COVID-19 mortality modeling [58]. 24

Studies have highlighted the importance of balancing global patterns with local 25

specifics in mortality modeling to ensure both generalizability and relevance [56,57]. 26

However, the availability of mortality data varies widely across regions, posing 27

challenges for model accuracy and reliability [54]. Poisson regression is commonly used 28

for modeling count data, including mortality rates [47], whereas Light Gradient 29

Boosting Machine (LightGBM) has been recognized for its efficiency and accuracy in 30

handling large datasets, making it suitable for hierarchical mortality modeling [52]. 31

Existing mortality models often struggle to balance global trends and local 32

variations, leading to models that either overgeneralize or fail to capture region-specific 33

nuances. Furthermore, inconsistent and sparse data availability across regions intensifies 34

these challenges, reducing the reliability of predictions, especially in data-scarce 35

environments [54]. Current approaches often suffer from overdispersion [46] or are 36

computationally inefficient when handling large datasets [53] or missing data [53]. 37

These limitations underscore the need for a more flexible and scalable solution. 38

To address these challenges, this study introduces a novel hierarchical mortality 39

modeling approach that integrates both global and local data. By using a two-stage 40

process, our model first captures global patterns through a LightGBM model with a 41

Poisson regression objective and then refines these predictions with region-specific 42

models that account for local characteristics. While the first step includes shared 43

variables that apply to all countries, such as age and gender, the country-specific models 44

capture unique regional characteristics by incorporating additional region-specific 45

factors, such as lifestyle habits and environmental conditions. This method markedly 46

improves predictive performance, particularly in data-sparse regions, by leveraging 47

global insights while remaining adaptable to the unique conditions of each region. 48

Additionally, the model is computationally efficient, scalable, and capable of handling 49

missing values, making it superior to traditional pooling methods. Beyond mortality 50

risk estimation, this hierarchical modeling framework is applicable to other domains 51

requiring multi-regional data integration, such as public health planning, 52

epidemiological forecasting, and financial risk assessments. Its ability to generalize well 53

across different regions makes it particularly valuable in scenarios where data sparsity or 54

inconsistency is a common obstacle. 55

The structure of this paper is as follows: Section 2 provides a brief overview of our 56

database and Section 3 presents our proposed methodology in detail. Section 4 57

examines the effectiveness of our methodology by presenting and discussing the results. 58

Finally, Section 5 concludes by summarizing the main findings and suggesting research 59

and industry perspectives. 60

Database 61

Data for the study was collected in a pseudonymised form from eight different operating 62

units of a global primary insurance company, each representing a distinct country. Data 63

privacy regulations prohibit the disclosure of these countries’ names, keeping the focus 64

on the technical aspects of the model evaluation and comparison, rather than on 65

potential privacy breaches. The chosen organizations were based on two key factors: 66

having relevant data available of high quality and representing diverse geographic 67

regions. 68

The dataset includes policy data that remained active during this period, even if 69

initially issued before the earliest year studied. In total, the dataset encompasses nearly 70
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10 million life-years of exposure and close to 10,000 recorded insurance claims (=deaths). 71

The data underwent analysis in an aggregated form, grouped into N = 16.689.304 72

unique combinations of feature values. Specifically, the feature set Xi,j , where group i 73

ranges from 1 to N and j ranges from 1 to 8 - representing the eight countries, consists 74

of a total of 26 features. Among these features, 9 are global, and up to 17 are local 75

features, encompassing information about policyholders, insurance policies, and claims. 76

Given these potential risk factors, our target is to model the number of deaths Di,j in 77

relation to the life years of risk exposure Ei,j . To facilitate model training and 78

evaluation, an artificial variable was constructed before aggregating to create an 80-20 79

train-test split, ensuring that all unique combinations are adequately represented in 80

both the training and test sets. 81

Table 1 provides an overview of Di,j , Ei,j , and the total number of years included 82

Ti,j for group i in country j, thereby facilitating a comprehensive understanding of the 83

dataset’s key characteristics and distribution. 84

Table 1. Overview of death counts Dj , exposure in life years Ej , unique feature
combination Nj , and observed years Tj for each country j.

Country j Dj Ej Nj Tj

1 1699 1295299 1880792 2013–2020
2 1291 1686299 2190943 2010–2020
3 494 815795 1868691 2010–2020
4 1225 1347150 1572539 2017–2020
5 1816 1825901 4825792 2016–2020
6 2132 1548157 3852306 2016–2020
7 458 498560 207951 2017–2020
8 297 99473 290290 2015–2020

Total 9412 9116634 16689304 2010–2020

Methodology 85

The foundation of our approach is rooted in the Cox Proportional Hazards model (Cox 86

PH), a class of survival models in statistics that aligns with our objective of estimating 87

mortality rates [2]. To simplify the complexity of Cox PH model calculations, we 88

leveraged the connection between Cox PH and a Poisson Generalized Linear Model 89

(GLM). Assuming piecewise constant hazard rates over time, the likelihood of the Cox 90

PH model coincides with the likelihood of the Poisson GLM when we employ log(Ei,j) 91

as an offset parameter, as detailed by [29] who noted, ”we do not assume [the Poisson 92

model] is true, but simply use it as a device for deriving the likelihood”. Independent 93

of [29], [45] published a similar insight, emphasizing that the piece-wise proportional 94

hazards model is equivalent to a specific Poisson regression model. 95

Our primary goal is to accurately evaluate mortality rates. We aim to estimate the 96

conditional expectation of death counts, denoted as Di,j , given the available information 97

summarized in the feature set Xi,j and the exposure in life years at risk Ei,j . Assuming 98

that Di,j
ind.∼ Poisson(µi,j ·Ei,j), the expectation according to the Poisson distributional 99

assumption is: 100

E[Di,j |Xi,j , Ei,j ] = µi,j · Ei,j = exp
(
X⊺

i,jβj

)
· Ei,j

The Poisson log-likelihood is defined: 101

l(βj |Xi,j , Di,j) =

Nj∑
i=1

(
Di,j · log(D̂i,j) − D̂i,j)

)
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where Di,j denotes the observed death counts, D̂i,j = µ̂i,jEi,j denotes the predicted 102

death counts, and βj is the parameter vector. 103

This formulation assumes that deaths follow a Poisson distribution. An advantage of 104

simplifying the Cox PH model into a Poisson GLM is its adaptability to the ML realm, 105

requiring optimization using Poisson log-likelihood and the ability to define an offset or 106

observation weights. ML models, which generally do not assume specific (i.e. additive) 107

relationships between features and targets, can leverage this flexibility: 108

E[Di,j |Xi,j ] = µi,j · Ei,j = exp(f(Xi,j)) · Ei,j

This transition from GLMs to ML models offers additional benefits, including 109

integrated variable selection mechanisms and the ability to capture interactions without 110

explicit specification. 111

To implement this approach, we employ the LightGBM algorithm [52], a popular ML 112

technique based on boosting. LightGBM iteratively builds an ensemble of decision trees 113

to model the relationship between features and the target variable, optimizing the 114

model to minimize the negative log-likelihood of the Poisson distribution [25]. Trees are 115

fit to residuals derived from the loss function, and the model is updated iteratively to 116

minimize this loss. The prediction is formulated as a linear combination of the base 117

learners: 118

µi,j = exp(f(Xi,j |θ)) = exp

(
K∑

k=0

θk · uk(Xi,j)

)
where θk is the weight of the k-th tree, and uk(Xi,j) =

∑
l∈Vk

bl · I[Xi,j ∈ Rl] 119

represents the tree associated with Vk as set of leaves of the k-th tree, bl as the 120

predicted value in the l-th leaf, and Rl as the region defined by disjoint partitions of the 121

training set associated with the l-th leaf [28]. LightGBM uses a leaf-wise growth 122

strategy, splitting the leaf with the highest loss reduction first, and adopts a 123

histogram-based algorithm to improve the efficiency and speed of building decision trees. 124

This approach results in efficient and accurate models, particularly for datasets with 125

complex or imbalanced relationships. Mechanisms we employ to control overfitting and 126

ensure robust performance are detailed in . 127

Two-step model: To distinguish between local and global features and ensure high 128

accuracy in each country, we propose a Two-step model approach. This approach 129

involves two distinct modeling steps: 130

Step 1: Global model: The first model identifies global patterns and uses a 131

training set that includes data from all countries, focusing solely on ”global” factors. 132

These global factors are those where data across countries is comparable, such as age. 133

In contrast, factors like postal code, which lack comparability between regions, are 134

excluded. 135

Step 2: Specialized Local model: In the second step, we calculate one Local 136

model per country, totaling eight Local models. Each Local model takes the output of 137

the Global model and adjusts it to the specific circumstances of the respective country. 138

Specialized Local models use all global factors plus the country-specific local factors. 139

The distinction of the feature set into global and local features is based on the 140

availability of data across countries as well as domain-specific expert knowledge. 141

This approach combines the estimates from both the global and specialized Local 142

models as illustrated in Fig 1. 143

Fig 1. Qualitative illustration of the proposed methodology, with gearwheels
representing the features.
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Mathematically, we can express the process of estimating death counts for a policy 144

with given factors as follows: 145

E[Di,j |Xi,j ] = µi,j · Ei,j = q(Xglobal
i,j ) · hj(X

all
i,j ) · Ei,j

where Di,j represents the expected number of deaths given a set of features Xi,j for 146

group i and country j; q(·) represents the Global model’s prediction function; hj(·) 147

represents the Local model’s prediction function for country j; Xglobal
i,j represents a set 148

of factor values for group i and country j, containing only global factors; Xall
i,j represents 149

a set of factor values for country j, containing both global and local factors. 150

In technical terms, the predicted mortality rates from the first Global model are 151

used to initialise the second specialized Local model. Accordingly, the model continues 152

to work on the resulting residuals and iteratively optimises the second model - but now 153

with the broader, localised data set. The final predicted number of deaths results from 154

the multiplication of the predictions from the Global model (first step), the predictions 155

from the specialised Local model (second step) and the exposure. The following 156

derivation shows that the multiplication is justified by the nature of the boosting 157

algorithm and the exponentiation by the log link of the Poisson distribution: 158

µi,j = exp

(
K∑

k=1

θk · uk(Xi,j)

)

=
K∏

k=1

exp (θk · uk(Xi,j))
g := exp (θ · u(X))

=
P∏

k=1

gk(Xi,j)︸ ︷︷ ︸
Global model = q(.)

·
K∏

l=P+1

gl(Xi,j)︸ ︷︷ ︸
Local model = hj(.)

Splitting the modeling into two steps offers the advantage of cleanly separating 159

effects into local and global categories. It also optimizes model performance for each 160

market by tailoring the model to local patterns while allowing knowledge sharing across 161

countries via the Global model. Additionally, when onboarding a new country, we can 162

choose to retain the existing Global model and calculate a new Local model for this new 163

country. 164

We employ Microsoft’s ML library ”LightGBM” for implementing these models, 165

which have demonstrated high accuracy in various scenarios. As the software does not 166

allow the inclusion of an offset, we utilize observed mortality rates as the target variable, 167

thus the death counts are scaled by exposure Di,j/Ei,j and exposure Ei,j is used as 168

weights, a method demonstrated to be mathematically equivalent in the Poisson case 169

by [33]. These residuals Ri,j represent the deviation of the observed deaths from the 170

expected deaths D̂global
i,j predicted by the first step, and are calculated as follows: 171

Ri,j =
Di,j

D̂global
i

. In the second step, these residuals serve as the target variable for further 172

modeling. The new weights for this step are the expected deaths from the first step, 173

D̂global
i . It is important to note that in the second step, we use the complete feature set 174

of a single country, whereas in the first step, we utilize pooled data with global features 175

only. Details on prediction calibration are provided in . 176

Benchmarking results 177

Our objective is to benchmark the proposed methodology against three other 178

approaches using specific evaluation metrics. This aims to determine the predictive 179

performance and computational efficiency of the proposed model compared to the 180
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alternatives. All these methods are based on the model specification proposed in the 181

previous section, where death counts are estimated in relation to exposure using the ML 182

model LightGBM, optimizing the Poisson log-likelihood assumption. The differences 183

among these methods are outlined below and illustrated in Fig 2: 184

Fig 2. Comparison of the benchmarked models and their frameworks, with
gearwheels representing the features. Grey stands for global features, blue
and orange for local features specific to different countries, and patterned
dark cells indicate missing values. A. Local model. B. Two-step model. C.
One-step model with single value imputation. D. One-step model with MICE.

1.Local models for individual countries: For each country, we take this country’s 185

data and run the model separately. This is, of course, only applicable if we have enough 186

claims and exposure available for a given country as a solid foundation for training. The 187

information contained in the each other countries about certain features and their 188

correlation patterns to mortality rates remain unseen for each model. 189

2. Two-step approach: As detailed in the previous section, this approach combines 190

global features in the first step model, using common features across countries. In the 191

second step, a Local model is trained to capture also each country’s specificities based 192

on residuals from the first step. 193

3. Global one-step with single value imputation: All datasets from different countries 194

are combined in this early data fusion technique. The discrepancy in feature sets and 195

values across countries results in missing blocks, as shown in Table 2. 196

Country F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26
1 0 0 0 0 0 0 0 0 0 0 0 33 0 72 0 0 0 0 0 0 0 72 72 72 72 0
2 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 48 48 48 48 48 48
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 33 0 0 0 0 33 5 6 0 0
4 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 28 0 28 0 0 0 28 0 28 28 28
5 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 72 0 100 100 0
6 0 0 0 0 0 0 0 0 0 0 0 37 0 0 0 62 0 0 0 0 62 58 56 0 62 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 2 8 0 6 0 8 8 8 8 8 8
8 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 6 0 0 0 6 6 0 0 6 6 6

Table 2. Percentage of missing values in each feature by country

For all three model types, missing values are imputed based on feature type: 197

categorical features receive ”Missing” and metric features receive ”-1”. This approach 198

retains information from non-missing values and identifies missing values during 199

interactions for local features. In contrast, global features are free from missing values 200

due to the design of the data collection process. 201

In cases where a local model cannot be trained due to small data size, the One-Step 202

approach may be the only viable option, but it results in missing blocks that must be 203

imputed. The Two-Step model offers a valuable alternative by providing flexibility: if a 204

local feature is entirely missing, it can be dropped, similar to local models, while global 205

features are retained based on global patterns. For partially missing local features, 206

single value imputation is applied, and the researcher has the option to drop or keep the 207

imputed feature for a specific country. We chose to retain all features that are not 208

completely missing within a country to ensure no information is lost. 209

4. Global one-step with bootstrapped multiple imputation: Similar to the previous 210

approach, this method involves early data fusion by combining datasets from all 211

countries. In this case, we use Bootstrapped Multiple Imputation with Decision Tree as 212

imputation technique for missing values that arise due to the synthetic dataset creation. 213

The procedure is as follows: 214

• First draws k bootstrap samples from the combined dataset including missing 215

values. 216

• Fit a classification or regression tree by recursive partitioning, variable by variable. 217

October 15, 2024 6/13

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.17.24315673doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.17.24315673
http://creativecommons.org/licenses/by/4.0/


• After fitting a tree for the missing value based on the other values of the variable 218

from the corresponding leaf, a value is randomly drawn. 219

This ensures that we can use it properly for multiple imputation, so that we are 220

inducing some variation and not just the randomness in the leaf. The implementation 221

was done in Python [30] with an adapted version of IterativeImputer [43], using 4 222

bootstrap samples and 2 imputations iterations each. We refer to [32] for further 223

algorithm details. The number of iterations was determined based on a trial-and-error 224

approach, as higher numbers had no significant impact on the final model results due to 225

the dataset’s size. Based on each dataset resulting from the bootstrapped iteration, we 226

trained the proposed model and finally pooled the eight predictions by averaging. 227

Evaluation criteria: To evaluate our proposed methodology, we place a strong 228

emphasis on two critical dimensions: predictive accuracy and computational efficiency. 229

To gauge the predictive performance of our models, we employ two essential metrics: 230

Root Mean Square Error (RMSE) for both in-sample and out-of-sample assessments. 231

For a given country j it is calculated as follows: 232

RMSEj =

√√√√ Nj∑
i=1

(D̂i,j −Di,j)2

Additionally, we utilize the Poisson log-likelihood, which serves a dual role as a loss 233

function and evaluation metric: 234

lj =

Nj∑
i=1

(
Di,j · log(D̂i,j) − D̂i,j

)
In the equations, D̂i,j = µ̂i,j · Ei,j represents the predicted, while Di,j the observed 235

death counts. The in-sample metrics allow us to examine how well the model fits the 236

training data. On the other hand, the out-of-sample metrics serves as a litmus test for 237

the model’s ability to generalise to new, unseen data. 238

A higher log-likelihood and lower RMSE signify a closer fit between the model and 239

the data, indicating superior performance. Conversely, a lower log-likelihood and higher 240

RMSE are indicative of a less suitable model for the given data. 241

We consider runtime, memory usage, and storage requirements to evaluate the 242

computational efficiency of our models, aiming for lower values to enhance their 243

practical utility. These criteria offer a comprehensive assessment of our models’ 244

performance in estimating mortality rates and pricing life insurance. 245

Outcomes: This section details the benchmarking process for all four models, 246

focusing on key metrics for performance and efficiency assessment. We evaluated the 247

models using multiple metrics, including train and test RMSE and log-likelihood. 248

Although RMSE is reported, log-likelihood is more reliable due to the distributional 249

assumptions of the data. Additionally, we assessed computational efficiency through run 250

time (seconds), memory consumption (megabytes), and storage space of the model 251

object (kilobytes). 252

In Tables 3 and 4 we present the results exemplarily for country 5 and 7, and in an 253

overview of all countries as well as the cross-country results. Each table provides an 254

insight into the performance of the four benchmarked models, highlighting their 255

strengths and weaknesses in various aspects. For ease of interpretation, we have used 256

colour coding in dark grey to identify the best model within each row, based on the 257

respective metric. The comparison is based on original values, before rounding for 258

readability reasons. 259

Our Two-step modeling approach demonstrates the best predictive performance for 260

nearly all countries, as evidenced by our comprehensive evaluation. This method 261
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Table 3. Performance evaluation for country 5
Metric Local model Two-step model One-step model (Single Value) One-step model (MICE)

RMSE (Train) 1.990 × 10−2 1.979 × 10−2 2.009 × 10−2 2.126 × 10−2

RMSE (Test) 1.709 × 10−2 1.706 × 10−2 1.709 × 10−2 1.811 × 10−2

Log Likelihood (Train) −1.110 × 104 −1.069 × 104 −1.295 × 104 −1.315 × 104

Log Likelihood (Test) −3.429 × 103 −3.399 × 103 −3.938 × 103 −3.998 × 103

Runtime (Sec) 1.370 × 104 3.970 × 102 - -

Memory (MB) 2.998 × 103 1.663 × 102 - -

Storage (KB) 2.174 × 106 2.162 × 106 - -

Table 4. Performance evaluation for country 7
Metric Local model Two-step model One-step model (Single Value) One-step model (MICE)

RMSE (Train) 5.358 × 10−2 5.061 × 10−2 5.736 × 10−2 5.847 × 10−2

RMSE (Test) 3.542 × 10−2 3.604 × 10−2 3.983 × 10−2 3.714 × 10−2

Log Likelihood (Train) −1.821 × 103 −1.469 × 103 −2.439 × 103 −2.682 × 103

Log Likelihood (Test) −5.615 × 102 −5.529 × 102 −5.682 × 102 −5.693 × 102

Runtime (Sec) 9.144 × 102 1.518 × 101 - -

Memory (MB) 3.041 × 102 1.983 × 102 - -

Storage (KB) 9.816 × 104 9.376 × 104 - -

outperforms Local models in most cases and shows significant advantages over the 262

MICE method. Detailed results can be found in the tables and figures, highlighting the 263

effectiveness of our approach. 264

The Two-step model shows the most substantial improvements for smaller countries 265

(e.g., countries 7 and 8), compared to larger countries (e.g., countries 4 and 5). This is 266

particularly evident in the test log-likelihood improvements from Local models to the 267

Two-step model. By leveraging a Global model in the first step, we protect local 268

specifics while enhancing the generalization capability, especially for smaller datasets. 269

Our research compares also one-step models, including single value imputation and 270

MICE, with the proposed two-step approach. The findings consistently show that 271

one-step models underperform and demand substantial computational resources. 272

Specifically, MICE exhibits inferior performance for country-specific results. In terms of 273

storage, single value imputation slightly outperforms the proposed model, if considered 274

both steps. However, the one-step approaches require full retraining when new data 275

becomes available, which can impact results for other countries. 276

When considering computational efficiency, encompassing aspects like runtime and 277

memory consumption, the two-step approach stands out as the preferred choice. It’s 278

important to emphasise that the performance of Local models is closely linked to the 279

availability and quality of data within a given country. While this study has the 280

privilege of using high-quality data with rich claims and exposures, this may not be the 281

case for every country or data source. In such cases, the two-step approach with its 282

cross-country learning capabilities provides a distinct advantage, as we can use the 283

insights gained from the Global model to retrain the second step of the process. 284

Overall, our proposed two-step hierarchical modeling approach achieves superior 285

predictive performance for nearly all countries, outperforming Local models and the 286

MICE method, with log-likelihood proving to be a more reliable measure than RMSE 287

due to the distributional assumptions of the data generation process. The Two-step 288

model significantly enhances generalization for smaller countries, such as countries 7 289

and 8, by leveraging a Global model in the first step, which protects local specifics and 290

improves performance even stronger compared to larger countries like countries 4 and 5. 291

Summary and outlook 292

This study introduces a novel two-stage hierarchical mortality model that integrates 293

global and local data to improve regional mortality risk estimation, particularly in 294

data-scarce regions. The model leverages a LightGBM [31] in the first stage to capture 295
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global patterns, followed by country-specific refinements in the second stage. This 296

approach demonstrated superior predictive accuracy compared to traditional methods 297

and effectively addressed challenges related to missing data, scalability, and 298

overgeneralization, offering a robust solution for mortality risk modeling across diverse 299

regions. 300

The two-stage hierarchical modeling approach not only enhances predictive 301

performance but also offers practical benefits in fields such as life insurance pricing, risk 302

assessment, and public health planning. By generating more accurate mortality risk 303

estimates, particularly in regions with limited local data, the model supports 304

better-informed decision-making in industries that rely on precise risk evaluations. Its 305

scalability and computational efficiency make it especially valuable in large-scale, 306

multi-regional contexts. 307

Our model also stands out for its computational efficiency, excelling in runtime, 308

memory usage, and storage requirements, particularly when the first-stage global model 309

is excluded. This efficiency is advantageous when scaling to new countries, as only the 310

second step requires retraining, leaving existing predictions unaffected. The reduced 311

model size speeds up training times while maintaining high performance, making it 312

suitable for applications where rapid training is essential. Additionally, the model 313

provides an efficient solution for handling missing data, outperforming other methods 314

like single-value imputation or MICE, particularly when working with small datasets 315

where local data alone is insufficient, and the pre-learned knowledge of a larger model 316

becomes critical. 317

Despite its strong performance across multiple regions, the model’s effectiveness 318

depends on the availability and quality of data. In regions with low or inconsistent data 319

quality, future research could explore more advanced imputation techniques or 320

alternative methods for managing missing data. Further work could also investigate 321

optimizing computational efficiency for even larger datasets or extending the model’s 322

applicability to domains such as epidemiological forecasting, financial risk modeling, or 323

public health surveillance. Integrating techniques like deep learning could enhance 324

performance for more complex datasets, though this may compromise its 325

interpretability. 326

The flexibility and robustness of the proposed hierarchical model open up new 327

possibilities for accurate risk estimation, particularly in data-scarce environments. As 328

industries continue to rely on precise mortality estimates for strategic decision-making, 329

this approach sets the foundation for more reliable, scalable, and adaptable models 330

capable of addressing the complexities of regional variability without compromising 331

performance. 332

Supporting information 333

S1 Appendix. Rest of country-specific results 334

S2 Appendix. Hyperparameter optimization 335

S3 Appendix. Evaluation of prediction calibration 336
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