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Abstract 
Upper airway stenosis is a potentially life-threatening condition involving the narrowing 
of the airway. In more severe cases, airway stenosis may be accompanied by stridor, a 
type of disordered breathing caused by turbulent airflow. Patients with airway stenosis 
have a higher risk of airway failure and additional precautions must be taken before 
medical interventions like intubation. However, stenosis and stridor are often 
misdiagnosed as other respiratory conditions like asthma/wheezing, worsening 
outcomes. This report presents a unified dataset containing recorded breathing tasks 
from patients with stridor and airway stenosis. Customized transformer-based models 
were also trained to perform stenosis and stridor detection tasks using low-cost data 
from multiple acoustic prompts recorded on common devices. These methods achieved 
AUC scores of 0.875 for stenosis detection and 0.864 for stridor detection, 
demonstrating potential to add value as screening tools in real-world clinical workflows, 
particularly in high-volume settings like emergency departments.  

 
1. Introduction                                  
Upper airway stenosis is defined as a narrowing of the airway which can occur at 
various levels within the laryngo-tracheal apparatus and can be caused by factors 
ranging from abnormal scar tissue, traumatic injuries, malignancy, or neurological 
paralysis of the vocal folds. When the narrowing is significant, airway stenosis often 
results in stridor, a respiratory bio-acoustic signal caused by turbulent airflow and tissue 
vibration at different levels within the upper airway.1-2 Vibrating tissue and turbulent 
airflow through the human airway create unique acoustic signals.  
 
In previous literature, stridor has been characterized as inspiratory, expiratory, or 
biphasic, with some proposed correlation to the level of the obstruction.4 Stridor has 
also been classified by anatomical location, including supraglottic, glottic, subglottic, 
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extra-thoracic, and intrathoracic.5 Recognizing stridor is an important clinical skill, as 
trained experts will listen to stridor and patient respiratory effort to assess the severity of 
different airway pathologies and determine the appropriate intervention. For example, 
presence of inspiratory stridor is used to differentiate severity and treatment for patients 
with parainfluenza virus causing subglottic swelling.6 Acute onset stridor may indicate 
critical decompensation of a patient’s upper airway patency, which can be  
life-threatening if not urgently identified and treated, such as in cases of epiglottitis or 
anaphylaxis.7 Stridor can also act as a clinical indicator for intubation, or in assessment 
of post-extubation laryngeal edema. 8 
 
The misdiagnosis of airway stenosis can delay onset of critical treatment interventions. 
An informal poll conducted on an international Facebook group for over 8,200 patients 
with airway stenosis found that 96% of the participants reported being initially 
misdiagnosed, causing extended periods of unresolved health challenges/risk.9 Stridor 
is a common symptom of airway stenosis, but is often mistaken as wheezing in clinical 
practice, resulting in frequent misdiagnosis as asthma.10 Failure to recognize stridor as 
a sign of severe airway stenosis can lead to important morbidity and mortality. Patients 
with stridor may need emergent interventions or, if undergoing procedures, customized 
intubation with technologies like specialized fiberoptic laryngoscopes. 
 
The gold standard for investigating pathologies causing airway stenosis and potentially 
stridor is through direct visualization by laryngoscopy and bronchoscopy.11 
Unfortunately, many misdiagnosed patients are not referred to expert otolaryngologists 
promptly, which can result in significant, high-risk delays in the onset of care. Moreover, 
many otolaryngologists do not perform in-office laryngoscopies below the level of the 
glottis and may miss subglottic and tracheal stenosis.  
 
Recent advances in machine learning offer the means to potentially recognize unique 
acoustic signals from different pathologies. Machine learning models may be more 
sensitive than the human ear and might be trained to identify airway stenosis and  
stridor, enabling non-invasive screening methods or decision-support tools for 
healthcare professionals. However, due to challenges in data acquisition and 
annotation, limited work has been completed in this space compared to areas such as 
cough assessment with AI models.12 This work makes the following contributions: 
 

A unified dataset to train AI models for detection of airway stenosis and stridor: 
The dataset used in this study contained data from patients with upper airway stenosis, 
stridor, other respiratory/voice conditions, and general controls. The records in this 
dataset were collected non-invasively from low-cost point-of-care devices via tasks 
which can be rapidly completed and are not dependent on literacy.  
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Airway stenosis detection with deep learning: a customized transformer model was 
trained to perform stenosis detection using YAMNet representations of forced inhales 
and normal deep breaths, offering a potential solution to the challenging problem of 
misdiagnosis.  
 

Stridor detection with deep learning: a second transformer model was trained to 
identify stridor from YAMNet embedding matrices. This model may be used with the 
airway stenosis model in a hierarchical system for additional severity assessments (e.g., 
pre-intubation) or independently for the detection of stridor in cases which may not 
involve upper airway stenosis but may still be life-threatening.  
 
2. Related Work 
There have been relatively few successful attempts to classify airway stenosis with 
machine learning. Past experiments were mainly centered around small datasets 
collected from invasive or high-cost modalities such as electromyography, spirometry, 
and imaging studies.13-16  Similarly, there has been limited work on the use of AI to detect 
stridor. One recent effort utilized video-polysomnography data and few-shot learning to 
detect stridor in a small number of patients (n=18).17 This approach achieved over 96% 
detection accuracy using data from only eight stridor patients for training the model, 
outperforming a state-of-the-art AI baseline by 4%–13%.17  A different study attempted 
to use power spectrums and neural networks to classify 9 different categories of 
respiratory sounds, one of which included stridor.18  This was done on a dataset of 36 
patients collected via online sources and a high-cost electronic stethoscope, with only 
two patients per class in the training set.18 Although progress has been made in 
advancing stridor detection with AI, further advancements are necessary to classify 
stridor using more scalable data collection techniques like acoustic recordings from 
smartphones or other low-cost devices.  
 
3. Methods                                
In this section, datasets, preprocessing methods, machine learning techniques, and 
validation strategies are described in detail. Table 1 provides definitions for key clinical 
terminology used throughout this report. 
 
Table 1: Definition of clinical terms referenced in this study.  
 

Name Description Conditions or Causes 

Upper airway stenosis Upper airway narrowing 
including narrowing at any 
level of the supraglottis, 
glottis, subglottis or trachea 
 

Supraglottic stenosis 
Posterior glottic stenosis 
Subglottic stenosis 
Tracheal stenosis 
Bilateral vocal fold paralysis 
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Stridor Audible respiratory sound 
due to turbulent airflow in 
the upper airway caused by 
airway narrowing 

Upper airway stenosis 
Epiglottitis 
Hypopharyngeal/oropharyngeal masses 
Laryngeal edema 
Trauma 
Inhalation injury 
Infection 
 

  
3.1 Datasets                                        
The data used in this study comes from two main sources: a dedicated stenosis/stridor 
dataset (“USF Stridor”) collected from the USF Health Voice Center at the University of 
South Florida (USF) and the Bridge2AI Voice Dataset from the Bridge2AI Voice Data 
Generation Project (“Bridge2AI”).19 In this study, the Bridge2AI dataset was used for 
additional airway stenosis records and the diversification of the control cohort. The 
unified dataset contained 94 patients in the airway stenosis cohort, 45 patients in the 
stridor cohort, 51 patients in the cohort of other disordered voice/respiratory disease 
controls, and 77 patients in the general control cohort (no medical conditions or 
unknown health history).  
 
The disordered voice and respiratory disease control cohort contains patients with the 
following conditions: recurrent respiratory papillomatosis (RRP), COPD, Asthma, 
Spasmodic Dysphonia, Obstructive Sleep Apnea (OSA), Chronic Cough, Benign Vocal 
Cord Lesion, Laryngeal Cancer, and Vocal Fold Paralysis. Table 2 contains 
demographic information about each cohort in the dataset (there is an overlap between 
the stenosis and stridor cohorts).  
 
Table 2: Demographic Statistics from the unified dataset (USF Stridor and Bridge2AI) 
 

Cohort Male Female Other 
N/A 

 

18-34 34-50 50-64 65+ N/A 

Airway Stenosis (Pathology) 24 69 1 14 8 41 29 2 

Stridor (Sound) 9 36 0 7 2 20 15 1 

Other Respiratory/Voice 20 30 1 4 6 15 24 2 

General Controls 30 41 6 28 11 10 28 0 

 
3.1.1 Acoustic Tasks 
In this study, AI models were trained using audio data collected from two different 
acoustic tasks (Table 3): forced inhale with the mouth open (FIMO) and normal deep 
breaths (DB). The tasks were chosen by expert practitioners and laryngologists for 
multiple reasons, including simplicity, no dependency on literacy or English fluency, 
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elimination of nasal interference due to nasal turbulent airflow (often caused by 
seasonal allergies or other benign factors), and increased sensitivity to mild stridor due 
to the forcible pushing of air over the vocal cords (FIMO), increasing the likelihood of 
audible disordered sound. Before completing these tasks, participants were given the 
following instructions: 
 

Deep Breath Data: Take 5 big breaths in and out through your mouth. 
 

Forced inhales through the mouth: Exhale, then inhale quickly through your mouth, 
as if you are trying to catch your breath. Record three of these breaths in a single 
recording. 
 
Table 3: Acoustic tasks used to collect stridor sounds 
 
Task Abbreviation Description 

 
Forced Inhale Mouth Opened FIMO Patients are asked to take a quick inhale 

through their mouth  
 

Deep Breath DB Patients are asked to take a deep breath 
 
 

 
3.1.2 Data Collection Devices               
FIMO and DB recordings were collected from various technologies depending on the 
study (USF stridor or Bridge2AI) and the availability of devices. These included an 
At2O35 AudioTechnica microphone placed at 12 inches from the mouth, a previously 
validated low-cost Avid AE-36 headset microphone placed at 2-3 inches from the 
mouth, and an internal iPad microphone placed at 6 inches from the mouth.20-21 To 
achieve generalizable AI methods which can be deployed in real-world settings, 
compatibility with multiple devices is essential due to the differences in technological 
ecosystems across different healthcare centers.  
 
For patients in the USF Stridor study, audio data was collected from the full range of 
recording technologies described above (if possible). However, due to limitations related 
to the availability of devices and patient compliance, this was not always feasible, 
demonstrating the need for scalable solutions which can accommodate different types 
of data. If data from multiple devices was available for one patient, all the data was 
retained to ensure the maximum number of audio samples were available for model 
training. These different devices produced similar (but not identical) data points, which 
may be comparable to audio data augmentation techniques like spectrogram masking 
or the addition of random noise.22  For the controls in the Bridge2AI Voice dataset, audio 
data was collected using only the Avid headset microphone placed 2-3 inches from the 
mouth. Table 4 includes the quantities of data collected from different microphones.   
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3.1.3 Data Annotations 
Clinical metadata (patient and physician reporting) was then used to determine if the 
patients had upper airway stenosis or any other respiratory conditions (the latter being a 
key consideration in the curation of robust control cohorts). The presence or absence of 
stridor was determined by a laryngologist with expertise in airway stenosis. These 
annotations were based on respiratory phase (inspiration/expiration) and the presence 
of audible stridor (stridor or no stridor). Due to the use of a single annotator, which may 
more directly resemble scalable clinical data collection processes for real-world 
environments (particularly in resource-constrained settings), this data was considered 
weakly supervised.23 The FIMO data was used as the basis for annotation due to the 
higher likelihood of stridor detection during this type of breathing compared to other 
tasks. For experiments involving stridor detection, patients with airway stenosis but no 
audible stridor were included in the cohort of controls with other respiratory conditions.  
 
Deep breathing recordings collected during the same recording session as the FIMO 
task were assumed to have the same stridor status as the FIMO data. This resulted in 
weakly supervised “inferred annotations” which may present an additional source of 
regularization for training deep learning models, possibly enhancing downstream 
performance.23  However, only the FIMO data was used for validation and testing of the 
stridor detection models. Other tasks were not directly assessed for the presence of 
stridor, and the inferred annotations were not considered sufficiently robust to be 
included in the model performance metrics.  

 
3.1.4 Data Quality Control 
Acoustic data was excluded from the study if the patient was fully non-compliant with 
the instructions (e.g., phonated an elongated vowel instead of deep breathing). For the 
stenosis and stridor cohorts, data was also removed if any errors were made in the data 
collection protocol (e.g., breathing through the nose) that could have obscured true 
biomarkers of disease. The control cohorts were not subjected to this second phase of 
filtering, potentially introducing noise into the dataset which may be similar to disordered 
breathing. Cohort-specific quality control pipelines were applied to increase the 
likelihood that more challenging negative cases would be shown to the model during 
training. For example, a healthy patient may phonate a gasping sound when asked to 
forcibly inhale. This can result in a stridor-like sound unrelated to airway obstruction. 
The presence of such data in the training set may enhance downstream generalization 
by encouraging the model to learn nuanced, disease-specific representations which 
enable separation between actual pathological signals and benign variations. 
 
3.2 Data Preprocessing                                    
The FIMO and DB audio signals were broken into 2.5-second segments of raw audio 
waveforms, with 80% overlap. The segment length and overlap percentage were based 
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on the timing of breathing cycles to ensure that some component of the inhale signal 
was present in all the data points: exhales are much less likely to contain stridor or other 
biomarkers of airway narrowing during FIMO and DB acoustic exercises. The 80% 
overlap was further used as a form of data augmentation, to expand the number of 
“different” audio segments available for training AI models. The preprocessing steps 
described here resulted in a training dataset of 19310 audio segments in total. The 
number of segments per microphone, task, and cohort can be found in Table 4.  
 
Table 4: Statistics on microphone types and acoustic tasks within the cohorts included 
in the training datasets (there was overlap between the stenosis and stridor cohorts).  
 
Cohort Device FIMO DB 
 At2O35 314 0 

Airway Stenosis 
(Pathology) 

Avid Headset 1970 4590 

 iPad 575 755 

 

 At2O35  208 0 

Stridor (Sound) Avid Headset 1134 1768 

 iPad 499 594 

    

 At2O35  0 0 

Respiratory Controls Avid Headset 1141 2989 

 iPad 0 0 

 

 At2O35  94 0 

General Controls Avid Headset 1596 4608 

 iPad 299 379 

 
3.3 YAMNet Embeddings                
After initial preprocessing, the 2.5-second audio segments were standardized to a 
sampling rate of 16.1 kHZ, normalized to the range of [-1,1], converted into Mel 
spectrograms, and encoded by the YAMNet model.24-25 YAMNet was chosen due to 
extensive pre-training on millions of YouTube audio segments from 521 categories of 
sound.23 This domain knowledge ensures that the model can encode nuanced 
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differences between sounds and may enhance performance on tasks involving 
breathing audio data with subtle acoustic biomarkers of disease. The YAMNet model 
returns a matrix containing one embedding vector for each 0.5 second window of data 
(5x1024 dimensions for a 2.5 second segment). For this study, YAMNet was also used 
as part of the data filtering process. After generating the embedding matrix, the 
predicted probabilities for the sound type were output by the classification head of the 
model. If more than 50% of the segment was placed in a category which indicated a 
potentially significant source of external noise or microphone malfunction, such as 
electronic buzzing or humming, the segment was removed from the dataset.  
 
3.4 Model Training                                          
A transformer model was trained on the YAMNet embedding matrices to detect airway 
stenosis or stridor (Fig. 1).26 Transformers rely on global self-attention mechanisms to 
capture the key relationships (between embedding vectors in the matrix) to which the 
model should “pay attention” and have demonstrated robust performance on advanced 
tasks with similar data structures (e.g., matrices of word or image embeddings).26-28 
Unlike conventional transformers for natural language processing or computer vision, 
positional encodings were not used within the model architecture. This minor adaption 
of the original transformer algorithm was done to ensure translational equivariance for 
audio data points with similar features at different positions in the matrix of YAMNet 
embedding vectors. Due to the application of data chunking with overlap, absolute 
position would not be relevant and may cause model confusion.  
 
An adaptive movement estimation function was used to train the model based on the 
cross-entropy loss calculated from minibatches of data. Early stopping was used to 
optimize training based on the validation loss. No distinctions were made between data 
from the different recording devices included in the experiments (Avid, AtO235, iPad). 
 

 
 

Figure 1: The data processing and modeling pipeline for stenosis and stridor detection.  
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The workflow shown in Figure 1 includes (1) the generation of YAMNet embedding 
matrices from Mel Spectrograms, (2) the filtering of noisy data based on sound type 
classification, and (3) the use of a transformer encoder to predict the label of the input 
data. 
 
3.5 Validation                                        
Nested k-fold cross validation was used to estimate the performance of the transformer 
models, ensuring a credible evaluation of generalization potential. The prediction 
threshold for the test data was determined by aggregating results from the k validation 
sets. If a test patient had data available from multiple recording systems, the prediction 
was made based on the best available device in terms of representation within the 
training dataset (by number of samples). For this study, data from either the Avid 
headset, the iPad, or the At2O35 AudioTechnica, respectively, were considered in the 
final prediction. Here, the aim was to simulate the real-world case wherein only a single 
device (presumably the best device available at that time) would be used to collect data 
from a patient – multiple devices would not be used due to time/resource limitations. For 
stenosis detection, if a test patient had available data from multiple acoustic exercises 
(FIMO, DB), inference was run separately, and the mean probabilities were calculated 
for each task. The average of these probabilities was used for decision-making 
purposes. In the experiments involving stridor detection, only FIMO data was used in 
the validation/test sets due to the nature of the manual annotation (DB was not checked 
for stridor).  
 
4. Results                                 
In this section, results are presented for transformer models which were trained to 
complete two tasks from recorded breathing data: (1) the detection of airway stenosis 
and (2) the detection of stridor. Potential use cases for these models are described in 
Table 5. All performance metrics are reported based on the mean result across multiple 
iterations of the experiment, accounting for variability due to the random initialization of 
transformer weights. 
 

Table 5: Potential use cases for AI models trained within this study. 
 

Task Use Cases 
 
 

Detection of airway stenosis (in cases 
with and without stridor)  

Primary care settings for complaints 
related to the airway (e.g., to reduce the 
misdiagnosis of stenosis as asthma).  
 

Detection of the stridor sound as a 
symptom of airway narrowing, which is 
often caused by airway stenosis but may 
have other causes.  

ER/Urgent care settings, for detection of 
serious airway problems requiring urgent 
attention, regardless of cause 
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Table 6 shows the sensitivity (calibrated to a value of 0.85 in consideration of the  
life-threatening nature of airway failure), specificity (at 0.85 sensitivity) and the AUC 
score. The life-threatening nature of airway obstruction justifies the prioritization of 
sensitivity in this case. Results are presented using data from the “best available” 
recording device for a test patient (as described in section 3.5), mirroring the likely 
scenario where multiple sites have deployed the same AI model, but different devices 
are used depending on technology resources. If, for a patient in the test set, audio from 
the Avid headset was available, results are reported based on predictions made from 
this data. Otherwise, results are reported from the iPad or At2O35 recordings (in that 
order), favoring optimal data while accounting for potential technology limitations in real-
world clinical environments. For specificity, three values are reported: overall, general 
control cohort, and respiratory control cohort (as defined in Section 3.1).  
 

Table 6: Results from Airway Stenosis Detection and Stridor Detection Tasks. 
 

Task AUC Sensitivity Specificity @0.85 sensitivity 
 

Stenosis Detection 0.875 0.851 0.725 (0.792/0.624) 

Stridor Detection 0.864 0.856 0.684 (0.742/0.624) 

Stridor Detection 
(FIMO only, no DB data) 
 

0.846 0.852 0.661 (0.703/0.617) 

 
 

4.1 Detection of Airway Stenosis  
The experimental results of this study show that the transformer model trained on 
YAMNet embeddings may have learned a moderately robust signal for the detection of 
airway stenosis (AUC of 0.875), with an overall specificity of 0.725 when sensitivity is 
calibrated to 0.85. Compared to other types of errors, the model is more likely to 
incorrectly classify other respiratory controls as having airway stenosis. Given the  
life-threatening implications of intubating a patient with airway stenosis and the 96+% 
misdiagnosis rate, this model may still represent a potentially deployable technology 
with real-world impact. 9  
 
Figure 2 shows the difference in AUC score between different demographic groups 
within the dataset, addressing possible sources of bias in the training data. While the 
model was reasonably consistent, there were noticeable performance differences 
between age groups, possibly due to the differing age distributions between the control 
cohorts (Table 2). The general controls may be less challenging for the model 
compared to those with other respiratory conditions. The model also obtained a higher 
AUC score for female patients, which aligns with the distribution of upper airway 
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stenosis cases in the dataset (Table 2) and in the real-world (the disease most often 
affects middle-aged women).29  
 

 
 

Figure 2: Left: mean ROC curve for the airway stenosis detection model. Right: Model 
performance (mean AUC score) across age and gender identity groups.  
 
4.2 Detection of Stridor as a General Symptom of Airway Failure            
A transformer model trained on YAMNet embedding matrices showed promising results 
on the stridor detection task as well, achieving an AUC score of 0.864 with an overall 
specificity of 0.684 (at 0.85 sensitivity). Expectedly, the performance of the model was 
weakest on the cohort of controls with other respiratory conditions, which included 
upper airway stenosis without audible stridor. Figure 3 (right) shows the difference in 
AUC score between different demographic groups in the dataset. 
 

 
 

Figure 3: Left: mean ROC-AUC curve for the stridor detection model. Right: Model 
performance (mean AUC score) across age and gender identity groups. 
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Moreover, while only FIMO data was used in the validation/test sets, the transformer 
model which was trained on both FIMO and DB data achieved the best results. This 
was despite the weak “inferred” DB annotations in the training data. The transformer 
model trained without the DB data resulted in a lower AUC score of 0.846, with nearly a 
4% difference in specificity for the general control cohort.  
 
5. Discussion 
In this report, a customized transformer model was trained to screen for airway stenosis 
and stridor using non-invasive data from multiple devices/acoustic tasks. A unified 
dataset was introduced for training the AI models, containing FIMO and deep breath 
records from two sources – the USF Stridor dataset and Bridge2AI Voice dataset. Upon 
completion of training, resultant AI models showed that there may be viable signal 
within low-cost, weakly annotated respiratory recordings, thereby facilitating the 
identification of airway stenosis and stridor cases. These findings may have relevance 
in the development of new digital health technology leveraging voice as a biomarker of 
health, with potential use cases in the ER, primary care/point of care settings, and voice 
health/laryngology clinics (Table 5).  
 
5.1 Limitations                  
Promising results were obtained by this study, but there were multiple limitations which 
should be noted in the interpretation of the work. First, while larger than previous 
studies involving stridor and airway stenosis, the dataset was still limited – the stridor 
cohort contained 45 patients labeled by a single expert annotator, which may have 
implications for the generalizability of the weakly supervised AI system. The stridor 
annotations, while performed by an expert clinician, were done based on audio 
recordings alone, rather than multimodal data involving laryngoscope videos and EHR, 
which may have resulted in some instances of mislabeled data. The annotations were 
also binary, without information on the severity of the airway stenosis or stridor cases. 
Limited variations in audio recording equipment were used for data acquisition, and 
evolution of audio hardware may lead to distribution shifts affecting model performance.  
 
In terms of performance, the models showed differences in AUC score between age 
groups and a slight skew towards female gender identity (though the conditions 
themselves more often impact female patients). Other potential biases like 
race/ethnicity, smoking status, and type of stridor (i.e., cases not caused by airway 
stenosis) must still be considered in future work. Moreover, the two datasets used in this 
study were collected in slightly different settings: USF Stridor data was recorded in a 
sound isolation booth, whereas the Bridge2AI data was recorded in a small, quiet room. 
This is not likely to cause a significant difference in results but may have introduced 
some false signal into the model due to the imbalance between the datasets (many of 
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the controls came from the B2AI dataset). Finally, while the data and devices were 
scalable, the environment of the study may not directly replicate real-world conditions 
like an emergency room, which is likely to introduce additional sources of noise and 
more acute presentations of the disorders compared to the dataset used in this study.  
 
5.2 Future Work 
Future work will involve the design of a mobile application for deploying trained AI 
models on a smartphone/tablet, allowing healthcare professionals to test the viability of 
these tools in real-world settings. Robust performance in retrospective experimentation 
does not equate to utility in a clinical environment: implementation studies are essential 
to the improvement of the methods. Moreover, such an application may facilitate the 
collection of additional data across multiple types of airway disorders and different 
healthcare settings, including the emergency room.  
 
Future work is also needed to correlate acoustic features with severity of the disease, 
including the percentage of stenosis in terms of airway circumference, the vertical 
length of stenosis, and severity of dyspnea. To achieve these results, acoustic signals 
must be correlated with measurements on CT scan imaging and video 
endoscopies/bronchoscopies or measurements collected during procedures (in the OR). 
A hierarchical implementation of the described AI methods may also add future value as 
a simultaneous predictor of both the presence and severity of airway stenosis (with 
stridor as indicator of severity). The work described here may also have potential for 
testing and deployment in low- and middle- income countries (LMICs), where airway 
failure is a significant challenge to healthcare providers in terms of technology and 
expertise.30-31 Rapid and low-cost AI-assisted support for airway stenosis or stridor 
detection in this context represents a novel opportunity.  

 
6. Conclusion                      
Airway stenosis, and the stridor which often accompanies moderate to severe cases (or 
other life-threatening airway problems) is a challenging clinical issue related to 
misdiagnosis in healthcare. Misdiagnoses are common, which may worsen patient 
outcomes. Deep learning, which has proven capabilities in capturing nonlinear 
biomarkers of health, may be a solution for early identification and screening by general 
healthcare providers. In this study, transformer models were used to demonstrate the 
potential of clinically viable signal in the task of rapidly screening for airway stenosis and 
stridor using low-cost data. Future development of this work is essential to the 
downstream deployment of affordable, non-invasive tools for airway assessments in 
diverse, high-volume settings.  
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