
A new AI-assisted data standard accelerates
interoperability in biomedical research
This report shows how AI/ML tools for common data element focused harmonization can turbocharge
federal “AI-readiness”. We describe a proof-of-concept framework for a human in the loop learning
system from the NIH’s Center for Alzheimer’s and Related Dementias (CARD) and Clinical Research
Informatics Strategic Planning Initiative (CRISPI). This system is an order of magnitude faster than the
current labor-intensive best practices in this space for both prospective and retrospective data
harmonization.
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Abstract

In this paper, we leveraged Large Language Models(LLMs) to accelerate data wrangling and automate
labor-intensive aspects of data discovery and harmonization. This work promotes interoperability
standards and enhances data discovery, facilitating AI-readiness in biomedical science with the
generation of Common Data Elements (CDEs) as key to harmonizing multiple datasets. Thirty-one
studies, various ontologies, and medical coding systems served as source material to create CDEs from
which available metadata and context was sent as an API request to 4th-generation OpenAI GPT models
to populate each metadata field. A human-in-the-loop (HITL) approach was used to assess quality and
accuracy of the generated CDEs. To regulate CDE generation, we employed ElasticSearch and HITL to
avoid duplicate CDEs and instead, added them as potential aliases for existing CDEs. The generated
CDEs are foundational to assess the interoperability potential of datasets by determining how many data
set column headers can be correctly mapped to CDEs as well as quantifying compliance with permissible
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values and data types. Subject matter experts reviewed generated CDEs and determined that 94.0% of
generated metadata fields did not require manual revisions. Data tables from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and the Global Parkinson’s Genetic Program (GP2) were used as test
cases for interoperability assessments. Column headers from all test cases were successfully mapped to
generated CDEs at a rate of 32.4% via elastic search.The interoperability score, a metric for dataset
compatibility to CDEs and other connected datasets, based on relevant criteria such as data field
completeness and compliance with common harmonization standards averaged 53.8 out of 100 for test
cases. With this project, we aim to automate the most tedious aspects of data harmonization, enhancing
efficiency and scalability in biomedical research while decreasing activation energy for federated
research.

Introduction
Artificial intelligence/Machine learning (AI/ML) is a rapidly evolving tool with expanding applications in
data processing and generalized data harmonization. This could be especially valuable for biomedical
research areas such as Alzheimer’s disease and related dementias (ADRD) where AI/ML facilitated data
harmonization can be a crucial step for new insights, but is not itself the end goal. “AI-readiness” is a
major goal for federal health standards, particularly those relating to a digital National Institutes of Health
(NIH) movement 1. Central to AI-readiness is establishing new standards for easy data discovery and
interoperability across large organizations 2. Leveraging applied AI tooling via Large Language Models
(LLMs) has been shown to accelerate the data wrangling process by an order of magnitude through
automation of tedious aspects of data harmonization. This is especially true in health care where most
data harmonization and common data element definitions are accomplished via what is essentially
manual labor. Establishing these new data engineering and harmonization standards will also facilitate
efficiency in future LLM-derived insights. Findability, Accessibility, Interoperability, and Reusability (FAIR)
principles are essential to collaborative data science. Without the integration of common data elements
(CDEs), performing federated or meta-analyses across data silos is not possible in clinical research 3.

Here, we discuss our AI-assisted Data Inventory and Verification Environment for the Research platform
(DIVER), which can serve as a foundation for enhanced data discovery and interoperability standards in
biomedical research. As a case study, we focus on data elements within the ADRD realm alongside
heterogeneous clinical data. We utilize a user-friendly form structure for cataloging and indexing data and
leverage applied-AI to build generative CDEs (GenCDEs) for tens of thousands of samples. We began
by cataloging 72 studies, including both ADRD specific and generalist repositories. The DIVER tool
enabled us to build and audit over 43,000 GenCDEs across the 31 of these studies, effectively reducing
the data wrangling required for cross-study interoperability. This human-in-the-loop (HITL) approach
where humans are partnered with AI tools, coupled with a foundationally open science approach, will
advance the rate at which data silos can be made interoperable.

Automating the process of assessing data interoperability is key to AI-readiness in the biomedical space,
particularly in light of recent developments relating to data locality requirements and federated learning.
With data discovery and data wrangling making up a large portion of data science efforts, we expect that
our approach will decrease the activation energy for researchers and research networks allowing time for
more innovation. It will not only provide a growing collection of reference biomedical CDEs, but also a
framework to harmonize disparate datasets rapidly, thereby advancing the speed of collaborative science.
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Methods

Ethics statement
We exclusively used publicly accessible data without including any patient and/or participant-related or
confidential information in AI applications. According to local regulations this is considered non-human
subjects research and no ethics approval was required for this study. All procedures were conducted in
accordance with the Declaration of Helsinki.

Input data
To date we have cataloged and indexed 72 datasets for FAIR metadata inventory and discovery, of which
31 were included in the generation of subsequent CDEs (Supplemental Materials). FAIR metadata was
manually cataloged for each study via Google Forms or within the DIVER app 4, summarizing content for
our internal data inventory at NIH.

The DIVER app can be found here: https://diver-st-809832168532.us-central1.run.app and the DIVER
API endpoint can be reached here: https://diver-api-809832168532.us-central1.run.app

CDEs were generated by ingesting 31 datasets with clinical data (not primarily molecular datasets) along
with the variables for definition from various sources. These included heterogeneous sources of data from
ICD9 and ICD10 codes or other billing codes (including SNOMED and OMOP ontologies) as well as
sparse data dictionaries from epidemiological studies. We then abstracted column headers that needed
disambiguation via OpenAI’s 4th generation models. Column headers were defined variable names within
a python data frame.

After cataloging studies, a subset of 6 datasets sharing participant-level data were analyzed as a
proof-of-concept for matching our novel harmonized CDEs to existing data. This allowed us to calculate
interoperability across data silos, as discussed below.

Please refer to Figure 1 for a summary of the input data and the human-in-the-loop CDE system in
general.
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Figure 1: Workflow used to generate CDEs for interoperability assessments

AI-assisted CDE Generation
We employed an AI-assisted approach to generate CDEs from the ingested 31 datasets, leveraging
iterative prompt engineering and template-based automation. Abbreviated data headers and other
elements requiring definition were extracted from diverse data sources, see Table 1. These elements
were processed through fourth generation OpenAI GPT models in a structured workflow to iteratively
generate metadata elements, including alternative titles, abbreviations, permissible values, units of
measure, preferred question text, and short descriptions. The complete analysis cost less than $1,000
USD.

A range of parameters for the fourth generation GPT API models were used and are as follows: 100
Tokens, 0.5 - 0.7 Temperature. The token limit was more than generous. The 100 token limit was a
consideration for a list of aliases that a CDE could be referred to and indeed some responses did reach
that limit but on average only 13 tokens were required to complete a response. OpenAI states that a word
is worth 1.25 tokens on average. Tokens can also be consumed by sub words and trailing spaces.
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Custom prompt engineering was performed by inserting generated metadata fields using the Jinja
templating engine4 for the automation and standardization of prompts sent to the AI models. For instance,
if the CDE source was an abbreviated data header, such as ‘wbc_count’, it was inserted into the prompt
template instructing the GPT model to expand it into a full, descriptive data element title. This expanded
title was inserted into subsequent prompt templates for further metadata generation. The next step
typically involved generating a short description of the data element, followed by creating question text to
retrieve the data of interest. Once the data title and short description were available, they were inserted
into a template to classify the data element by type (e.g., numerical continuous, categorical ordinal, or
binary).

For numerical data types, the generated data title, type, and question text were inserted into a template
that tasked the GPT model with assigning a unit of measure, where applicable. The unit of measure and
question text were then used to generate a set of permissible values denoting acceptable content and
ranges per CDE.

Human-in-the-Loop
Throughout the process of generating CDEs, a human-in-the-loop played a crucial role in auditing the
AI-generated outputs. Typically, a descriptive title was the first item generated for a CDE from an
abbreviated header. The human expert reviewer assessed whether the source was interpreted correctly
and determined whether detail and specificity of the generated title was suitable for generating additional
metadata. The human-in-the-loop had the discretion to adjust the prompt order or include additional
metadata elements based on the complexity and quality of the source material. As an example, the
following header was encountered: IQ_CS_SCD_HR_EX. This is complex as you have five abbreviations
in a single header. The quality could be considered poor due to the terms being severely abbreviated and
commonly applied to other concepts. Initially, GPT interpreted it as Interviewee’s Clinical Survey
Weeknight Exercise Hours. The correct expansion in this case was Intake Questionnaire - Child Survey -
School Day - Hours of Exercise. In such situations, it is important to add additional context so that GPT
may correctly interpret the abbreviations. For this example, it was important to include that the table
contained data from an intake questionnaire for school children to assess and compare the hours of
physical activity on school days vs weekends.

This hybrid approach—combining AI-driven metadata generation with expert oversight—helped ensure
that the resulting CDEs were both accurate and contextually relevant. Once generated and reviewed, the
CDEs were integrated into the centralized data dictionary hosted by DIVER, which serves as a
large-scale repository for standardized elements. This AI-assisted process significantly accelerated the
creation of CDEs, reducing the time required to establish data harmonization across studies.

We implemented a human-in-the-loop system to ensure the quality and accuracy of the AI-generated
Common Data Elements (CDEs). Subject Matter Experts (SMEs) including two clinical data scientists
(RAL, LJ), one medical doctor (HI) and two biomarker scientists (KvJ and EM) manually audited the
CDEs, focusing on criteria such as relevance, accuracy, and adherence to existing standards. This
auditing process was essential in verifying that the AI-generated outputs were suitable for biomedical
research and met the rigorous standards required for data harmonization.

The uniformity and comprehensiveness of the generated CDEs facilitated a streamlined evaluation
process, enabling rapid review. A single SME could audit over 4,000 CDEs per week at peak efficiency.
This could vary widely with subject matter; an average efficiency is estimated at 1,500 CDEs per week.
Internal tests were compared to current best practices including heavy manual efforts for CDE curation,
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generating less than 400 CDEs in a week of full-time effort from one SME. The manual auditing step was
critical in refining the CDEs by identifying errors or inconsistencies requiring intervention.

During the auditing process, the generated CDEs were scored based on the percentage of fields that
required manual revision. A manual revision was deemed necessary when metadata was inconsistent
with the style and information content of previously discussed ontologies and the 184 endorsed NLM
CDEs int he public domain. Some examples of this included solicitation of string values by question text
while the permissible expected values were numerical or when expanded abbreviations were inaccurate
(see Supplement). Cases where minor modifications were needed—such as removing prefixes or labels
automatically appended by the GPT model—were not considered full manual interventions as they could
be corrected through bulk updates. For example, despite explicit instructions to omit labels, the GPT
model often included phrases like “Permissible Values:” preceding the value set. These corrections were
handled efficiently without extensive manual input and were not counted among the manual edits, but
rather part of post-processing scripts.

Learning System and ElasticSearch
To expand our Common Data Elements (CDEs) repository, we applied an approach that combined
automated processes and advanced search technologies across various datasets. Python scripts were
deployed across datasets (treated as silos) to evaluate features and match them with existing CDEs to
avoid adding duplicates. This allows the system to learn which new CDEs may need development based
on simple matching via BM25 ElasticSearch 5.

We integrated Elasticsearch to enhance the matching process. Elasticsearch's advanced search
capabilities allowed us to efficiently retrieve and suggest relevant CDEs from our growing repository,
optimizing the matching of CDEs with data dictionaries and column headers from research initiatives not
part of the CDE generation process. These included the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), the Global Parkinson’s Genetic Program (GP2), and pulled records from MIMIC-IV Event Log
(MIMICEL), see Table 1.

Our Elasticsearch configuration utilized a two-shard, one-replica6 setup to balance performance and
redundancy. Custom analyzers were developed to accurately tokenize varying case formats such as
snake_case and CamelCase. To refine search relevance, we applied differential field weightings: aliases
and title fields were weighted at ^4, short_description at ^3, preferred_question_text at ^2, and
unit_of_measure at ^1. These weights dictate the influence of each field on the relevance score, with a
weighting of ^4 contributing four times more than a weighting of ^1. The default BM25 parameters were
employed (k1 = 1.2, b = 0.75) with fuzziness set to ‘auto’, which has an implicit threshold for matching.7

The fuzziness auto parameter determines matches as follows: an edit distance of 0 for strings of 1 to 2
characters, an edit distance of 1 for strings between 3 and 5 characters, and an edit distance of 2 for
strings with more than 5 characters. It is important to note that the threshold is applied after the
tokenization of terms.8 With this approach, a robust and flexible search was performed across our
dataset.

If features matched existing CDEs but the source term differed in phrasing, it was recorded as an alias to
maintain consistency within the CDE repository. Additionally, when CDEs were derived from clinical
taxonomy systems, we documented the source weblink to maintain traceability and provide context.

When features did not align with existing CDEs, we initiated the creation of new CDEs. This process
involved populating engineered prompt templates with available source metadata and submitting batch
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API requests to OpenAI. Pricing varies by model and is reduced by using batch API 9. The AI-generated
metadata for these new CDEs was then reviewed through a human-in-the-loop process, which was
crucial for verifying accuracy and relevance.

Interoperability Scoring
An Interoperability Scoring system was implemented to evaluate the effectiveness of CDE utilization and
compatibility across datasets based on three criteria: Matching, Completeness, and Compliance. This
provides analysts an easily interpretable metric to make decisions regarding data inclusion and could be
used as a filtering criterion. It also permits the prioritization of resources and estimation of manual labor
needed for data harmonization efforts.

Matching was evaluated based on the ability to map column headers from external sources to CDEs
within our centralized data dictionary using ElasticSearch. The descriptive and contextual metadata fields
of generated CDEs were used for this task. The fields we included were the following: variable name, title,
short description, preferred question text, and aliases. The percentage of external column headers
correctly matched to the CDEs in the repository was calculated. If a data point could not be matched to an
existing CDE, an expert reader evaluated whether a relevant CDE exists but was not matched or if an
entirely new CDE should be generated.

Completeness was evaluated by determining the percentage of non-missing data fields for successfully
mapped columns. Missing values can limit the ability to map data between columns, as these gaps mean
some data points lack corresponding values for associative analysis.

Compliance was examined to ensure the values within non-null data points conformed to the permissible
value sets associated with our generated CDEs. This criterion verified that data values within matched
columns were recognized and fit within the acceptable ranges or categories as defined for each CDE. For
continuous variables, the upper and lower ranges of values from the CDEs were used. For categorical
variables (including ordinal variables redefined as categorical), compliance was based on the ability for a
second round of BM25 ElasticSearch on parameters mirroring the initial matched phase.

These criteria collectively provided a comprehensive evaluation of dataset interoperability with the CDE
repository, reflecting both the accuracy of data matching and the quality of data completeness and
adherence to reporting conventions. The Interoperability Score is the percentage of values within a data
field matched to a CDE that were not missing and within compliance which is then averaged per data
frame.

The resulting Interoperability score formula is: ([% matching columns] + [% completeness of matched
columns] + [% compliance of complete entries in matched columns])/3. This will likely change as CDE
databases expand and matching tools improve with time. Please see Figure 2 for a summary of
interoperability.
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Figure 2: Summary of interoperability scoring

Results

AI-accelerated generation of experimental and clinical CDEs

Table 1 summarizes the effectiveness of using applied-AI to accelerate the creation of CDEs. This
process automates much of the tedious foundational work of looking up variable names, aliases and
permissible values as well as formatting data outputs. This efficiency saves the experts in the
human-in-the-loop system immense amounts of time compared to de-novo construction.

Table 1: Sources used to generate CDEs
Origin n Elements Hit Rate (%) Source Category

BTRIS Clinical Observations 12,437 100 Established Coding System

CARD 621 87 Sparse Dictionary

Clinical Trials Database Form Legends 1,578 87
Sparse Dictionaries / Just
Headers

Current Procedural Terminology - Healthcare Common Procedure
Coding System (CPT – HCPCS) 596 100 Established Coding System

Gastrointestinal Symptom Rating Scale (GSRS) 15 60 Sparse Dictionary

Health Rhythms and Inferences 99 91 Sparse Dictionary

ICD 16,989 100 Established Coding System

Input Exercise Protocol 6 100 Sparse Dictionary

Intake Form Protocol 282 33 Sparse Dictionary

Kubio HRV 27 80 Sparse Dictionary

Metabolic Cart 38 69 Sparse Dictionary

MNPQ Protocol 20n0153 14 64 Sparse Dictionary
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Montreal Cognitive Assessment 15 93 Sparse Dictionary

National Institute of Mental Health Life Chart 147 78 Sparse Dictionary

National Library of Medicine (NLM) Endorsed 137 100 Established Coding System

National Library of Medicine (NLM) Qualified 6,308 83 Established Coding System

Neuropsychiatric 1,105 80 Sparse Dictionary

Ninehole Assessment 7 94 Sparse Dictionary

Non-Motor Symptom assessment scale for Parkinson's Disease (NMSS) 100 73 Sparse Dictionary

Nutrition Data System for Research 120 100 Sparse Dictionary

Populations Underrepresented in Mental illness Association Studies
(PUMAS) 1,143 60 Just Headers

Pronutra 12 100 Sparse Dictionary

PsyToolKit 10 100 Sparse Dictionary

Resting State EEG 101 100 Sparse Dictionary

Rush Alzheimer's Disease Center 79 90 Sparse Dictionary

Safety Monitor Survey 27 100 Sparse Dictionary

Short Form Survey - 36 (SF-36) 36 50 Sparse Dictionary

Symp PsyTool Kit 26 100 Sparse Dictionary

Timed Up and Go (TUG) 8 96 Sparse Dictionary

Unified Parkinson's Disease Rating Scale (UPDRS) 125 97 Sparse Dictionary

MIMICEL (MIMIC-IV Event Log for Emergency Department) 171 98 Manual Inputs by Staff

Total
Weighted
Score

42,379 94

Table 1 Legend: This table describes the 31 data sources used for CDE generation. 'Origin' refers to
the input data source, including general ICD-10 coding from the NIH Clinical Center. 'N elements'
represents the number of unique data objects that could potentially be converted into CDEs. 'Hit rate'
indicates the percentage of metadata fields per CDE that did not require manual editing by the expert
reviewer. 'Source category' specifies the data structure type used to build the CDEs. For web links to
ingested content, please see the Supplemental Materials. A sparse dictionary may reflect a lack of
extended titles (compared to abbreviated headers), standardization in data formatting and entry, and/or
descriptions.

The AI-driven approach significantly accelerated the generation of CDEs from data headers, medical
coding systems, and spare or established data dictionaries. Across all data sources, GPT-4 and GPT-4o
achieved a weighted accuracy rate of 94.0% in generating CDEs, with accuracy defined as the
percentage of generated fields that required no manual revisions and weighted by averaging across CDE
metadata fields rather than across data sources.

84.6% (35,853) of CDEs were derived from established clinical classification systems, while 15.4%
(6,508) were generated from unstructured sources such as data headers and sparse data dictionaries.
The overall unweighted accuracy, which averaged accuracy by source rather than per element, was
85.9%. When excluding established clinical classification systems, the unweighted hit rate for CDEs
generated from unstructured sources was 83.8%.
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These results demonstrate the efficacy of AI models in automating CDE generation, particularly when
dealing with structured clinical systems. Variability in hit rates across data sources suggests that further
optimization may be needed for unstructured or sparse data inputs.

ElasticSearch matching of data fields to CDEs

ElasticSearch was employed to enhance the efficiency of matching existing data fields with appropriate
CDEs. By leveraging ElasticSearch’s powerful text-based search capabilities, we were able to compare
field names, descriptions, and associated metadata with a pre-existing repository of CDEs.

Headers from sources external to the material used to construct the current set of CDEs successfully
matched in 25.8% of cases. These headers were pulled from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) and the Global Parkinson’s Genetics Program (GP2), our two test cohorts 11,12. We also
tested against clinical inputs including manually entered free-text notes from MIMIC-IV Event Log
(MIMICEL) from the NIH Clinical Center 13.

At the time of writing, the data dictionary contained a subset of clinically relevant ICD codes. A total of
13,425 unique ICD codes from MIMICEL dataset were correctly matched at a rate of 48.9%. From the
data set, 27,660 unique terms in clinician notes were extracted from recorded chief complaints, of which
4.4% were able to be matched to existing CDEs within the data dictionary. This is summarized in Table 2.

Table 2: Mapping test results

Table Term Source n Terms
Confirmed Match
(%)

ADNI Merge column header 116 12.1

ADNI MOCA column header 56 17.8

ADNI ADSX column header 41 34.1

GP2 column header 421 29.4

MIMICEL Diagnosis icd column 13,425 48.9

MIMICEL Triage
chief complaint
column 27,660 4.4

Table 2 Legend: Description of the six tables used to test matching capabilities. Data table refers to a
specific table from a set. Term source indicates whether terms were extracted from data headers or a
specific column. ‘N terms’ indicates how many unique terms were extracted from the table. This includes
data headers, ICD codes, and the documented chief complaints of a patient. The ‘% confirmed match’
reports the percentage of returned matches that were verified.

Assessing interoperability for data silos

The interoperability of a dataset was assessed based on three criteria. The first being Matching; the
percentage of data headers accurately matched to existing CDEs within the data dictionary. The second
criteria was Completeness; the percentage of non-null fields for an accurately matched data header. The
third criteria examined was Compliance; the percentage of non-null fields containing values that were
recognized and fit within the permissible value set. As previously described, these three measures were

10

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2024. ; https://doi.org/10.1101/2024.10.17.24315618doi: medRxiv preprint 

https://paperpile.com/c/9PY13m/b62a+eZHz
https://paperpile.com/c/9PY13m/3gaL
https://doi.org/10.1101/2024.10.17.24315618
http://creativecommons.org/licenses/by-nc/4.0/


then combined into a comprehensive Interoperability score. We summarized exploratory analyses of
interoperability in our test datasets detailed in Table 3.

Table 3: Interoperability test results

Table n Columns Matching (%)
Completeness

(%) Compliance (%)
Interoperability

Score

GP2 421 29.4 16.4 94.6 46.8

ADNI Merge 116 12.1 53.8 100 55.3

ADNI MoCA 56 17.8 90.8 75 61.2

ADNI
ADSXLIST 41 34.1 100 21.4 51.8
Table 3 Legend: Interoperability results based on three tables. ‘N columns’ indicate the total number of
columns for the table. Matching reports the percentage of columns that were accurately matched to a
CDE within our repository. Completeness reports the percentage of non-null fields for a matched column.
Compliance is the percentage of non-null values that were within the bounds of our defined permissible
value set. Interoperability score is the average score of the three criteria.

While these data sets have established dictionaries, they were not ingested into our CDE repository prior
to testing in order to assess real world applications as test data.

A sparse GP2 dataset from multiple clinical sites was used for testing. Of 421 data headers, 29.4% were
confirmed as correct matches, 16.4% of the matched data fields contained non-missing values, and
94.6% of those values were recognized and in compliance with the permissible value set. This suggests
that data that can be matched and is complete is generally within tolerances and nearly analysis ready.
Although sparsity led to a total interoperability score of 46.8%.

ADNI Merge is a table that represents the consolidation of multiple ADNI research phases. Of the 116
data headers 12.1% were correctly matched to CDEs in our repository. Of those matches, 53.8% of the
fields were populated and 100% of the values adhered to the set permissible values. A interoperability
score of 52.7% was achieved. ADNI MoCA contains data related to the Montreal Cognitive Assessment.
Of the 56 column headers, 17.8% were matched to existing CDEs within the repository. Of the matched
data headers, 90.8% of the fields were populated and 75% of them complied with set permissible values.
The overall interoperability score was calculated to be 61.2%. ADNI ADSXLIST refers to the Alzheimer’s
Diagnosis and Symptom Checklist. Of the 41 data headers, 34.1% matched established CDEs within our
repository. Matched columns were 100% populated and 21.4% of the values complied with set
permissible values. The calculated interoperability score for this table was 52.7%.

These estimates across ADNI sub-studies illustrate how different aspects of the data harmonization
process and the inherent difficulty of harmonization even within studies can be quantified by the
interoperability scoring system described here. Low matching rates to existing CDEs is the primary
problem for automated harmonization and off-the-shelf interoperability. As this system grows, this should
improve.
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Time savings for novel CDE generation
This proof of concept for AI-assisted human-in-the-loop data harmonization illustrates the time-saving
utility of this technology. AI used as a tool for CDE generation, matching, value look-ups and
interoperability saves time on an order of magnitude compared to traditional manual efforts (less than 400
versus over 4,000 CDEs per week at peak efficiency per SME). Automating the tedious aspects of data
harmonization and the logistical benefits of interoperability score under SME oversight will serve as the
key to AI readiness in health research.

Discussion
This work underscores the transformative potential of AI-assisted methodologies in advancing biomedical
research, particularly in the realm of data interoperability and the generation of CDEs. By employing the
most current AI models, specifically OpenAI’s GPT-4 and GPT-4o, in conjunction with human oversight,
we have significantly accelerated the process of CDE generation and data standardization across a wide
array of data silos. We have designed a system to automate the most tedious aspects of data
harmonization.

Interpretation of Results
The AI-driven approach achieved a weighted accuracy rate of 94.0% in generating CDEs, significantly
reducing the amount of manual work required and enabling the rapid generation of large quantities of
CDEs—far faster than could be achieved through manual methods. This high accuracy, with 84.6% of
CDEs derived from established clinical classification systems, demonstrates the method's robust
performance when applied to structured data sources. Structured data, characterized by well-defined
variables and consistent formats, allows AI models to more effectively generate and standardize CDEs
that are uniformly formatted, leading to quicker and more reliable outcomes.

In contrast, the hit rates were slightly lower when applied to unstructured data sources, such as sparse
data dictionaries or abstracted data headers (83.8% unweighted and 90.8% weighted). Unstructured data,
which often needs more consistent formatting and can be more ambiguous, presents greater challenges
for AI models. These challenges highlight the need for further optimization, potentially through more
advanced machine learning techniques or enhanced context awareness, to improve the model's ability to
interpret and standardize unstructured inputs accurately.

Integrating ElasticSearch into the CDE matching process underscores the critical role of advanced search
technologies in biomedical data management. While the success rate in matching headers from external
sources was moderate (25.8%), the ability to correctly map 48.9% of ICD codes from a large-scale
dataset like MIMIC-IV demonstrates the robustness of this approach for clinical data. However, the lower
matching rates observed for unstructured terms (4.4%) from recorded chief complaints suggests that
enhancing the natural language processing capabilities of the system or providing additional contextual
information could improve the accuracy and consistency of CDE generation from unstructured or
semi-structured data sources.

Limitations and Future Directions
Despite these promising results, several limitations were identified. One of the primary challenges
encountered was the model's performance with sparse or novel data sources. The lack of contextual
information in the data demonstrates an increased need for manual review in some cases. The absence
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of detailed metadata, such as question text or permissible values, increased the difficulty for the AI to
interpret heavily abbreviated elements accurately, leading to occasional misinterpretations. We also note
that there is a major English language bias in this analysis and further testing will be needed to account
for the introduction of AI powered translations.

With the rapid advancement of GPT models, we have also seen the expansion of context windows and
reduced token cost. Our approach utilized a zero-shot prompting which means we did not provide specific
examples, nor did we provide feedback or corrections. In the future, it could be possible to provide an
entire subset of CDEs related to submitted source material as examples. This could potentially increase
quality and consistency. Perhaps a future GPT model would be able to recognize potential redundancies
and suggest CDEs to fill gaps in coverage.
Institutional review board
Fine-tuning the AI model on domain-specific datasets could be a valuable next step to address these
challenges. Fine-tuning allows the model to more precisely adjust to the specific context of the data it is
processing, improving its ability to generate accurate CDEs from unstructured, semi-structured, or novel
data sources. This process could reduce the need for manual oversight and increase the system's
efficiency, particularly in specialized fields where data may not conform to widely established standards.

The project also underscored the importance of effective data preprocessing. Enhancements in
preprocessing techniques could mitigate some of the challenges associated with unstructured data. For
instance, developing more sophisticated methods to contextualize ambiguous terms and applying
organizing principles tailored to the specific characteristics of the data could further reduce the potential
for misinterpretation by the model. These improvements would maintain the system’s high accuracy
across a broader range of data types.

Another area for future improvement involves the human-in-the-loop process. While essential for ensuring
the quality of the generated CDEs, the reliance on manual review introduces a bottleneck in scalability.
Automating certain aspects of the quality assurance process, such as implementing machine
learning-based checks to flag potential errors for human review, could streamline this step. This would
enhance the system’s scalability, making it more suitable for larger or more complex datasets without
compromising accuracy.

Conclusion
This project has demonstrated the significant potential of AI-driven solutions in the field of biomedical data
standardization. The high accuracy rates achieved, particularly with structured data, highlight the system’s
capability to reduce the manual labor involved in CDE generation, offering substantial improvements in
both speed and efficiency. While there are areas for further refinement—particularly in handling
unstructured or novel data—the project's overall success provides a strong foundation for automated
CDE generation. By incorporating fine-tuning, enhancing preprocessing techniques, and improving
scalability through automation, this system could become an even more powerful tool in standardizing
biomedical data, ultimately advancing research efforts across diverse scientific domains.
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