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Abstract  33 
Circulating proteins influence disease risk and are valuable drug targets. To enhance the 34 
discovery of protein-phenotype associations and identify potential therapeutic targets across 35 
diverse populations, we conducted proteome-phenome-wide Mendelian randomization in three 36 
ancestries, followed by comprehensive sensitivity analyses. We tested the potential causal effects 37 
of up to 2,265 unique proteins on a curated list of 355 distinct phenotypes, identifying 726,035 38 
protein-phenotype pairs in European, 33,078 in African, and 115,352 in East Asian ancestries. 39 
Notably, 119 proteins were instrumentable only in African ancestry and 17 proteins only in East 40 
Asian ancestry due to allele frequency differences that are common in these ancestries but rare 41 
in European ancestry. We identified 3,949, 56, and 325 unique protein-phenotype pairs in 42 
European, African, and East Asian ancestries, respectively, and assessed their druggability using 43 
multiple databases. We highlighted the causal role of IL1RL1 in inflammatory bowel diseases, 44 
supported by multiple orthogonal lines of evidence. Taken together, this study underscores the 45 
importance of multi-ancestry inclusion and offers a comprehensive atlas of protein-phenotype 46 
associations across three ancestries, enhancing our understanding of proteins involved in disease 47 
etiology and potential therapeutic targets. Results are available at the Common Metabolic 48 
Diseases Knowledge Portal (https://broad.io/protein_mr_atlas). 49 
  50 
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Introduction 51 
Circulating proteins play a major role in a multitude of biological pathways1–3, are important 52 
biomarkers for disease diagnosis, prognosis, and prevention4–6, and serve as valuable drug 53 
targets7–10. Current high-throughput proteomics platforms measure thousands of circulating 54 
plasma proteins. With measurements in large cohorts, recent studies have conducted genome-55 
wide association studies (GWAS) to evaluate genetic variants associated with the abundances of 56 
thousands of proteins11–14. We can leverage these proteomic GWAS to find causal proteins for 57 
diseases and prioritize drug targets through Mendelian randomization (MR)15,16. In this case, MR 58 
uses genetic variants associated with variation in plasma protein levels (known as protein 59 
quantitative trait loci, pQTLs) as instruments to measure the causal effect of an exposure (protein 60 
abundance) on an outcome (a complex trait). This is shown to reduce confounding and reverse 61 
causation biases affecting many epidemiological studies, provided that three key assumptions 62 
are met: (1) the genetic variant is associated with the exposure, (2) there is no confounding of the 63 
instrument-outcome association, and (3) the genetic variant influences the outcome solely 64 
through the exposure.  65 
 66 
Despite applications of proteogenomics in elucidating disease mechanisms and identifying 67 
potential therapeutic targets17–23, previous pQTL studies18,19 have been based on smaller sample 68 
sizes and measured fewer proteins, assessed limited outcomes, and most importantly, have 69 
predominantly focused on individuals of European ancestry. African ancestry proteomics cohorts 70 
have emerged in recent years13,14,24, yet existing studies have assessed a limited number of 71 
outcomes and comparisons with other ancestries have also been limited19. Similarly, in East Asian 72 
ancestries, few large-scale proteome-phenome wide MR studies exist25,26, largely due to the lack 73 
of publicly available pQTLs, despite the presence of existing East Asian ancestry biobanks 74 
providing hundreds of publicly available GWAS outcomes27,28.  75 
 76 
The inclusion of multiple ancestries in a proteome-phenome wide atlas of associations can 77 
potentially offer significant benefits. Diverse ancestry inclusion in MR leverages the natural 78 
variations in genetic architecture present across populations, which allows analyses on otherwise 79 
unseen genetic variation, increases in statistical power due to allele frequency increases, and 80 
differentiation of causal effect magnitude across populations29,30. Combined, this approach may 81 
be able to identify a greater number of instrumentable proteins (i.e., proteins that can be tested 82 
in MR), which may lead to an increase in discoveries. By leveraging insights obtained through 83 
instrumentable proteins in one ancestry, the identified protein-phenotype associations could 84 
contribute to our understanding of disease mechanisms, which may be generalizable across 85 
different ancestries and potentially benefit all populations. For instance, PCSK9 loss-of-function 86 
variants Y142X and C679X predispose individuals to naturally lower LDL cholesterol levels. 87 
These mutations were found to be common in African Americans but rare in European 88 
Americans31 and inspired the development of PCSK9 inhibitors mimicking these variants to 89 
effectively reduce LDL cholesterol levels and risk of cardiovascular events32,33. In addition to 90 
providing insights into novel therapeutic targets, enhancing diversity in genomic studies is crucial 91 
to ensure equitable health outcomes and address imbalances in health disparities across 92 
populations34. 93 
 94 
Here, we combined four of the largest European ancestry proteomics cohorts (n = up to 35,559), 95 
two of the largest African proteomics cohorts (n = up to 1,871), and a new East Asian proteomics 96 
cohort (n = 1,823). We then performed MR and colocalization analyses on a curated list of the 97 
most recent and largest ancestry-specific outcome GWAS to date for 179 European and 26 98 
African ancestry outcomes, as well as 206 East Asian ancestry outcomes from Biobank Japan to 99 
construct an atlas of protein-phenotype associations. We integrated our findings with multiple 100 
drug databases to assess the druggability of the associations and highlighted novel targets. 101 
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Overall, our study supports the prioritization of thousands of protein-phenotype associations and 102 
provides a comprehensive, updated resource for the community, significantly expanding our 103 
understanding of these associations. Results are publicly available at the Common Metabolic 104 
Diseases Knowledge Portal (https://broad.io/protein_mr_atlas). 105 
  106 
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Results 107 
The overall study design is shown in Fig. 1.  108 
 109 

 110 

Figure 1. Study design. 
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Figure 1. Study design. 111 
We assessed the causal role of 2,265 circulating plasma proteins across three ancestries (four 112 
European, two African, and a new East Asian ancestry cohort) on up to 355 phenotypes/outcomes 113 
with extensively curated GWAS in each ancestry. For European and African ancestry outcomes, 114 
we collected the largest and most recent GWAS available as of February 2024 for 179 and 26 115 
outcomes, respectively, while 206 GWAS from BioBank Japan were used for East Asian ancestry 116 
outcomes. We implemented a unique approach for defining cis-pQTLs using a multi-step process 117 
combining a strict cis-pQTL definition with Open Targets Genetics variant-to-gene score35 filtering 118 
to minimize risk of horizontal pleiotropy, which we term “strict variant-to-gene (V2G) cis-pQTLs”. 119 
Then, we performed multi-ancestry proteome-wide MR and colocalization analyses using 120 
PWCoCo18,36 and SharePro37, a new colocalization method we developed, on the curated 121 
phenotypes to identify causal protein-phenotype associations. Next, we overlapped prioritized 122 
protein-phenotype pairs with drug databases such as the druggable genome38, DrugBank39, and 123 
the Open Targets platform40. Finally, as an illustrative example of the value of our atlas, we 124 
pinpoint IL1RL1 and explore its role in inflammatory bowel disease using multiple lines of 125 
evidence. EUR: European, AFR: African, EAS: East Asian; MR: Mendelian randomization; IBD: 126 
Inflammatory bowel disease; CD: Crohn’s disease; UC: Ulcerative colitis. 127 
 128 
 129 
 130 
1. Genetic instrument selection for proteins 131 
We summarize the selected genetic instruments in Supplementary Table 1. Briefly, we used 132 
proteomic GWAS from four European ancestry cohorts: ARIC (4,657 proteins measured in up to 133 
7,213 individuals)13, deCODE (4,719 proteins measured in up to 35,559 individuals)12, Fenland 134 
(4,775 proteins measured in up to 10,708 individuals)11, and UKB-PPP (2,923 proteins measured 135 
in up to 34,557 individuals)14. For African ancestry, we analyzed proteomic GWAS from two 136 
cohorts: ARIC (4657 proteins measured in up to 1,871 individuals)13 and UKB-PPP (2923 proteins 137 
measured in up to 931 individuals)14. Additionally, we included a new East Asian ancestry cohort, 138 
the Kyoto University Nagahama cohort which measured 4,196 proteins in up to 1,823 individuals.  139 
 140 
1.1. Unifying cis-pQTL across cohorts 141 
We re-defined cis-pQTLs across proteomics cohorts as pQTLs within 500 kb of the transcription 142 
start site (TSS) of the protein-coding gene, with independence and significance defined with 143 
linkage disequilibrium (LD) r2 < 0.001 and P < 5 × 10-8, respectively. Independent pQTLs outside 144 
the cis-region were labeled as trans-pQTLs. We analyzed cis-pQTLs because they are more likely 145 
to have direct biological effects on the proteins of interest41,42. We verified that newly defined cis-146 
pQTLs had high concordance within ancestries (Supplementary Note 1A).  147 
 148 
1.2. Identifying strict V2G cis-pQTLs 149 
We mitigated the risk of horizontal pleiotropy by using a unique approach to select genetic 150 
instruments which we term strict V2G cis-pQTLs (Supplementary Note 1B). Strict V2G cis-151 
pQTLs are associated with a single protein-coding gene (“strict”) and have the strongest link to 152 
the corresponding protein-coding gene based on the Open Targets Genetics V2G score, which 153 
uses multiple sources of evidence to map variants to genes (“V2G”)35 (Extended Data Fig. 1 and 154 
Supplementary Tables 2–8). We also assessed if these strict V2G cis-pQTLs were protein 155 
altering variants (PAVs), as PAVs may affect protein structure and lead to bias in effect size 156 
estimation1. We found that only 70 of 7,399 (0.95%), 30 of 1,684 (1.8%), and 9 of 663 (1.4%) 157 
strict V2G cis-pQTLs in European, African, and East Asian ancestries, respectively, were PAVs 158 
or in high LD with PAVs of high impact. Notably, strict V2G cis-pQTLs were more enriched for cis-159 
eQTLs, indicating their role in local gene regulation impacting protein levels (Extended Data Fig. 160 
2a). They had significantly larger effects on protein levels (Extended Data Fig. 2b) and were 161 
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significantly closer to the TSS of the corresponding protein-coding gene (Extended Data Fig. 3). 162 
Hence, strict V2G selection of pQTLs limits the risks of violating MR assumptions (specifically no 163 
horizontal pleiotropy) while still retaining adequate statistical power. Specifically, all proteins in 164 
each cohort had F-statistics above 10, suggesting that the risk of weak instrument bias is limited43 165 
(Supplementary Table 9).  166 
 167 
2. Multi-ancestry inclusion is important in instrumenting proteins and reveals population-specific 168 
variants 169 
Across the three ancestries, we were able to instrument 2,265 unique proteins with 449 of these 170 
being shared across all three ancestries (Fig. 2a). Specifically, we instrumented 2,110 proteins in 171 
European, 1,144 in African, and 581 in East Asian ancestries (see Supplementary Note 1C for 172 
cohort level description and Extended Data Fig. 4). We identified 1,018 proteins that were unique 173 
to individuals of European ancestry. Including African ancestries allowed for an additional 138 174 
proteins, with 119 unique to African ancestry and 19 shared with East Asian ancestries. Including 175 
an East Asian ancestry cohort allowed an additional 17 unique proteins (Fig. 2a). Altogether, 176 
these findings underscore the value of including multiple ancestries in proteomic analyses.  177 
 178 
Next, to better understand the unique proteins in non-European ancestries, we compared the 179 
allele frequencies of their genetic instruments using gnomAD44. Of the 130 genetic instruments 180 
for the 119 proteins unique to African ancestries, 89 (68.5%) had a minor allele frequency (MAF) 181 
below 0.01 in European ancestries (Fig. 2b). Similarly, for the 18 genetic instruments for the 17 182 
proteins unique to East Asian ancestry, 13 (72.2%) had a MAF below 0.01 in European ancestry 183 
(Fig. 2c). The majority (29, 63.0%) of the 46 unique genetic instruments for the 19 proteins 184 
instrumentable by both African and East Asian but not by European ancestries, were rare (MAF 185 
< 0.01) in European ancestry (Fig. 2d). These results suggest that populational allele frequency 186 
differences allow for more proteins to be included in MR analyses. We refer to them as uniquely 187 
instrumentable proteins. 188 
 189 
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 190 
Figure 2. Cross ancestry comparison of overlapping instrumentable protein-coding genes. 191 

(a) Overlapping instrumentable protein-coding genes across three ancestries. Protein-coding 192 
genes were quantified based on Ensembl gene IDs. Red: Unique protein-coding genes 193 
across four European ancestry proteomics cohorts; green: unique protein-coding genes 194 
across two African ancestry proteomics cohorts; blue: East Asian ancestry proteomics 195 
cohort protein-coding genes. 196 
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(b) gnomAD minor allele frequencies (MAF) of cis-pQTLs instrumenting the 119 proteins 197 
uniquely instrumentable in African ancestry when plotted against corresponding gnomAD 198 
non-Finnish European allele frequency (AF). The black box in the top plot is zoomed in 199 
and shown in the bottom plot. Blue: ARIC African cis-pQTLs. Red: UKB-PPP African 200 
ancestry cohort cis-pQTLs. 201 

(c) gnomAD minor allele frequencies (MAF) of cis-pQTLs instrumenting the 17 proteins 202 
uniquely instrumentable in East Asian ancestry when plotted against corresponding 203 
gnomAD non-Finnish European AF. The black box in the top plot is zoomed in and shown 204 
in the bottom plot. Purple: Kyoto University Nagahama East Asian ancestry cohort cis-205 
pQTLs. 206 

(d) gnomAD MAF minor allele frequencies (MAF) of cis-pQTLs instrumenting the 19 proteins 207 
common to African and East Asian but not European ancestries when plotted against 208 
corresponding gnomAD non-Finnish AF. The black box in the top plot is zoomed in and 209 
shown in the bottom plot. Blue: ARIC African cis-pQTLs. Red: UKB-PPP African cis-210 
pQTLs. Purple: Kyoto University Nagahama East Asian ancestry cohort cis-pQTLs. 211 

 212 
 213 
 214 
3. Two-sample Mendelian randomization 215 
We performed two-sample MR using strict V2G cis-pQTLs as instrumental variables to determine 216 
causal proteins implicated in human complex traits and diseases. Across three ancestries, we 217 
considered 355 unique outcomes (Fig. 3a) pertaining to 24 phenotype categories (Fig. 3b). These 218 
phenotypes/outcomes (as of February 2024) included 179 of the most up to date and largest 219 
phenotypic GWAS available for European ancestries (Supplementary Table 10), 26 of the 220 
largest available GWAS for African ancestries (Supplementary Table 11), and 206 from BioBank 221 
Japan for East Asian ancestries (Supplementary Table 12).  222 
 223 
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 224 
Figure 3. MR analyses to determine the effects of proteins on phenotypes. 225 

(a) Curated GWAS phenotypes common between different ancestries. European (red), 226 
African (green), and East Asian (blue) ancestries. 227 

Figure 3. MR analyses to determine the effects of proteins on phenotypes.
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(b) Phenotype categories for outcomes used in all three ancestries. 228 
(c) Flowchart summary of MR and colocalization analyses to identify protein-phenotype 229 

associations for each cohort. 230 
 231 
 232 
 233 
We tested a total of 726,035 protein-phenotype pairs in European ancestries (173,748 for ARIC, 234 
182,433 for deCODE, 180,018 for Fenland, and 189,836 for UKB-PPP), 33,078 in African 235 
ancestries (20,442 for ARIC and 12,636 for UKB-PPP), and 115,352 in East Asian ancestries 236 
(Kyoto University Nagahama cohort) (see Data availability). To control for false positives, we 237 
applied a Benjamini-Hochberg-corrected P value (false discovery rate, FDR)45 threshold of 0.05 238 
(5%) per cohort in each ancestry19. We note that Bonferroni correction is overly stringent given 239 
that (i) proteins are correlated with one another, and (ii) we tested the same protein-phenotype 240 
associations across cohorts, making these tests not independent. Nevertheless, we also provide 241 
the most stringent Bonferroni corrected associations in section 5. Results were further filtered 242 
based on multiple sensitivity analyses robust to MR assumption violations and retained 243 
associations are now termed "MR-passing”. Assessment of sample overlap between European 244 
ancestry GWAS outcomes that were based on the UK Biobank and proteomics from the European 245 
ancestry UKB-PPP cohort was performed (Supplementary Note 2). Of the tested associations, 246 
a total of 12,247 associations were considered MR-passing in European, 83 in African, and 387 247 
in East Asian ancestries (Supplementary Table 13). 248 
 249 
4. Colocalization analyses  250 
MR results may be confounded by independent causal variants in LD46,47. To guard against such 251 
bias, for each MR-passing protein-phenotype pair, we performed colocalization analysis using 252 
two methods, PWCoCo18,36 and SharePro37, to verify that the protein abundance and the tested 253 
outcome share the same genetic signals (Fig. 3c). An MR-passing protein-phenotype pair was 254 
considered putatively causal if it was supported by at least one method with a posterior 255 
colocalization probability (PPmax) ≥ 0.8. Across all cohorts and all three ancestries, 56.5% (7,182 256 
out of 12,717) of MR-passing associations were supported by colocalization evidence 257 
(Supplementary Table 13). 258 
 259 
5. Putatively causal protein-phenotype associations 260 
Upon MR, sensitivity analyses, and colocalization, we identified 3,949 unique putatively causal 261 
protein-phenotype pairs in European (Extended Data Fig. 5a and Supplementary Table 14), 56 262 
in African (Extended Data Fig. 5b and Supplementary Table 15), and 325 in East Asian 263 
ancestries (Extended Data Fig. 5c and Supplementary Table 16). Here, we use protein to refer 264 
to protein-coding genes to harmonize across SomaScan and Olink platforms. Results are also 265 
hosted at https://broad.io/protein_mr_atlas. We described cohort level associations and proteins 266 
implicated in a multitude of phenotypes in Supplementary Notes 3 and 4. Particularly, 1,617, 30, 267 
and 135 unique associations in European, African, and East Asian ancestries further withstood 268 
the Bonferroni correction accounting for the total number of tests across all cohorts and all 269 
ancestries (P < 0.05 / 874,465 = 5.7 × 10-8), however, this threshold is likely overly conservative 270 
due to many proteins being correlated with one another as well as non-independent tests from 271 
the same protein-phenotypes associations being tested across cohorts (Supplementary Tables 272 
14 – 16). 273 
 274 
In European ancestries, the 3,949 significant unique protein-phenotype pairs identified in 275 
European ancestries involved putatively causal effects between 995 proteins and 146 phenotypes, 276 
of which only 56 (1.4%) showed discordant MR estimates in one of the tested cohorts 277 
(Supplementary Table 14). These discrepancies could be attributed to population differences or 278 
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variations in proteomic assays, such as differential effects from SomaScan aptamers targeting 279 
different domains compared to Olink assays. Of the 3,893 remaining putatively causal European 280 
ancestry pairs between 991 proteins and 146 outcomes, 1,692 (43.5%) of the identified putatively 281 
causal associations were from 452 proteins uniquely instrumentable by European ancestries. 282 
Further, 3,853 (99.0%) associations have not been previously reported by earlier proteome-283 
phenome wide MR studies from Zheng et al.18 and Zhao et al.19.  284 
 285 
5.1. Cardiovascular and autoimmune diseases 286 
We demonstrate the highly interconnected nature between proteins and outcomes by highlighting 287 
cardiovascular (Fig. 4a and Supplementary Note 5A) and autoimmune phenotypes (Fig. 4b) in 288 
European ancestries given their significant impact on health. Cardiovascular outcomes were 289 
influenced by up to 103 proteins (median: 7) while some proteins influenced up to 8 cardiovascular 290 
outcomes (median: 1) (Fig. 4a). For instance, we found that an s.d. increase in genetically 291 
predicted ULK3 levels increases systolic and diastolic blood pressure, pulse pressure, and 292 
hypertension. ULK3 is a nuclear kinase which may contribute to vascular disease by mediating 293 
autophagy dysregulation48. In concordance, a recent study showed that functional splicing effects 294 
of ULK3 can contribute to coronary artery disease (CAD)49 suggesting effective modulation of 295 
ULK3 may be beneficial for reducing cardiovascular risk.  296 
 297 
Similarly, we found high interconnectedness between autoimmune phenotypes and proteins (Fig. 298 
4b). Autoimmune phenotypes were influenced by a median of 7 proteins; the highest number of 299 
associations were for Crohn’s disease (CD) (39 proteins), inflammatory bowel disease (IBD) (35 300 
proteins), and ulcerative colitis (UC) (28 proteins). Proteins, on the other hand, influenced a 301 
median of 2 autoimmune phenotypes. IL1RL1 and IL12B influenced the largest number of 302 
outcomes (6 and 4 outcomes, respectively) (Fig. 4b) with both increasing risk of IBD, CD, and 303 
UC. IL12B is targeted by a commercially available drug ustekinumab for CD50; however, there are 304 
currently no approved drugs targeting IL1RL1, although there has been increasing interest in 305 
modulating IL1RL1 for treating various conditions51,52. For example, tozorakimab targets IL-33, 306 
the interleukin that binds IL1RL1 (ST2)53 and anakinra targets IL-154, a closely related interleukin.  307 
 308 
Other potentially novel findings involving other disease categories in European ancestries are 309 
highlighted in Supplementary Note 5B.  310 
 311 
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 312 
Figure 4. Protein-phenotype network plots. 313 
Red arrows indicate a positive causal estimate of the protein on the phenotype while blue arrows 314 
indicate a negative causal estimate of the protein on the phenotype. 315 

(a) Significant estimates between proteins (orange circles) and cardiovascular traits (green 316 
rectangles) both derived from European ancestry individuals. All cardiovascular traits are 317 
named, as well as the protein traits that have a significant effect on 4 or more 318 
cardiovascular traits. Arrow thickness representing number of significant estimates 319 
indicates how often a protein measurement has a causal effect on the outcome trait. The 320 
maximum number of significant estimates is 7 which is larger than the total number of 321 
European ancestry proteomics studies, 4, due to the presence of more than one 322 
SomaScan aptamer for that protein. For simplicity, we only depict protein-phenotype pairs 323 
in which all European ancestry cohorts showed concordant direction of effect estimates. 324 

(b) Significant estimates between proteins (orange circles) and autoimmune traits (green 325 
rectangles) both derived from European ancestry individuals. All autoimmune traits are 326 
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named, as well as the protein traits that have a significant effect on 4 or more autoimmune 327 
traits. Arrow thickness representing number of significant estimates indicates how often a 328 
protein measurement has a causal effect on the outcome trait. For simplicity, we only 329 
depict protein-phenotype pairs in which all European ancestry cohorts showed concordant 330 
direction of effect estimates. 331 

(c) Significant estimates between proteins (orange circles) and all traits (green rectangles) 332 
both derived from African ancestry individuals. All arrows are the same thickness to 333 
indicate support of the association in a single study. 334 

(d) Significant estimates between proteins (orange circles) and binary traits (green 335 
rectangles) both derived from East Asian ancestry individuals. All arrows are the same 336 
thickness and indicate support of the association in a single study. 337 

 338 
 339 
 340 
5.2. Protein-phenotype associations in African and East Asian ancestries 341 
In African ancestries, we identified 56 unique protein-phenotype associations involving 28 342 
proteins and 11 phenotypes (Fig. 4c and Supplementary Table 15). Of these 56 pairs, 55 343 
(98.2%) have not been previously reported by earlier proteome-phenome wide MR studies in 344 
African ancestries19. Notably, 11 (19.6%) protein-phenotype pairs involving four proteins, APOE, 345 
C7orf50, CD300LG, and PON3, were uniquely instrumentable in African ancestries (Extended 346 
Data Fig. 6a). For instance, increased PON3 levels was associated with increased total 347 
cholesterol (βUKB-PPP = 0.03, 95% CI = 0.02–0.05, P = 1.1 × 10-5, PPmax = 0.95). PON3 is highly 348 
expressed in the liver and previously implicated in cholesterol metabolism55,56 and atherosclerosis 349 
progression. This is notable as PON3 was not instrumentable in European ancestries, thus, 350 
African ancestries are uniquely suitable to identify biologically plausible protein-phenotype 351 
associations.  352 
 353 
Furthermore, the Million Veteran Program57 recently released summary statistics for additional 354 
traits in up to 635,969 individuals. Using this resource, we tested the causal effect of the 119 355 
proteins uniquely instrumentable in African ancestries on cardiovascular and autoimmune-related 356 
binary outcomes. Using the African ARIC proteomics cohort, we identified 7 associations with 357 
cardiovascular outcomes and no associations with autoimmune-related outcomes 358 
(Supplementary Note 5C). Notably, increased PCYOX1 levels were associated with a reduced 359 
risk of coronary atherosclerosis, atrial fibrillation, and flutter, indicating its protective effect. 360 
PCYOX1 plays a role in oxidative stress and lipid metabolism and has been implicated in 361 
atherosclerosis in rodent studies58, supporting our findings. This suggests that as more outcomes 362 
with larger sample size, particularly binary disease outcomes, become available in African 363 
ancestries, we can better leverage uniquely instrumentable proteins to uncover additional protein-364 
disease associations. 365 

 366 
In East Asian ancestries, 339 putatively causal associations were identified with 325 unique 367 
protein-phenotype pairs involving 110 proteins and 86 phenotypes (Fig. 4d and Supplementary 368 
Table 16). Among them, increased SMOC2 level was associated with decreased risk of peripheral 369 
artery disease (PAD) (OR = 0.82, 95% CI = 0.74–0.90, P = 5.5 × 10-5, PPmax = 0.97). SMOC2 is 370 
highly expressed in arteries and plays roles in endothelial cell proliferation, angiogenesis, and 371 
matrix assembly59. Notably, in European ancestries, increased SMOC2 was associated with 372 
decreased pulse pressure, implicating favorable cardiovascular effects across ancestries. 373 
 374 
We also found 8 proteins which were only instrumentable in East Asian ancestry due to lack of 375 
genome-wide significant cis-pQTLs in other ancestries or stringent strict V2G instrument selection 376 
(Supplementary Note 5D). These 8 proteins were ALDH2, ANXA7, APOA1, DDOST, GSS, 377 
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PLA2G7, PRSS2, and UGT1A1 which together accounted for 67 (20.6%) protein-phenotype 378 
associations (Extended Data Fig. 6b and Supplementary Note 5D). For instance, increased 379 
PRSS2 levels in East Asian ancestries was associated with an OR of 2.05 for acute pancreatitis 380 
(95% CI: 1.42–2.98, P = 1.43 × 10-4, PPmax = 0.95) which has been previously validated in 381 
European only proteome-wide analyses60 suggesting concordant effects across ancestries.  382 
 383 
6. Concordant effects across ancestries 384 
We evaluated the direction of effect for protein-phenotype associations that passed MR and 385 
colocalization analyses across ancestries since concordance across ancestries may strengthen 386 
the evidence of broader applicability of therapeutic targets. We found 186 total protein-387 
phenotype/outcome pairs with 63 unique pairs between 43 proteins and 13 outcomes 388 
(Supplementary Table 17 and Fig. 5). Among these, 51 pairs (81.0%) had concordant effects 389 
across ancestries, while 12 pairs (19.0%) had inconsistent effects (Supplementary Figure 3 and 390 
Supplementary Note 6). Notable concordant associations included PCSK9 and LDL cholesterol 391 
in European and East Asian ancestries, and haptoglobin (HP), which binds free hemoglobin to 392 
prevent oxidative damage, with LDL cholesterol and total cholesterol across all three ancestries. 393 
Angiopoietin-related protein 4 (ANGPTL4) was negatively associated with HDL cholesterol and 394 
positively with triglycerides in European and African ancestries, while lipoprotein-lipase (LPL) 395 
showed opposite associations in these ancestries. ANGPTL4 has been shown to act as a local 396 
inhibitor of LPL61 which serves as the rate-limiting enzyme in the degradation of triglycerides62, 397 
concordant with our findings. While no approved drugs exist for ANGPTL4, inhibition of a closely 398 
related protein ANGPTL3 through an RNA interference therapy zodasiran is currently undergoing 399 
clinical trials for cholesterol lowering63. Thus, many of these biological effects were validated in 400 
our multi-ancestry analyses. We note that while concordant effects across ancestries provide 401 
strong evidence of support, discordant effects in MR do not automatically indicate biologically 402 
discordant effects across ancestries, which could be due to epitope-binding effects or other 403 
technical variations64. 404 
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Figure 5. Multi-ancestry network plot for protein-phenotype pairs present in two or more 407 
ancestries.  408 
All estimates shown had evidence in European ancestry and at least one other ancestry (African 409 
or East Asian ancestry). Significant estimates between proteins (orange circles) and traits (green 410 
rectangles). Arrow thickness indicates the number of ancestries in which a protein measurement 411 
has a causal effect on the phenotype. For simplicity, we only depict estimates when cohorts within 412 
the same ancestry and across different ancestries showed concordant direction of effect 413 
estimates. Red arrows indicate a positive causal estimate of the protein on the phenotype while 414 
blue arrows indicate a negative causal estimate of the protein on the phenotype. 415 
 416 
 417 
 418 
7. Druggability  419 
7.1. Druggability of the instrumentable protein-coding genes  420 
Across all ancestries, between 60% to 67% of instrumentable protein-coding genes overlapped 421 
with the druggable genome38, which classifies genes into Tier 1, 2, or 3 according to druggability, 422 
and between 20.5% and 23.6% overlapped with Tiers 1 and 2 (Supplementary Table 18 and 423 
Supplementary Note 7A). Druggability tiers for instrumentable proteins are in Supplementary 424 
Tables 19–25.  425 
 426 
Next, we incorporated the druggable genome38, DrugBank39, and Open Targets Platform40 to 427 
determine which instrumentable proteins overlapped at least one database. Proteins overlapping 428 
with DrugBank39 had approved or investigational drugs available while those overlapping Open 429 
Targets have information on their clinical development phase and status of protein-drug-disease 430 
combinations. Cross-ancestry comparison stratified by proteomics platform for instrumentable 431 
proteins overlapping at least one database shows that in SomaScan v4, African ancestry adds 68 432 
additional targets beyond European ancestry cohorts (Extended Data Fig. 7a), while East Asian 433 
ancestry contributes 34 more targets (Extended Data Fig. 7b). In Olink Explore 3072, including 434 
African ancestry presents 62 additional targets (Extended Data Fig. 7c). These findings suggest 435 
that data from African and East Asian ancestries could enhance drug development by offering 436 
more potential therapeutic targets. 437 
 438 
7.2. Druggability of protein-phenotype pairs by integrating the druggable genome, DrugBank, 439 
and Open Targets Platform 440 
Across three ancestries, among the 1,037 number of protein-coding genes that have at least one 441 
protein-phenotype association, 669 (64.5%) were present in at least one database. Specifically, 442 
579 (55.8%) protein-coding genes overlapped with the druggable genome38, 350 (33.8%) had 443 
approved or investigational drugs in DrugBank39, and 191 (18.4%) overlapped with the Open 444 
Targets Platform40 (Supplementary Table 26). Notably 32 (3.1%) were unique to non-Europeans. 445 
This highlights that multi-ancestry inclusion can expand the list of actionable druggable 446 
associations. Overlap with the druggable genome and DrugBank stratified by ancestry is 447 
presented in Supplementary Note 7B. 448 
 449 
We found that higher levels of MANBA, a Tier 2 target, increased risk of atrial fibrillation in 450 
European ancestry (Fig. 6a) and myocardial infarction in East Asian ancestry (Fig. 6b). Currently 451 
no drugs exist for MANBA but its role in lysosomal metabolism suggests that modulating its activity 452 
could have therapeutic potential. Further, increased ANGPTL4, a Tier 3 target, leads to increased 453 
triglycerides and decreased HDL cholesterol levels in African ancestries (Fig. 6c) and increased 454 
CAD risk in European ancestries (Supplementary Note 7C) supporting its potential as a 455 
therapeutic target. Notably, we found that increased STAT3, a Tier 1 target, increased risk of IBD 456 
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and its subtypes, CD, and UC (Fig. 6d). Danvatirsen, a STAT-3 mRNA 3'UTR antisense inhibitor 457 
has been undergoing phase 1 and 2 clinical trials for multiple cancer types and may be potentially 458 
repurposed for IBD. Currently, astegolimab, an inhibitor of IL1RL1, a Tier 3 target, has completed 459 
phase 2 trials for eczema and asthma; in our study, we find genetic support where increased 460 
IL1RL1 increased risk of eczema in East Asian ancestry (Fig. 6e) and was concordant in 461 
European ancestries (Supplementary Table 17). Druggability visualization for remaining 462 
diseases for European and East Asian ancestries are provided in Supplementary Note 7C. 463 
 464 
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 465 
Figure 6. Integrating proteome-phenome-wide MR with the druggable genome, DrugBank, 466 
and clinical trial information from the Open Targets Platform. 467 

a) European: Tier 1 and Tier 2 druggable proteins 
implicated in cardiovascular phenotypes

c) African: druggability of all protein-phenotype pairs 
encompassing cardiovascular, biomarker, anthropometry, and 
respiratory phenotypes

d) European: Tier 1 and Tier 2 druggable proteins 
implicated in autoimmune phenotypes

e) East Asian: druggability of all protein-phenotype pairs 
implicated in autoimmune phenotypes

b) East Asian: Tier 1 and Tier 2 druggable proteins 
implicated in cardiovascular phenotypes
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Legend information:  468 
Each cell displays a putatively causal protein-phenotype association. Cell color displays the MR 469 
effect estimate based on Z score averaged across cohorts capped at -10 to +10 with red showing 470 
a positive Z score indicating a positive MR effect of the protein (displayed as the gene name) on 471 
the phenotype and blue showing a negative Z score indicating a negative MR effect of the protein 472 
on the phenotype. For simplicity, in European ancestries, we only display protein-phenotypes with 473 
consistent effect across European cohorts.  474 
The y-axis shows the three drug databases. DrugBank (yellow square): DrugBank39 shows 475 
whether the protein has an available drug in the database. Open Targets (pink square): Open 476 
Targets Platform40 shows whether the protein has available clinical trial information. Druggability: 477 
The druggable genome from Finan et al.38 is shown for Tiers 1 (dark green, representing direct 478 
targets of approved small molecules and biotherapeutic drugs), Tier 2 (dark purple, representing 479 
proteins closely related to approved drug targets or which have associated drug-like compounds), 480 
Tier 3 (light purple, representing secreted or extracellular proteins, those distantly related to 481 
approved drug targets, and members of important druggable gene families not covered in Tier 1 482 
or Tier 2), and Unclassified (gray, all other proteins not in Tiers 1 to 3). Proteins on the y-axis 483 
within each tier are sorted based on the number of supported databases. 484 

(a) European ancestry putatively causal protein-phenotype pairs stratified to Tier 1 and Tier 485 
2 druggable proteins and cardiovascular phenotypes. 486 

(b) East Asian ancestry putatively causal protein-phenotype pairs stratified to Tier 1 and Tier 487 
2 druggable proteins and cardiovascular phenotypes. 488 

(c) All of the African ancestry putatively causal protein-phenotype pairs with no druggability 489 
stratification. 490 

(d) European ancestry putatively causal protein-phenotype pairs stratified to Tier 1 and Tier 491 
2 druggable proteins and autoimmune phenotypes. 492 

(e) East Asian ancestry putatively causal protein-phenotype pairs stratified to autoimmune 493 
phenotypes. 494 

 495 
 496 
 497 
8. Converging evidence of the causal effect of IL1RL1 on IBD  498 
Upon further stringent filtering to find protein-phenotype pairs with strong evidence (see Methods), 499 
we found that increased IL1RL1 levels was associated with increased risk of IBD, CD, and UC in 500 
European ancestries across three cohorts for IBD and CD and two cohorts for UC with consistent 501 
directions, which we validated using the largest available East Asian ancestry GWAS for IBD 502 
(14,393 cases and 15,456 controls), CD (7,372 cases and 15,456 controls), and UC (6,862 cases 503 
and 15,456 controls) from Liu et al.65 (Fig. 7a). In African ancestries, the number of cases were 504 
limited in the largest publicly available GWAS for IBD (1,285 cases and 119,314 controls)57 and 505 
UC (857 cases and 119,909 controls)57, thus estimates were not significant likely due to 506 
insufficient power. 507 
 508 
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 509 
Figure 7. IL1RL1 in IBD, CD, and UC. 510 
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a) MR for the effect of IL1RL1 and IBD (top), CD (middle), and UC (bottom) in European and 511 
East Asian ancestries. PPmax is the maximum colocalization posterior probability between 512 
PWCoCo and SharePro. 513 

b) Kaplan Meier estimates for cumulative incident of IBD (top), CD (middle), and UC (bottom) 514 
by baseline IL1RL1 level quantiles in the UK Biobank. P values were computed using the 515 
log-rank test. 516 

c) Bulk RNA sequencing of IL1RL1 in the ileum (left), colon (middle), and rectum (right). 517 
d) Single-cell RNA sequencing analyses of IL1RL1. IL1RL1 expression patterns showing 518 

720,633 cells collected from the terminal ileum and colon of 71 donors with different levels 519 
of inflammation. Single-cell transcriptomic data was obtained from Kong et al.66 (SCP1884 520 
https://singlecell.broadinstitute.org/). 521 

 522 
 523 
 524 
To triangulate the evidence, we performed supplementary observational analysis in the UK 525 
Biobank using Cox proportional hazards models. We adjusted for age, sex, recruitment center, 526 
Olink measurement batch, Olink processing time, and the first 10 genetic principal components. 527 
Notably, none of the genetic principal components were significant, suggesting that the 528 
association is not specific to ancestry. Over 10 years of follow-up, a one s.d. increase in IL1RL1 529 
was associated with elevated risk of IBD (hazard ratio, HR = 1.18; 95% CI: 1.05–1.33; P = 6.6 × 530 
10-3), CD (HR = 1.21; 95% CI: 1.00–1.47; P = 0.047), and UC (HR = 1.15; 95% CI: 1.00–1.33; P 531 
= 0.048), consistent with MR findings (Supplementary Table 27). Kaplan-Meier estimates for 532 
cumulative incidence of disease stratified by baseline IL1RL1 level (lowest 25% versus highest 533 
25% in the UK Biobank population) also showed differences in IBD (log-rank test P = 2.0 × 10-4), 534 
CD (log-rank test P = 7.0 × 10-3), and UC (log-rank test P = 0.02) (Fig. 7b). We also performed 535 
an alternative, less stringent filter and prioritized proteins involved in CAD and type 2 diabetes 536 
which we provide in Supplementary Note 8. 537 
 538 
8.1. IL1RL1 expression analyses  539 
To further assess the role of IL1RL1 in IBD, we used the IBD Transcriptome and 540 
Metatranscriptome Meta-Analysis (IBD TaMMA) platform67 to compare expression of IL1RL1 541 
transcripts between IBD patients and healthy controls in the ileum, colon, and rectum. We found 542 
significantly higher IL1RL1 gene expression in all three tissues (Fig. 7c), suggesting that 543 
increased IL1RL1 expression is a consistent feature of IBD regardless of the specific location 544 
within the gastrointestinal tract.  545 
 546 
To gain further insights into the role of IL1RL in IBD, CD and UC, we analyzed single-cell IL1RL1 547 
expression in 720,633 cells from the terminal ileum and colon of 71 participants with different 548 
levels of inflammation status from Kong et al.66 (SCP1884 https://singlecell.broadinstitute.org/). In 549 
single-cell RNA sequencing, IL1RL1 showed significant enrichment in mast cells compared to 24 550 
other cell types (permutation P < 2.0 × 10-4) (Fig. 7d). Mast cells, key players in allergic reactions 551 
and inflammation and a key cell type involved in the pathogenesis of IBD68,69, may contribute to 552 
chronic IBD by releasing inflammatory mediators like histamine and cytokines when activated by 553 
IL1RL1 in inflamed tissues. These findings align with our MR analyses showing that increased 554 
IL1RL1 leads to increased risk of IBD, CD and UC. 555 
  556 
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Discussion 557 
In this study, we conducted comprehensive multi-ancestry proteome-phenome analyses across 558 
three ancestries. Using seven large proteomics cohorts including European, African, and East 559 
Asian ancestries, we analyzed 355 complex traits or diseases, and identified 3,949, 56, and 325 560 
putative causal effects of protein abundance on diseases and traits, respectively. By integrating 561 
data from druggable genomes and drug databases, we prioritized potential protein targets for 562 
drug development. Our findings offer a comprehensive atlas of protein-phenotype associations 563 
and an evidence-based resource to support drug discovery and development, expand insight into 564 
disease, and highlight potential targets for therapeutic intervention. 565 
  566 
Our study provides an updated map to earlier phenome-wide MR studies of the human plasma 567 
proteome on complex diseases which were either limited to European ancestries18 or considered 568 
only a few diseases in European and African ancestries19. The significance of incorporating 569 
multiple ancestries is underscored by our identification of several proteins that are uniquely 570 
instrumentable by each ancestry due to allele frequency differences. Specifically, we 571 
instrumented an additional 119 proteins exclusively in African ancestry, 17 in East Asian ancestry, 572 
and 19 shared between African and East Asian ancestries. Moreover, the finding that a significant 573 
proportion of population-specific genetic variants—68.5% in African and 72.2% in East Asian—574 
have a MAF below 0.01 in European ancestries highlights the potential for missed genetic 575 
discoveries when studies focus on a single ancestry. Research on the genetic architecture across 576 
different ancestries reveals both commonalities and differences, influenced by evolutionary 577 
history, genetic diversity, and population-specific factors26,30. Thus, by including diverse African 578 
and East Asian ancestries in proteomic analyses, we were able to instrument more proteins by 579 
leveraging common genetic variants in these underrepresented populations which were mostly 580 
rare in European ancestries, enhancing the potential for novel discoveries and exemplifying the 581 
value of including non-European individuals for comprehensive and inclusive proteomic and 582 
genetic analyses.  583 
 584 
The inclusion of African and East Asian ancestries allowed discovery of protein-phenotype 585 
associations. We emphasize that these findings were attributable to uniquely instrumentable 586 
proteins in each ancestry and do not necessarily indicate ancestry-specific biological mechanisms.  587 
 588 
As an illustrative example of the value of our atlas, we found that increased circulating 589 
abundances of IL1RL1 was causal for IBD, CD, and UC in European and East Asian ancestries, 590 
which was supported by observational analyses and gene expression analyses. IL1RL1 could be 591 
a promising therapeutic approach for IBD, potentially reducing mast cell-driven inflammation. 592 
Potential drugs targeting IL1RL1 include astegolimab which has completed phase 2 trials for 593 
eczema and asthma, tozorakimab which neutralizes IL-33, the interleukin that binds IL1RL1 (ST2), 594 
and anakinra which targets IL-1, a closely related interleukin. However, further research is 595 
required to assess the safety and efficacy of potential IL1RL1 inhibition. Many such findings may 596 
exist, and this atlas may be used as a tool to facilitate the selection of targets during primary or 597 
pre-clinical drug development, exploring drug repurposing opportunities, and improve 598 
understanding of proteins implicated in complex traits and diseases. 599 
 600 
Our study has several key strengths. We curated GWAS for a wide range of complex traits and 601 
diseases, decreasing the overlap and redundancy and increasing the power for discovery in MR. 602 
Second, our study included diverse proteomics cohorts, including African ancestry and a new 603 
East Asian ancestry cohort, the Kyoto University Nagahama cohort. This latter cohort, which used 604 
the SomaScan v4 platform, is the largest to date aside from the China Kadoorie Biobank25,26. 605 
Further, our study combined both ARIC SomaScan and UKB-PPP Olink African proteomics 606 
cohorts at a phenome-wide scale and to include three ancestries. Notably, we identified uniquely 607 
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instrumentable proteins in African and East Asian ancestries that were not found in European 608 
ancestries, highlighting the value of including cohorts from diverse ancestral backgrounds. Third, 609 
we performed extensive stringent filtering on genetic instruments with strict V2G criteria. Fourth, 610 
we harnessed novel state-of-the-art colocalization methods to reduce the risk of confounding from 611 
LD while increasing the statistical power to support more protein-phenotype associations with 612 
colocalization evidence37. 613 
 614 
This study has several limitations. First, while two separate proteomics cohorts were included for 615 
African ancestries, the number of outcomes considered was still limited. Additionally, African 616 
ancestry phenotypes were curated from various cohorts with potentially finer genetic architecture 617 
differences than controlled for by using continental ancestries, thereby potentially biasing our 618 
analyses. Second, differences in measurement units make direct comparison of MR effect size 619 
estimates for continuous outcomes difficult. Nevertheless, direction of effect should be robust to 620 
this limitation. Third, while we reduced the risk of horizontal pleiotropy by using strict V2G cis-621 
pQTLs, this resulted in many proteins being instrumented by a single cis-pQTL, limiting the ability 622 
to perform MR sensitivity analyses. Nonetheless, we used robust colocalization methods to 623 
mitigate risk of reporting false positives. Fourth, although we used assays measuring nearly 5,000 624 
proteins from SomaScan and 3,000 proteins from Olink, coverage is still limited with regard to the 625 
entire proteome. Lastly, while we analyzed three diverse ancestries, the sample sizes for both 626 
proteomic GWAS and outcome GWAS were much larger for European ancestry, leading to 627 
differences in the number of associations. Greater coverage of proteins and larger sample sizes 628 
in non-European ancestries are needed.  629 
 630 
In conclusion, through integrative multi-ancestry plasma proteome-phenome MR and extensive 631 
sensitivity analyses, we provided a comprehensive atlas of protein-phenotype associations 632 
across three ancestries and highlighted the value of multi-ancestry inclusion, as illustrated by 633 
uniquely instrumentable proteins in non-European ancestries. This study serves as a valuable 634 
resource for understanding disease mechanisms and prioritizing potential new targets. 635 
  636 
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Methods 637 
1. Proteomics cohorts 638 
We analyzed proteomics cohorts from three ancestries consisting of European (four cohorts: 639 
ARIC, deCODE, Fenland, and UKB-PPP), African (two cohorts: ARIC and UKB-PPP), and East 640 
Asian (one cohort: Kyoto University Nagahama East Asian cohort). All cohorts had proteomics 641 
measured on the aptamer-based SomaScan assay v4 except for the UKB-PPP study, which used 642 
the antibody-based Olink Explore 3072 platform. 643 
 644 
1.1. European ancestry cohorts 645 
We analyzed the GWAS of protein levels in individuals of European ancestry using four different 646 
studies. Three of these four studies (ARIC, deCODE, and Fenland described below) had 647 
proteomics measurements from the aptamer-based SomaScan assay v4 from SomaLogic 648 
(Boulder, Colorado, USA). In brief, SomaScan assay v4 uses aptamers, which are single-649 
stranded oligonucleotides that have specific binding affinities to protein targets and can measure 650 
up to 5,000 unique proteins. The UKB-PPP study had proteomics measurements from the 651 
antibody-based Olink Explore 3072 platform, which measures up to 3,000 proteins. Briefly, Olink 652 
(Uppsala, Sweden) uses proximity extension assay (PEA) technology, which detects proteins 653 
through the binding of two separate antibodies carrying complementary oligonucleotide tags, 654 
which hybridize to the protein target. We restricted our analyses to proteins encoded by autosomal 655 
genes and analyzed a list of 4,687 proteins from SomaLogic and 2,823 proteins from Olink. 656 
 657 
1.1.1. ARIC 658 
The Atherosclerosis Risk in Communities (ARIC)13 measured protein levels from 9,084 American 659 
participants of European and African ancestries using the SomaScan assay v4. Of these 660 
participants, 4,657 plasma proteins were measured for 7,213 European American individuals. 661 
 662 
1.1.2. deCODE 663 
The deCODE study12 provided 4,907 aptamers that measure 4,719 proteins in 35,559 Icelandic 664 
individuals of European ancestry using SomaScan assay v4. 665 
 666 
1.1.3. Fenland 667 
The Fenland study11 measured 4,775 proteins in 10,708 individuals of European ancestry using 668 
SomaScan assay v4. 669 
 670 
1.1.4. UKB-PPP 671 
The UK Biobank Pharma Proteomics Project (UKB-PPP)14 conducted proteomic profiling on 672 
54,219 individuals of multiple genetic ancestries in the UK Biobank using the Olink Explore 3072 673 
platform. From this cohort, 34,557 European individuals, each with 2,923 unique proteins 674 
measured, were utilized in the UKB-PPP as the discovery cohort, and we used this discovery 675 
cohort in our study. 676 
 677 
1.2. African ancestry cohorts 678 
For African ancestries, we used GWAS of protein levels from two different studies (ARIC and 679 
UKB-PPP) measured on SomaScan assay v4 and Olink Explore 3072, respectively. 680 
 681 
1.2.1. ARIC  682 
The ARIC cohort was previously described in the European cohort section and consists of 9,084 683 
European American and African American individuals. Of these participants, 4,657 proteins from 684 
the SomaScan v4 assay were measured for 1,871 African American individuals. 685 
 686 
1.2.2. UKB-PPP 687 
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We used the African ancestry individuals from the UKB-PPP study, which consists of 931 688 
individuals with 2,923 unique proteins measured with the Olink Explore 3072 platform. 689 
 690 
1.3. East Asian ancestry cohort 691 
Kyoto University Nagahama cohort 692 
The Nagahama Primary Prevention Cohort Project (Kyoto-Nagahama cohort) is a joint project 693 
between the Kyoto University Graduate School of Medicine and Nagahama City, Shiga Prefecture 694 
that involved 10,000 residents of Nagahama (https://w3.genome.med.kyoto-695 
u.ac.jp/en/nagahama-project/). Data generation was performed at the Kyoto University Center for 696 
Genome Medicine, where 1,823 Japanese individuals of East Asian ancestry were whole 697 
genome-sequenced and had 4,196 proteins measured using the SomaScan assay v4. Further 698 
details can be found in Supplementary Note 9.  699 
 700 
2. Identification of strict variant-to-gene (v2g) cis-protein quantitative trait loci (pQTLs) 701 
Each cohort had had different cis-pQTL definitions. For example, the ARIC13 study defined cis-702 
pQTL as those within ±500 kb of the TSS of the protein-coding gene with FDR < 5%. The 703 
deCODE study12 defined cis-pQTL as those within ±1 Mb of the TSS of the protein-coding gene 704 
with P < 1.8 × 10−9. The Fenland Study11 defined cis-pQTL as those within ±500 kb of the 705 
protein-coding gene with P < 1.004 × 10-11. The UKB-PPP14 noted that of their identified pQTLs, 706 
66.9% of proteins tested (1,954 of 2,922 proteins) had a cis-pQTL within ±1 Mb of the protein-707 
coding gene with P < 1.7 × 10−11. Thus, we created a common cis definition as follows. 708 
 709 
2.1. Linkage disequilibrium (LD) clumping 710 
We performed LD clumping (clumping window of 1 Mb, significance level of 5 × 10−8, and clumping 711 
r2 threshold of 0.001) on each proteomic GWAS in each ancestry cohort. For European proteomic 712 
GWAS, we used a reference panel composed of 50,000 randomly sampled unrelated UK 713 
Biobank70 individuals of European ancestry (UKB 50k). For African proteomic GWAS, we curated 714 
an LD reference panel from the Human Genome Diversity Project and 1000 Genomes Project 715 
(HGDP + 1kGP) reference panel71 for 994 African ancestry individuals. In East Asian ancestries, 716 
we used the 1000 Genomes East Asian (1kGP EAS) reference panel. We retained variants with 717 
a MAF > 0.01 in all reference panels. 718 
 719 
2.2. Identification of cis- and trans-pQTLs 720 
To determine cis-pQTLs, we used the Ensembl BioMart73 package version Ensembl 105: Dec 721 
2021 (Genome Reference Consortium Human Build 38, GRCh38.p13) to generate a human 722 
protein-coding genes file. We considered relevant attributes such as the canonical TSS, gene 723 
start, and gene end. Since Fenland proteomic GWAS were in GRCh37 coordinates, we 724 
separately curated a protein-coding genes file using BioMart on the GRCh37 assembly in 725 
Ensembl using version 110. For analysis, we excluded protein-coding genes located on sex 726 
chromosomes and those located within the major histocompatibility complex (MHC) (GRCh38: 727 
chr6 28,510,020– 33,480,577) due to the complex LD structure, high allelic diversity, and strong 728 
pleiotropy in this region74. We defined a cis-pQTL as a pQTL within ± 500 kb of the TSS of the 729 
protein-coding gene. All other pQTLs were trans. We used cis-pQTLs since they are more likely 730 
to directly impact the transcription and translation of the protein of interest.  731 
 732 
2.3. Strict variant-to-gene cis-pQTL definition 733 
To minimize potential horizontal pleiotropic effects, we defined a unique strict V2G definition for 734 
cis-pQTLs whereby a cis-pQTL is a strict V2G cis-pQTL if it is a cis-pQTL for only one protein-735 
coding gene (strict) and it has the strongest link to the corresponding protein-coding gene based 736 
on multiple sources of evidence and concomitantly has the highest Open Targets Genetics V2G 737 
score (Extended Data Fig. 1). We outline these steps in the following two sections. 738 
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 739 
2.3.1. Strict cis-pQTL 740 
For genome-wide significant independent cis-pQTLs in each cohort, we retained those 741 
associated with a single protein-coding gene. We defined this as a “strict” cis-pQTL definition. 742 
Here, we used protein-coding genes instead of proteins (aptamers) for the strict cis definition 743 
due to SomaScan assay v4 having multiple instances where two or more aptamers target a 744 
single protein, which would result in the unwarranted scenario where pQTLs that were cis for 745 
more than one aptamer of the same protein were removed.  746 
 747 
2.3.2. Open Targets Genetics Variant-to-Gene (V2G) 748 
We used the Open Targets Genetics35 database (https://genetics.opentargets.org/) to determine 749 
whether each strict cis-pQTL held the highest V2G score for its corresponding associated 750 
protein-coding gene. This ensures that the variant is a suitable proxy for the plasma levels of the 751 
protein-coding gene. For instance, the variant may directly impact the protein-coding gene, 752 
potentially by altering its transcription, thereby influencing its plasma abundance. Briefly, Open 753 
Targets Genetics V2G scores are generated through a model trained on molecular QTLs 754 
(eQTL, sQTL, pQTL), chromatin interaction experiments such as promoter capture Hi-C (PCHi-755 
C), in silico functional predictions such as Ensembl Variant Effect Predictor (VEP), and the 756 
distance between variants and genes' canonical transcription start sites. This composition of 757 
evidence enables accurate assignment of variants to genes. We note that the pQTL datasets 758 
utilized by Open Targets Genetics for model training are from earlier studies and do not overlap 759 
with the proteomics cohorts we analyzed in this study, mitigating the risk of overfitting.  760 
 761 
Together, we combined the strict cis definition and V2G score from Open Targets Genetics to 762 
curate strict V2G cis-pQTLs, which decreases the chance of horizontal pleiotropy in MR. 763 
 764 
3. Protein altering variant (PAV) and expression quantitative trait loci (eQTL)  765 
Since pQTLs altering the binding epitope of a protein may reflect assay specificity instead of the 766 
true biological function of the protein1,64,75, we annotated strict V2G cis-pQTLs as protein-altering 767 
variants (PAVs) of moderate or high impact if they or any variants in high LD (r2 > 0.8) were 768 
identified as PAVs using VEP76 (Supplementary Tables 2–8). VEP annotates the impact of 769 
variants into four categories: Modifier, Low, Moderate, or High 770 
(https://useast.ensembl.org/info/genome/variation/prediction/predicted_data.html). “Modifier” 771 
impact refers to variants in non-coding regions or affecting non-coding genes in which evidence 772 
of impact is hard to predict or limited. “Low” impact refers to variants that may not change protein 773 
behavior. “Moderate” impact variants are non-disruptive and may change protein effectiveness 774 
and include missense variants. “High” impact variants are disruptive and can cause truncation of 775 
proteins, loss of function, or trigger nonsense-mediated decay. If a strict V2G cis-pQTL and all of 776 
its LD proxies were labelled as Modifier or Low impact, we considered this strict V2G cis-pQTL to 777 
have no PAV. If a strict V2G cis-pQTL or any of its LD proxies were labeled Moderate or High, we 778 
considered this strict V2G cis-pQTL to be a PAV of -Moderate or -High impact, respectively. 779 
 780 
We also conducted a cis-eQTL enrichment analysis using 49 tissues from GTEx v8 in European 781 
ancestries since if a cis-pQTL overlaps with the cis-eQTL of the same gene, it strengthens the 782 
evidence that the cis-pQTL acts directly on the gene products, reducing the risk of horizontal 783 
pleiotropy. To do so, we determined whether the strict V2G cis-pQTL was a cis-eQTL for the 784 
protein-coding gene of interest with P < 1 × 10-5 by querying 49 tissues in GTEx v8 European 785 
eQTLs. Querying was performed based on CHR:POS:EA:NEA and CHR:POS:NEA:EA (CHR: 786 
chromosome; POS: position; EA: effect allele; NEA: non-effect or other allele). In order to 787 
compare effect sizes across different cohorts, we aligned the strict V2G cis-pQTL effect allele in 788 
each cohort to the corresponding ancestry-specific reference panel’s alternative allele (UKB 50k 789 
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for European, HGDP + 1kGP for African, and 1kGP EAS for East Asian ancestries). We note that 790 
pQTLs in the Fenland cohort were based on GRCh37 coordinates and were lifted to GRCh38 791 
prior to querying for cis-eQTLs across GTEx v8 tissues. After synchronizing the genome assembly, 792 
7 out of 3,045 strict V2G cis-pQTLs in Fenland were automatically labeled as having no eQTL 793 
since no corresponding GRCh38 coordinate existed for these variants, and 3,038 cis-pQTLs were 794 
analyzed. 795 
 796 
4. GWAS outcome curation and selection 797 
We manually curated the latest and largest GWAS (as of February 2024) for European and African 798 
ancestry outcomes. East Asian ancestry outcomes were selected from BioBank Japan15. All 799 
GWAS in GRCh37 were lifted to GRCh38 with the liftOver tool. We outline the curation steps for 800 
each ancestry’s GWAS outcomes in detail: 801 
 802 
4.1. European ancestry outcomes 803 
During the curation, we considered 510 outcomes downloaded from 50 studies and one database. 804 
We removed outcomes that were duplicated and had a larger GWAS available, had ambiguous 805 
or broad definitions, were likely heterogeneous, were sex-specific, had missing relevant columns, 806 
had no download link available, and were not relevant to our outcomes of interest. We retained 807 
179 outcomes for analysis (Supplementary Table 10). We labeled rsids, chromosome, and 808 
position if they were missing. Cases and sample sizes for each outcome were manually extracted 809 
from the original manuscript or the supplementary tables of each corresponding study, and we 810 
further categorized each outcome into one of 23 “Type” categories pertaining to the human 811 
system the outcome was based on or most likely to fall under.  812 
 813 
4.2. African ancestry outcomes 814 
We manually curated 26 of the most up-to-date and publicly available African ancestry GWAS 815 
summary statistics (Supplementary Table 11). Restricted access GWAS from dbGap were not 816 
considered due to data access difficulties. Missing sample sizes were manually annotated with 817 
the sample size by inspecting the original manuscript and Supplementary Tables, while missing 818 
rsids were labeled using the HGDP + 1kGP reference panel. We annotated missing chromosomes 819 
and positions and used VEP to annotate variants missing effect allele frequency with 820 
gnomADg_AFR_AF (gnomAD genomes for African/American populations). We categorized each 821 
outcome into one of 8 “Type” categories, including Respiratory, Musculoskeletal, Cardiovascular, 822 
Eye, Anthropometry, Biomarker, Psychiatric, and Metabolic/endocrine. 823 
 824 
As exploratory analyses, we included 114 binary cardiovascular and 9 binary autoimmune-related 825 
outcomes from the Million Veteran Program (n = 635,969) for African individuals.  826 
 827 
4.3. East Asian ancestry outcomes 828 
We curated 220 outcomes from Biobank Japan (https://pheweb.jp/)27. We excluded 14 sex-829 
specific outcomes, including Abortion, Breast cancer, Cervical cancer, Cesarian section, Ectopic 830 
pregnancy, Endometriosis, Endometrial cancer, Mastopathy, Ovarian cancer, Ovarian cyst, Pre-831 
eclampsia, Prostate cancer, Uterine fibroid, and Uterine prolapse. We analyzed 206 outcomes 832 
(Supplementary Table 12). We also provide “Type” labels for each outcome, denoting the human 833 
system the outcome was based on or was most likely related to. 834 
 835 
5. Two-sample Mendelian randomization  836 
To assess the putative causal effect of protein abundance on outcomes in European, African, and 837 
East Asian ancestries, we performed two-sample MR using TwoSampleMR v.0.5.777. To mitigate 838 
horizontal pleiotropy, we used strict V2G cis-pQTLs as instrumental variables to proxy protein-839 
level exposures, as defined in the earlier sections of the methods. We harmonized exposure and 840 
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outcome GWAS using the harmonise_data() function and performed a proxy search if an 841 
instrument was absent in the outcome GWAS. For European, African, and East Asian ancestries, 842 
we used the UKB 50k, HGDP + 1kGP, and 1kGP East Asian reference panels that were 843 
previously used for LD clumping for the proxy search, respectively. We searched for proxies using 844 
PLINK v.1.972 parameters --ld-window=5000, --ld-window-kb=5000, --ld-window-r2=0.8 and 845 
retained proxies with minor allele frequencies ≤ 0.42.  846 
 847 
MR analyses were performed using the mr() function. For proteins with a single genetic instrument, 848 
the association between the protein and outcome was evaluated using a Wald ratio estimate. For 849 
proteins with ≥ 2 genetic instruments, we used an inverse variance weighted random effects 850 
estimate. We determined whether genetic instrumental variables had F-statistics > 1043,78, 851 
indicating strong associations with the exposure and thus less chance of weak instrument bias, 852 
which may bias the causal effect estimates towards the null in two-sample MR. F-statistics are 853 
shown in Supplementary Table 9. We corrected for multiple testing per cohort in each ancestry 854 
by applying a Benjamini-Hochberg-corrected P threshold (FDR)45 of 0.05 (5%) as done 855 
previously19. 856 
 857 
We note that beta estimates from MR for continuous traits are not directly comparable across 858 
different outcomes because the units used in GWAS vary. For instance, some GWAS use clinical 859 
units, whereas others use standardized and/or residualized values. 860 
 861 
6. MR sensitivity analyses 862 
To increase the robustness of MR findings, we further filtered MR results based on multiple 863 
sensitivity analyses, including heterogeneity tests, MR using alternative approaches (including 864 
weighted median, weighted mode, MR-Egger), and Steiger directionality test79 to assess reverse 865 
causality. Following these filtering steps, we refer to retained protein-phenotype associations as 866 
“MR-passing”. The sensitivity analyses are described for proteins with ≥ 2 instruments and 867 
proteins with ≥ 3 instruments below: 868 
 869 
6.1. Sensitivity analyses for proteins with two or more instruments 870 
The heterogeneity test was performed for proteins with ≥ 2 instruments and describes whether 871 
strict V2G cis-pQTLs of the same protein are likely to show comparable effects on the tested 872 
outcomes. For heterogeneity testing, we used the mr_heterogeneity() function to compute a 873 
heterogeneity P value (Q_pval), and we calculated I2 statistics using the “Isq()” function. If an 874 
association had an I2 threshold ≥ 0.5 and a heterogeneity P value (Q_pval) < 0.05, this indicated 875 
considerable heterogeneity.  876 
 877 
6.2. Sensitivity analyses for proteins with three or more instruments 878 
For proteins with ≥ 3 genetic instruments, we performed additional sensitivity analyses with  879 
alternative MR methods such as MR weighted median, MR weighted mode, and MR-Egger 880 
methods, as well as Steiger directionality testing. To check the consistency of MR estimates, we 881 
required the MR estimate, as well as the sensitivity analyses estimates from the MR weighted 882 
median, MR weighted mode, and MR-Egger approaches, to all have the same sign. For 883 
directional pleiotropy, we used the mr_pleiotropy_test() function to perform the MR-Egger 884 
intercept test and considered a  P value < 0.05 as a statistically significant deviation from the null 885 
and an indication of directional pleiotropy. We also performed Steiger filtering on all proteins 886 
(directionality_test() function). Any pQTLs that explain more variance in the outcome than in the 887 
exposure potentially indicate reverse causation and were removed from further analysis. 888 
 889 
7. Colocalization of proteomic GWAS with outcome GWAS 890 
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To assess whether plasma protein levels share the same causal variant with GWAS outcomes, 891 
we employed two colocalization methods to ensure the robustness of our findings. We performed 892 
PWCoCo18,36 and SharePro80 for MR associations that passed all MR sensitivity analyses 893 
described in the previous section. PWCoCo and SharePro are recent methods allowing multiple 894 
independent associations to be assessed. Both improve on the original coloc method81, which 895 
was limited by the assumption that a single variant exists per GWAS, wherein the method only 896 
considers the strongest of these distinct association signals when multiple independent 897 
associations exist. A detailed description of both methods is provided in Supplementary Note 898 
10. Colocalization analyses were performed around a 1-Mb region centered on the lead (lowest 899 
P value) cis-pQTL. We set a colocalization posterior probability (PP) of a shared causal variant ≥ 900 
0.8 in any of PWCoCo or SharePro as evidence of colocalization. For simplicity, we report the 901 
maximum PP between PWCoCo and SharePro (PPmax) in the main text. We reported putatively 902 
causal associations (Supplementary Tables 14–16) as associations which pass all MR 903 
sensitivity analyses, Steiger filtering, and also colocalized with a PP ≥ 0.8 in any one of PWCoCo 904 
or SharePro. Due to the difficulty in verifying the corresponding Olink assay target for each 905 
SomaScan aptamer, we counted unique protein-phenotype associations using protein-coding 906 
genes to harmonize between proteomics platforms. Supplementary Tables 14–16 contain MR 907 
and colocalization summaries, summaries of effect direction consistency across cohorts, flags of 908 
proteins instrumented by PAVs of high impact, and whether the protein-phenotype association 909 
came from a protein uniquely instrumentable in that ancestry. We also annotate whether protein-910 
phenotype associations passed the most stringent Bonferroni correction for the total number of 911 
MR tests across three ancestries (P < 0.05 / 874,465). 912 
 913 
8. Distinguishing between previously reported and unreported protein-phenotype pairs 914 
8.1. Comparing against earlier studies identifying putatively causal protein-phenotype pairs with 915 
MR and colocalization evidence 916 
To identify the status of protein-phenotype associations as reported or unreported (not found from 917 
pre-existing proteome-phenome-wide MR studies) in European ancestries, we overlapped our 918 
associations with recent proteome-phenome-wide MR analyses from Zheng et al. 202018 and 919 
multi-ancestry proteome-wide MR analyses from Zhao et al. 202219. We used the 111 identified 920 
putatively causal associations (65 proteins on 52 phenotypes) from “Table S7” of Zheng et al.18  921 
and the 45 associations from “ST7A” of Zhao et al.19. 922 
 923 
We note that Zhao et al. used three colocalization methods and a more relaxed threshold of PP 924 
> 0.7 as evidence of colocalization. To do so, we harmonized the outcomes from Zheng and Zhao 925 
to our outcomes and matched protein-phenotype pairs using ensembl ID and outcome name for 926 
the Zheng study and UniProt ID and outcome name for the Zhao study. Any of our identified 927 
putatively causal European ancestry association pairs not from these two studies were identified 928 
as unreported.  929 
 930 
For African ancestries, we overlapped our protein-phenotype pairs with the single protein-931 
phenotype pair passing FDR correction identified in “ST8A” of Zhao et al19. Any pairs that did not 932 
overlap were considered unreported. 933 
 934 
9. Protein-phenotype network plots 935 
We used Python igraph (v.0.10.8) to generate networks. Placement of nodes was generated 936 
in Cytoscape (v.3.10.2) and manual editing was performed in Adobe Illustrator (v.28.2). 937 
 938 
10. Effect concordance within-ancestry 939 
To determine the concordance of MR effect estimates within European and African ancestries, 940 
which both included more than one proteomics cohort, we compared protein-coding genes to 941 
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harmonize assay names across SomaScan assay v4 and Olink 3072 Explore platforms. However, 942 
we could not verify whether Olink assays for a particular protein targeted the same domain as its 943 
corresponding SomaScan assay, which may lead to differences in MR estimates. Moreover, since 944 
some proteins were instrumented by cis-pQTLs that may be PAVs of high impact, which could 945 
also lead to discordance in effects, we annotated these associations with a flag and advise caution 946 
in the interpretation of these flagged results (Supplementary Tables 14–16). 947 
 948 
11. Druggability assessment  949 
We performed a druggability assessment on instrumentable protein-coding genes and protein-950 
phenotype associations that showed putatively causal relationships.  951 
 952 
11.1. Druggability assessment of instrumentable proteins 953 
For instrumentable protein-coding genes, we determined druggability based on Finan et al.38, as 954 
described below. 955 
 956 
11.1.1. Finan et al.  957 
Finan et al.38 considered 20,300 protein-coding genes annotated using Ensembl version 73 and 958 
classified 4,479 (22%) into three tiers (Tier 1, 2, and 3) as drugged or druggable. Tier 1 (1,427 959 
genes) encompasses the primary targets of approved small molecules and biotherapeutic drugs, 960 
along with those influenced by clinical-phase drug candidates. Tier 2 (682 gene) involves proteins 961 
closely associated with drug targets or linked to drug-like compounds. Meanwhile, Tier 3 (2,370 962 
genes) comprises secreted or extracellular proteins that are distantly related to approved drug 963 
targets, and those in important druggable gene families not covered in Tiers 1 or 2. We denoted 964 
all other protein-coding genes that did not fall in Tier 1, 2, or 3 categories as “Unclassified”. To 965 
check the overlap of protein-coding genes across all cohorts when stratifying into Finan et al. tiers 966 
(Supplementary Figure 5 and 6), we used the UpSetR82 package v.1.4.0 967 
(https://github.com/hms-dbmi/UpSetR). 968 
 969 
11.2. Druggability assessment and enrichment of protein-phenotype pairs  970 
We first assessed how many proteins from the identified pairs of putatively causal protein-971 
phenotype associations had existing drugs by querying DrugBank39. We used Ensembl ID to 972 
match protein targets in DrugBank. Next, we created heatmaps using the pheatmap package 973 
v.1.0.12 in R incorporating the druggable genome, Drugbank, and Open Targets Platform 974 
(described below). We overlapped protein-phenotype pairs with the DrugBank database to 975 
determine whether any drugs existed for these disease-implicated proteins while Open Targets 976 
was used to determine whether any clinical trial information existed for these proteins. 977 
 978 
11.2.1. DrugBank 979 
We used DrugBank database v.5.1.12 (https://go.drugbank.com/releases/latest) and R package 980 
dbparser v.2.0.2 to parse the DrugBank database xml file. We aggregated drugs and target 981 
information and overlapped this with putatively causal protein-phenotype associations to 982 
determine which proteins had an available drug. 983 
 984 
11.2.2. Open Targets 985 
We used Open Targets v.24.03 (https://platform.opentargets.org/downloads). We used the 986 
knownDrugsAggregated dataset, which provides information on known drugs for a given disease 987 
and contains protein target information. Open Targets also includes information on clinical trials 988 
and its phases, which we used to determine the status of a protein target and its corresponding 989 
drug. We overlapped this dataset by matching Ensembl ID with our identified protein-phenotype 990 
associations. 991 
 992 
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12. Follow-up analyses showing evidence for IL1RL1 993 
We filtered protein-phenotype associations in European ancestries by ensuring that the protein 994 
was instrumented in two or more ancestries, was targeted by both SomaScan and Olink assays, 995 
had an MR effect that was concordant across all cohorts, had MR and colocalization evidence in 996 
three or more cohorts for the protein-phenotype pair, and was implicated in at least one binary 997 
phenotype. Following these filtering steps, we identified 53 candidate protein-phenotype pairs and 998 
highlighted IL1RL1 in IBD, CD, and UC as an illustrative example. 999 
 1000 
12.1. MR and colocalization of IL1RL1 in East Asian ancestry with IBD, CD, and UC 1001 
To validate that IL1RL1 was also putatively causal for IBD, CD, and UC in non-European 1002 
ancestries, we performed two-sample MR and colocalization with PWCoCo and SharePro using 1003 
the IL1RL1 strict V2G cis-pQTL (rs12712135) identified in the Kyoto University Nagahama East 1004 
Asian ancestry proteomics cohort. We used the largest East Asian ancestry GWAS for IBD 1005 
(14,393 cases and 15,456 controls), CD (7,372 cases and 15,456 controls), and UC (6,862 cases 1006 
and 15,456 controls) from Liu et al.65. Harmonization was performed similarly to the primary 1007 
analyses, and we used the Wald ratio to obtain MR effect estimates. Colocalization was 1008 
performed as described in earlier sections of the methods, and we used PP ≥ 0.8 as the threshold 1009 
for evidence of colocalization in any of PWCoCo or SharePro. 1010 
 1011 
12.2. MR of IL1RL1 in African ancestry with IBD and UC 1012 
We estimated the causal effect of IL1RL1 on IBD (1,285 cases and 119,314 controls) and UC 1013 
(857 cases and 119,909 controls) in African ancestry using outcome GWAS from the Million 1014 
Veteran Program57. We performed MR using the IL1RL1 strict V2G cis-pQTL (rs1420101) in the 1015 
ARIC and UKB-PPP African ancestry cohorts. The Wald ratio was used to obtain MR effect 1016 
estimates.  1017 
 1018 
12.3. Cox regression analysis for 10-year cumulative events of IBD, CD, and UC in the UK 1019 
Biobank 1020 
We used multivariable Cox proportional hazards regression to determine whether baseline 1021 
plasma IL1RL1 protein level was associated with cumulative events of IBD, CD, or UC. We 1022 
adjusted for age, sex, recruitment center, Olink measurement batch, Olink processing time, and 1023 
the first 10 genetic principal components (UKB field: 22009) to adjust for genetic ancestry while 1024 
protein levels were rank-based inverse normal transformed. We used the coxph() function from 1025 
the survival R package v.3.2.13 and considered P < 0.05 as nominal significance of association. 1026 
None of the genetic principal components were significantly associated with the IBD, CD, and UC 1027 
outcome in each analysis. 1028 
 1029 
We checked the proportional hazards assumption using the cox.zph() function for the IL1RL1 1030 
association analysis for IBD, CD, and UC for the rank-based inverse normal transformed IL1RL1 1031 
covariate. The proportional hazards assumption tests the null hypothesis that each covariate’s 1032 
effect estimate does not vary with time. We used the “GLOBAL” variable from cox.zph() which 1033 
tests the null hypothesis of whether all inputted covariates meet the proportional hazards 1034 
assumption. We considered P < 0.05 as evidence that the proportional hazards assumption was 1035 
not fulfilled. 1036 
 1037 
We defined IBD using ICD10 codes K50-K51, CD using K50, and UC using K51. We calculated 1038 
the time to event by subtracting the date of event registration from the date of enrollment (data 1039 
field: 53), focusing on events occurring within 10 years of enrollment. We excluded cases of 1040 
prevalent IBD that met these criteria before enrollment, and those without a recorded event date 1041 
for IBD, and performed the same steps for CD and UC. Controls for the IBD analysis were defined 1042 
as individuals without an IBD, UC, or CD record based on self-reported medical history. Controls 1043 
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for the CD analysis were defined as individuals without a CD record, and controls for the UC 1044 
analysis were defined as individuals without a UC record, based on self-reported medical history. 1045 
We analyzed 333 cases and 40,001 controls for IBD, 130 cases and 40,388 controls for CD, and 1046 
240 cases and 40,178 controls for UC.  1047 
 1048 
We plotted Kaplan-Meier curves by stratifying individuals into the bottom 25% and the top 25% 1049 
based on baseline plasma IL1RL1 levels. We performed a log-rank test to assess whether there 1050 
is a statistically significant difference in survival between these two groups, with a nominal P < 1051 
0.05. 1052 
 1053 
12.4. Bulk RNA-sequencing  1054 
We used the IBD Transcriptome and Metatranscriptome Meta-Analysis (IBD TaMMA) platform67 1055 
(https://ibd-meta-analysis.herokuapp.com) to evaluate changes in IL1RL1 gene expression. IBD 1056 
TaMMA encompasses 3,853 RNA-Seq datasets from 26 studies on IBD and control samples 1057 
across various tissues. All datasets were processed using a uniform computational pipeline and 1058 
underwent batch correction for harmonizing data, enabling consistent comparison across studies. 1059 
Differential expression results for ileum, colon, and rectum biopsies from CD and UC patients 1060 
versus healthy controls were downloaded from IBD TaMMA. We assessed the log2 fold change 1061 
to create forest plots. 1062 
 1063 
12.5. Single-cell RNA-sequencing  1064 
To gain a better understanding of the enrichment of IL1RL1 in specific cell types, we obtained 1065 
single-cell RNA sequencing data from Kong et al.66 (SCP1884 from 1066 
https://singlecell.broadinstitute.org/), which profiled 720,633 cells from the terminal ileum and 1067 
colon of 71 CD individuals with different levels of inflammation. Specific details of sample 1068 
collection, data processing, and single-cell profiling have been described previously66. We 1069 
evaluated the normalized gene expression levels of IL1RL1 in 25 different cell types and replotted 1070 
the first two dimensions of Uniform Manifold Approximation and Projection (UMAP) coordinates 1071 
to visualize the cell clusters. To determine if IL1RL1 was more significantly expressed in certain 1072 
cell types, we conducted 5,000 permutations of the cell type labels. We assessed how often a 1073 
specific cell type had the same or a higher proportion of cells expressing IL1RL1 compared to all 1074 
the cells in the overall population (permutation P value). 1075 
 1076 
13. STROBE-MR statement 1077 
Our study closely adheres to the STROBE-MR guidelines and the STROBE-MR checklist is 1078 
attached in Supplementary Note 11.  1079 
 1080 
14. Ethics declarations 1081 
All contributing cohorts obtained ethical approval from their institutional ethics review boards. The 1082 
contributing proteomics cohorts include the Atherosclerosis Risk in Communities (ARIC) Study, 1083 
deCODE study, Fenland study, UK Biobank, and Kyoto University Nagahama study. The UK 1084 
Biobank has approval from the North West Multi-centre Research Ethics Committee as a 1085 
Research Tissue Bank.  1086 
 1087 
15. Data availability  1088 
We will provide unfiltered proteome-phenome wide MR results for European (ARIC, deCODE, 1089 
Fenland, UKB-PPP), African (ARIC, UKB-PPP), and East Asian (Kyoto University Nagahama 1090 
cohort) ancestries on FigShare upon publication. We caution against directly comparing MR effect 1091 
estimates across continuous outcomes, as the outcomes were collected from various sources 1092 
and may not be scaled to the same units. 1093 
 1094 
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15.1. Proteomic GWAS 1095 
ARIC summary statistics (EUR and AFR): http://nilanjanchatterjeelab.org/pwas/ 1096 
deCODE summary summary statistics (EUR): https://www.deCODE.com/summarydata/ 1097 
Fenland summary statistics (EUR): https://omicscience.org/apps/pgwas/ 1098 
UKB-PPP summary statistics (EUR, AFR): http://ukb-ppp.gwas.eu/ 1099 
Kyoto University Nagahama cohort summary statistics (EAS): Available through contacting the 1100 
authors of this study. 1101 
 1102 
15.2. Outcome GWAS summary statistics  1103 
Information on the 179 European outcomes used in this study and the link to the original summary 1104 
statistics is available in Supplementary Table 10. 1105 
The 26 African outcomes are available in Supplementary Table 11. 1106 
The 206 East Asian outcomes are available in Supplementary Table 12. 1107 
Million Veteran Program outcomes can be found in the original study57. 1108 
The largest East Asian ancestry IBD, CD, and UC GWAS are publicly available from Liu et al.65 1109 
and were downloaded from https://www.ibdgenetics.org/ 1110 
 1111 
15.3. Variant-to-gene score 1112 
Open Targets Genetics35 (https://genetics-docs.opentargets.org/data-access/data-download), 1113 
 1114 
15.4. Reference panels 1115 
European ancestries: UKB 50k (https://www.ukbiobank.ac.uk/) 1116 
East Asian ancestries: 1000 Genomes Project (https://www.internationalgenome.org/data) 1117 
African ancestries: HGDP+1KG (https://gnomad.broadinstitute.org/news/2020-10-gnomad-v3-1-1118 
new-content-methods-annotations-and-data-availability/#the-gnomad-hgdp-and-1000-genomes-1119 
callset) 1120 
 1121 
15.5. Druggability 1122 
We used Finan et al. 201738 for the list of 4,479 protein-coding genes in each druggability tier, 1123 
DrugBank database v.5.1.12 (https://go.drugbank.com/releases/latest) for information on drugs 1124 
targeting specific proteins, and Open Targets Platform database v.24.03 1125 
(https://platform.opentargets.org/downloads) for clinical trial phase and status information for 1126 
protein-drug-disease triplets. 1127 
 1128 
15.6. Expression analyses 1129 
For gene expression data, we used data from Kong et al.66 (SCP1884 at Single Cell Portal 1130 
https://singlecell.broadinstitute.org/). 1131 
 1132 
16. Code availability  1133 
We used R v.4.1.2 (https://www.r-project.org/),  1134 
Python 3.10 (https://www.python.org/downloads/release/python-3100/) 1135 
PLINK v.1.972 (http://pngu.mgh.harvard.edu/purcell/plink/),  1136 
TwoSampleMR v.0.5.6 (https://mrcieu.github.io/TwoSampleMR/),  1137 
coloc v.5.2.381 (https://chr1swallace.github.io/coloc/),  1138 
PWCoCo18,36 (https://github.com/jwr-git/pwcoco), 1139 
SharePro v.5.0.080 (https://github.com/zhwm/SharePro_coloc/), 1140 
Cytoscape v.3.10.2 (https://cytoscape.org/), 1141 
LocusZoom83 (https://my.locuszoom.org/) 1142 
 1143 
Code used in this study will be made available at https://github.com/chenyangsu/pQTL-MR upon 1144 
publication. 1145 
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Extended Data Figures 1180 
 1181 

 1182 
Extended Data Fig. 1. Flow diagram showing the definition of strict variant-to-gene cis-1183 
pQTLs. 1184 
Flow diagram showing the selection of strict variant-to-gene (V2G) cis-pQTLs used as instruments 1185 
for MR starting from the proteomic GWAS. 1186 

Extended Data Fig. 1. Flow diagram showing the definition of strict variant-to-gene cis-pQTLs.
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 1187 
 1188 
Extended Data Fig. 2. eQTL enrichment analysis comparing strict V2G cis-pQTLs against 1189 
all other cis-pQTLs. 1190 

(a) Pie charts showing proportion of eQTL enrichment in the ARIC, deCODE, Fenland, and 1191 
UKB-PPP European ancestry cohorts for strict V2G cis-pQTLs compared to all other cis-1192 
pQTLs. Red: presence of a cis-eQTL; Yellow: absence of a cis-eQTL. 1193 

(b) Absolute value of effect of the minor allele on protein level broken down by the presence 1194 
or absence of cis-eQTLs in the ARIC, deCODE, Fenland, and UKB-PPP European 1195 
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Extended Data Fig. 2. eQTL enrichment analysis comparing strict v2g cis-pQTLs against all other cis-pQTLs.
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ancestry cohorts. Strict V2G, strict variant-to-gene cis-pQTLs; All other, all other cis-1196 
pQTLs that were removed due to strict V2G filtering. Boxplots show the median, lower, 1197 
and upper quartiles; whiskers end at 1.5 times the interquartile range from the top and 1198 
bottom of the box; points outside the whisker boundaries are plotted individually; smaller 1199 
black dots represent individual points and are used to show the number of samples 1200 
included in each boxplot; significance level P value is based on the Mann-Whitney U test. 1201 

 1202 
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 1203 
Extended Data Fig. 3. Absolute distance from transcription start site versus effect size for 1204 
strict V2G cis-pQTLs and all other cis-pQTLs.  1205 
The x-axis shows the distance of the pQTL from the canonical transcription start site of the 1206 
associated protein-coding gene while the y-axis shows the absolute value of the effect size 1207 
estimate of the effect allele aligned to the minor allele of each ancestry’s respective reference 1208 
panel. (Note, in European, African, and East Asian ancestry proteomics cohorts, the effect allele 1209 
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UKB-PPP EuropeanFenland European
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Extended Data Fig. 3. Absolute distance from transcription start site versus effect size for strict V2G cis-pQTLs and all other cis-
pQTLs. 
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of cis-pQTLs in each cohort was aligned to the minor allele of the corresponding variant in their 1210 
respective reference panels—UKB 50k for European, HGDP+1kGP for African, and 1kGP for 1211 
East Asian ancestry—to harmonize alleles across each ancestral cohort for plotting). Strict V2G 1212 
cis-pQTLs are highlighted in blue while all other cis-pQTLs are highlighted in orange. Note that 1213 
Fenland European cis-pQTLs are presented in GRCh37 coordinates while all other cohorts are 1214 
presented in GRCh38 coordinates. P values show a one-sided t-test testing whether strict V2G 1215 
cis-pQTLs have smaller absolute distance to the TSS compared to all other cis-pQTLs. 1216 
 1217 
  1218 
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 1219 

 1220 
Extended Data Fig. 4. Within ancestry comparison of instrumentable proteins. 1221 
Venn diagrams of overlapping instrumentable proteins within ancestries. 1222 

(a) European cohorts involving ARIC, deCODE, Fenland, and UKB-PPP (4 cohorts). 1223 
(b) African cohorts involving ARIC and UKB-PPP (2 cohorts). 1224 
(c) East Asian ancestry cohort from Kyoto University Nagahama (single cohort). 1225 
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 1227 
Extended Data Fig. 5. Putatively causal protein-phenotype associations across European, 1228 
African, and East Asian ancestries. 1229 

Extended Data Fig. 5. Putatively causal protein-phenotype associations across European, African, and East Asian ancestries.
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Miami plots displaying chromosomal position (x-axis) of significant putatively causal protein-1230 
outcome associations (MR-passing and colocalized with PPmax ≥ 0.8) in (a) European, (b) African, 1231 
(c) East Asian ancestry. The y-axis shows P values from the MR causal estimates where the 1232 
exposure is protein level and outcome is the complex trait or disease. Colors indicate the type of 1233 
complex trait or disease. Cancer types were harmonized under a single “Cancer” group. Ancestry 1234 
is denoted by filled circle (European), filled diamond (African), and filled square (East Asian). Each 1235 
data point is plotted based on the chromosome and transcription start-site of the protein-coding 1236 
gene. For simplicity, Z scores and P values are averaged across cohorts in the European ancestry 1237 
plot and the African ancestry plot and shown as a single data point. In European ancestry, only 1238 
associations that were consistent across all cohorts are shown.  1239 
  1240 
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 1241 
 1242 
Extended Data Fig. 6. Uniquely instrumentable protein-phenotype pairs in African and East 1243 
Asian ancestries. 1244 
Red arrows indicate a positive causal estimate of the protein on the outcome while blue arrows 1245 
indicate a negative causal estimate of the protein on the outcome. 1246 

(a) Protein-phenotype pairs from 4 proteins uniquely instrumentable in African ancestry. 1247 
Significant estimates between proteins (orange circles) and traits (green rectangles).  1248 

(b) Protein-phenotype pairs from 8 proteins uniquely instrumentable in East Asian ancestry. 1249 
Significant estimates between proteins (orange circles) and traits (green rectangles). 1250 
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 1252 
Extended Data Fig. 7. Cross-ancestry comparison stratified by proteomics platform of 1253 
instrumentable proteins overlapping at least one drug database (druggable genome, 1254 
DrugBank, or Open Targets Platform). 1255 
(a) Comparison of SomaScan v4 platform instrumentable proteins overlapping at least one drug 1256 
database between three European cohorts (ARIC, deCODE, and Fenland) and one African cohort 1257 
(ARIC).  1258 
(b) Comparison of SomaScan v4 platform instrumentable proteins overlapping at least one drug 1259 
database between three European cohorts (ARIC, deCODE, and Fenland) and one East Asian 1260 
cohort (Kyoto University Nagahama).  1261 
(c) Comparison of Olink Explore 3072 platform instrumentable proteins overlapping at least one 1262 
drug database between one European cohort (UKB-PPP) and one African cohort (UKB-PPP).  1263 
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