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Abstract

Quantifying the extent to which previous infections and vaccinations con-
fer protection against future infection or disease outcomes is critical to man-
aging the transmission and consequences of infectious diseases.

We present a general statistical model for predicting the strength of pro-
tection conferred by different immunising exposures (numbers, types, and
variants of both vaccines and infections), against multiple outcomes of in-
terest, whilst accounting for immune waning. We predict immune protec-
tion against key clinical outcomes: developing symptoms, hospitalisation,
and death. We also predict transmission-related outcomes: acquisition of
infection and onward transmission in breakthrough infections. These enable
quantification of the impact of immunity on population-level transmission
dynamics. Our model calibrates the level of immune protection, drawing on
both population-level data, such as vaccine effectiveness estimates, and neu-
tralising antibody levels as a correlate of protection. This enables the model
to learn realised immunity levels beyond those which can be predicted by
antibody kinetics or other correlates alone.

We demonstrate an application of the model for SARS-CoV-2, and pre-
dict the individual-level protective effectiveness conferred by natural infections
with the Delta and the Omicron B.1.1.529 variants, and by the BioNTech-
Pfizer (BNT162b2), Oxford-AstraZeneca (ChAdOx1), and 3rd-dose mRNA
booster vaccines, against outcomes for both Delta and Omicron. We also
demonstrate a use case of the model in late 2021 during the emergence of
Omicron, showing how the model can be rapidly updated with emerging epi-
demiological data on multiple variants in the same population, to infer key
immunogenicity and intrinsic transmissibility characteristics of the new vari-
ant, before these can be directly observed via vaccine effectiveness data.

This model provided timely inference on rapidly evolving epidemic situa-
tions of significant concern during the early stages of the COVID-19 pandemic.
The general nature of the model enables it to be used to support management
of a range of infectious diseases.
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1 Introduction 1

Immune landscapes against infectious diseases are complex but vital to understand 2

for infectious disease management [1]. The level of immune protection against an 3

infectious disease conferred to an individual by vaccines and previous infections de- 4

pends on many factors, including: the disease outcomes to be protected against 5

(e.g., the likelihood of acquiring an infection or progression to severe disease), the 6

source of immunity (differing by the type of vaccine or the variant of an natural 7

immunising exposure), time since immunising exposure, and the variant of the in- 8

fecting pathogen against which an immune response must be mounted. The ability 9

to predict the level of protection from a combination of these factors for a real-world 10

population helps inform public health response strategies, including designing vac- 11

cination programmes to achieve reduction targets in both mortality and morbidity 12

burdens and in community transmission [2–5]. As most recently demonstrated by 13

experiences with the COVID-19 pandemic, this ability to quantify the population- 14

level impact of immunity from natural infections or from vaccination programmes 15

is also critical for assessing if and when economically and socially costly [6–12] 16

non-pharmaceutical interventions, such as lock-downs, can be relaxed without com- 17

promising public health goals [3, 13]. 18

The level of protection from specific sources against specific outcomes at spe- 19

cific time-since-immunisation can be empirically observed through two sources: 1) 20

vaccine efficacy trials, e.g., [14–18]; and 2) observed protection effectiveness from 21

convalescent and vaccinated real-world populations, e.g., [19, 20]. Since efficacy 22

and effectiveness data are rarely available for all combinations of outcome, source, 23

and time since immunisation, a modelling framework is required to collate and 24

standardise these sources of data, and to enable interpolation and extrapolation 25

of protection, i.e., turning time-point estimates of immune protection into time- 26

continuous curves against multiple outcomes, which can then further be used as 27

inputs to risk assessments, or scenario projections. 28

Work by Khoury et al. [21] and Cromer et al. [22] have shown that a measurable 29

and commonly reported correlate of protection (i.e., titres of neutralising antibodies 30

against SARS-CoV-2) can be a useful intermediary quantity for 1) standardising 31

efficacy estimates across clinical trials to enable comparison of efficacy across dif- 32

ferent sources of immunity, and 2) for generating continuous curves of predicted 33

efficacy against various outcomes. However, only using clinically measured corre- 34

lates of protection to predict efficacy has some limitations. First, modelling the 35

level of immunity from one correlate of protection does not capture other mecha- 36

nisms of immune response. For example, although titres of neutralising antibodies 37

are identified as an effective correlate of protection against some outcomes from 38

diseases such as influenza [23] and COVID-19 [21, 22, 24, 25], they only represent 39

one aspect of the overall immune response, and other immune mechanisms, such as 40

T-cells, make different contributions to immunity whose durability over time is not 41

necessarily correlated with neutralising antibody levels [24–27]. This means that 42

predicting immunity purely based on neutralising antibodies kinetics would likely 43

underestimate long-term immunity provided by more enduring T-cells. Second, 44
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clinically measured vaccine efficacy is often an imperfect reflection of real-world 45

effectiveness, limited by how representative (of real-world populations) the immune 46

responses of the study cohort are, although collecting real-world effectiveness data 47

has its own challenges too. Third, clinical efficacy and observational effectiveness 48

data may be available for different combinations of immunising exposures and in- 49

fecting pathogens/variants. Finally, rare but significant outcomes of public health 50

importance, including mortality, are difficult to observe in clinical trials. 51

To improve upon an efficacy model parameterised on clinical measures of corre- 52

lates of protection, we demonstrate in this work an expanded modelling framework 53

incorporating both vaccine efficacy data and observational population-level effec- 54

tiveness estimates. The ability to use both sources overcomes the aforementioned 55

limitations of a clinical-efficacy-only model. 56

Here we present the use of the model for COVID-19 to demonstrate its method- 57

ology and utility in policy-making, and make available the code for adapting the 58

model for other diseases, vaccines, and outcomes of interest. In our COVID-19 case 59

study, we base our work on the model in Khoury et al.and Cromer et al.which links 60

the degree of protection to titre counts of neutralising antibodies. However, rather 61

than predicting directly from levels of neutralising antibodies, we predict the levels 62

of protection from a latent quantity which we refer to as immunity level. We assume 63

immunity level decays from its peak with a shape resembling antibody kinetics, but 64

we calibrate the level of protection conferred by immunity levels with population- 65

level effectiveness observations. Using the late-2021 detection and global spread 66

of the Omicron variant as a case study on emerging variants, we also demonstrate 67

how emerging data on variant-differentiated reinfection and effective reproduction 68

rates can be incorporated as parameters in the model to infer possible ranges of key 69

epidemiological parameters. Namely, we predict the level of immune evasion of the 70

Omicron variant relative to the Delta variant and the Omicron basic reproduction 71

number. This model extension allows us to rapidly estimate the likely levels of pro- 72

tection against outcomes of an Omicron infection, prior to the availability of any 73

direct effectiveness and efficacy estimates. 74

2 Methods 75

2.1 Immune protection model definition 76

Our model assumes that the level of immune protection (immune effectiveness 77

hereafter) against a pathogen conferred by vaccines and natural infections can be 78

predicted from a latent parameter representing the level of immunity against the 79

pathogen. We refer to these latent parameters, for different levels of existing im- 80

munity, as ’immunity levels’. The decay of this latent parameter over time since 81

peak immunity is set to follow the general shape of decay of clinically-measured 82

correlates of protection from studies such as Khoury et al. [21], but the specific 83

values of immunity level at different times since peak immunity are calibrated to 84

match observational effectiveness data. 85

We assume that each immune individual i in a population has some immunity 86
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level ni,v to variant v. An individual’s immunity level is assumed to be drawn from 87

a normal distribution with mean µs,d,v based on the source of their immunity s 88

(which may differ by vaccine dose or product, or in the case of natural immunity 89

differ by infecting variant, or combinations thereof), the number of days d post 90

peak immunity (i.e., the degree of waning), and the variant to be protected against 91

v, and variance σ2, giving the inter-individual variation in immunity levels, which 92

we assume to be constant across variants, sources of immunity and levels of waning 93

(Equation 1). 94

ni,v ∼ N(µs,d,v, σ
2). (1)

For each individual and for each type of outcome o, be that acquisition of infection, 95

death, hospitalisation, symptomatic infection, or onward transmission, the probabil- 96

ity that the outcome is averted, Eo, is given by a sigmoid function, parameterised 97

by a threshold immunity level To, at which 50% of outcome events of type o are 98

prevented, and a slope parameter k determining the steepness of this relationship 99

(Equation 2). These parameters are assumed to be independent of the variant to be 100

protected against and the source of immunity, which enables prediction of immune 101

effectiveness to new situations such as new disease variants. 102

Eo(ni,v) = (1 + exp(−k(ni,v − To))
−1 (2)

At the population-level, the immune effectiveness from a given source against a 103

given outcome from a variant in a cohort with mean immunity level µs,d,v is the av- 104

erage probability over the whole population of the outcome being averted, Ps,d,o,v. 105

The population-level immune effectiveness as a function of immunity level is com- 106

puted by integrating the sigmoid function with respect to the normal distribution 107

of immunity levels (Equation 3). 108

Ps,d,o,v =

∫ ∞

−∞
Eo(nv)N(nv|µs,d,v, σ

2)dnv (3)

This integral has no known closed form and so a numerical approximation is 109

computed in our implementation by Gauss-Legendre quadrature [28]. 110

The mean immunity level, µs,d,v for a cohort with immunity source s and number 111

of days d since peak immunity from that source is assumed to decay exponentially 112

with time-since-peak-immunity, with half-life H days, from a peak mean immunity 113

level against that variant of µ∗
s,v for each source (Equation 4) 114

µs,d,v = log10

(
10µ

∗
s,v exp(−d/H)

)
(4)

When extending the model to multiple variants, the peak mean immunity level 115

against a given variant is then modelled as a log10 fold increase or decrease in 116

immunity level of that variant, relative to an index variant (Equation 5). 117

µ∗
s,v = µ∗

s,0 + F v (5)

where for the index variant F v = 0, for a variant with level of immune eva- 118

sion relative to the index, F v < 0, and for a variant more susceptible to immune 119

protection than the index, F v > 0. 120
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Similar to the way we model variants, the peak immunity levels of different doses 121

of the same vaccine are also modelled with log10 fold increase Gbooster or decrease 122

Gsingle in immunity level relative to the standard schedule (Equation 6). 123

µ∗
ssingle,v

= µ∗
s,v −Gsingle (6)

µ∗
sbooster,v

= µ∗
s,v +Gbooster

where µ∗
s,v is the peak immunity level of the standard schedule, and Gsingle and 124

Gbooster are constrained to be non-negative, enforcing the level of immunity to be 125

a monotonically increasing function of the number of doses. This allows us to use 126

additional effectiveness estimates from studies that include partial first doses [29,30] 127

and third ’booster’ doses [19] in addition to standard schedules. We assume the 128

increase in immunity level as doses increase is consistent across vaccine types, as 129

there are typically insufficient data to parameterise them separately. 130

The decision to model peak immunity levels against different variants and from 131

different vaccine dose numbers as relative to an index variant and a standard dose 132

number enables the model to share information across different pairs of dose num- 133

bers and infecting variants. Importantly, this allows the model to e.g., predict 134

protection against a new variant from estimates against an index variant and the 135

estimated relative change parameter F v. 136

To fit the model to observational vaccine effectiveness estimates, we complete 137

the model with a likelihood term. For vaccine effectiveness estimates provided as 138

a point estimate and confidence interval, we define the the likelihood for vaccine 139

effectiveness estimate j as a normal distribution over the logit-transformed estimate 140

V Ej , with mean given by the logit-transformed predicted effectiveness for that 141

combination of source, days post-peak-immunity, outcome, and variant Psj ,dj ,oj ,vj 142

and with variance given by the sum of the square of the standard error of the estimate 143

on the logit scale logit-SE2
j (approximated from provided uncertainty intervals of 144

the source data), and an additional variance term σ2
ve, to represent any additional 145

errors in these estimates arising from the observation process (Equation 7). 146

logit(V Ej) ∼ N(logit(Psj ,dj ,oj ,vj
), logit-SE2

j +σ2
ve) (7)

2.2 Model applications 147

2.2.1 Fitting to vaccine effectiveness data against SARS-CoV-2 148

We demonstrate application of the model to population-level effectiveness esti- 149

mates available in late 2021 of partial one-dose and primary two-dose course of the 150

BioNTech-Pfizer (BNT162b2; Pfizer hereafter) and Oxford-AstraZeneca (ChAdOx1; 151

AstraZeneca hereafter) vaccines against clinical outcomes of infections by the Delta 152

variant of SARS-CoV-2 (death, severe disease, symptomatic infection) [20], and 153

to estimates against acquisition of Delta infection (both symptomatic and asymp- 154

tomatic), and onward transmission of breakthrough Delta infections [29,30]. 155

We then demonstrate an extended model, fitted to these data and to new ef- 156

fectiveness data available in early 2022 [19] of third-dose ’booster’ mRNA vaccines 157
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against symptomatic Delta infections, and to estimates of two-dose Pfizer and As- 158

traZeneca, and 3rd dose booster vaccines against hospitalisation and symptomatic 159

infections by the Omicron B.1.1.529 (referred to as Omicron hereafter) variant of 160

SARS-CoV-2. 161

Note that because the only data for booster dose effectiveness available at the 162

time of model fitting in late 2021 were of Pfizer boosters [19], we assumed that Pfizer 163

booster immunity level is representative of any mRNA-based 3rd dose, irrespective 164

of booster vaccine brand or the individual’s vaccine history. Finally, while immunity 165

from natural infections is not represented in these vaccine effectiveness estimates, 166

they can be predicted by extrapolating from the relative levels of immunity across 167

different sources estimated in Khoury et al.. Hence, we also predict 1) the level 168

of protection conferred by convalescence from natural Delta/wild-type (assumed to 169

confer the same degree of immunity against Delta) infections against outcomes of 170

Delta infections, and 2) protection conferred by Omicron infections, on its own or in 171

combination with vaccines, against future Omicron infections — this is of interest 172

because Omicron is assumed to possess evasion against all modelled sources of 173

immunity, except previous exposures to Omicron itself. 174

All vaccine effectiveness estimates used to fit the model in the application we 175

describe reported vaccine effectiveness for individuals pooled over a short period 176

of time rather than a single day, so dj was taken as the midpoint of that period. 177

Although we model decay exponentially, the brevity of these time periods meant 178

that using midpoints is an acceptable approximation. 179

2.2.2 Rapid analysis of immune evasive variants: a case study on Omicron 180

When the Omicron variant first emerged as a public health concern in late 2021, 181

early risk assessment and response planning were hindered by a lack of estimates 182

on two key characteristics of Omicron: immunogenicity (i.e., the level of immune 183

evasion possessed by Omicron, FO, relative to the then-dominant Delta variant) and 184

intrinsic transmissibility (RO
0 ). Importantly, there was also a lack of any datasets 185

that could be used to estimate these key characteristics directly (e.g., neutralisation 186

assays against Omicron to estimate FO or transmission studies in immune-näıve 187

households to estimate RO
0 ), which only became available after widespread Omicron 188

transmission globally. 189

To respond to these urgent inference needs in the earliest days of Omicron 190

epidemic wave, we adapted the model to provide earliest available estimates on 191

the immunogenicity and intrinsic transmissibility of Omicron, first using data that 192

indirectly infers these quantities, then, as soon as they became available, using 193

vaccine effectiveness and household transmission estimates on Omicron. The de- 194

tails of model adaptations, including additional parameters and uncertainties, data 195

sources, and the chronological time of these methodological changes, are described 196

in Appendix 1. Here, we provide a brief summary: we added FO and RO
0 as latent 197

parameters in the model. Then, taking advantage of the model’s ability to map be- 198

tween immune effectiveness for different variants, outcomes, sources of immunity, 199

and degrees of waning, we fitted the model to the known intrinsic transmissibility 200

of Delta, and a range of emerging data informing the relative immunogenicity and 201
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Parameter Prior distribution Equation Informed by Description
k N(0, 1) 2 Näıve*** slope parameter in the logistic curve linking the probability of averting an in-

fection outcome to an immunity level

To N(0, 1) 2 Näıve threshold immunity level at which 50% of outcome events are prevented

H N(108, 10) 4 [21] half-life of immunity level decay

µ∗
AZ,∆ N(−0.331, 0.0814) 4 [21] standard two-dose schedule immunity levels (on log10 scale) of the As-

traZeneca vaccine against the Delta variant at peak immunity, indexed on
wild-type convalescent immunity level

µ∗
Pfizer,∆ N(0.327, 0.0775) 4 [21] standard two-dose schedule immunity levels (on log10 scale) of the Pfizer

vaccine against the Delta variant at peak immunity, indexed on wild-type con-
valescent immunity level

Gbooster Lognormal(5, 1)(0,inf)∗∗ 6 [19] immunity level increase from a booster dose relative to a standard two-dose
schedule

Gsingle N(1, 0)(0,inf) 6 Näıve immunity level decrease relative to a standard two-dose schedule from a single
dose of vaccine

σ2
ve N(0, 1)(0,inf) 7 Näıve additional variance term for observational vaccine effectiveness estimates

Table 1: Prior distributions for parameters as part of the immune effectiveness
model.
**Superscripts denote the range of values permitted for parameter distributions.
***Näıve implies that the priors are not informed by a specific literature source, but
their distributions are selected to be relatively broad and fit to the data reasonably
in prior simulations.

intrinsic transmissibility between the Omicron and the Delta variants. This allowed 202

us to 1) jointly estimate FO and RO
0 , with appropriate representation of uncertain- 203

ties in these data, and 2) predict immune protection against outcomes of Omicron 204

infection. 205

2.3 Fitting the Model 206

Amongst model parameters, µ∗
s,0, H and σ2 may either be inferred from clinical 207

assays on correlates of protection, or calibrated against observational effectiveness 208

data. The parameters To and k must be learned by fitting the model to effec- 209

tiveness data. We keep the parameter σ2 fixed at the value estimated by Khoury 210

et al.(0.465). We assign informative priors to µ∗
s,0, and H based on estimates 211

from Khoury et al., and to Gbooster based on estimates from UK Health Security 212

Agency [19] after it had become available. The remaining parameters are given less 213

informative priors. This enables the model to update these parameters based on the 214

data, and fully incorporate uncertainty in these parameters into predictions. The 215

prior distributions for all parameters in the main model are listed in Table 1 and 216

additional parameters for the Omicron extension are listed in Appendix Table S1. 217

All analyses were performed in R version 4.1.0 [31], using the greta package 218

version 0.4.3 for model specification, inference, and predictions [32]. Inference was 219

performed using 10 independent chains of Hamiltonian Monte Carlo, each run for 220

1000 samples after discarding 1000 warm-up iterations. Convergence was assessed 221

by the potential scale reduction factor statistic (1.01 or less for all parameters), the 222

effective sample size (greater than 500 for all parameters), and visual inspection 223

of trace plots. Code used for this work is available at: https://github.com/idem- 224

lab/neuts2efficacy. 225

The posterior distributions over immune effectiveness for different outcomes, 226

vaccines, doses, and degrees of waning are computed to predict the range of im- 227
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mune effectiveness estimated for Delta and predicted for Omicron. Joint predictions 228

of Omicron immune evasion and intrinsic transmissibility are also computed, for mul- 229

tiple iterations of the model fitted to different data, described in detail in Appendix 230

1. 231

3 Results 232

3.1 Immune protection predictions against the Delta variant 233

Figure 1 shows the estimated protection against the Delta variant over time since 234

peak immunity, for various outcomes of interest: death, hospitalisation, symp- 235

tomatic infection, acquisition of infection and onward transmission (given infection, 236

i.e., breakthrough cases). The predicted immune effectiveness over time is consis- 237

tent with the data (Figure 1), with the only notable difference being that the model 238

predicts a slightly higher immune effectiveness from two-dose AstraZeneca vaccine 239

against symptoms at around 100 to 150 days post peak compared to the immune 240

effectiveness estimates from Andrews et al., 2021 [20]. 241

The model predicts that two doses of the mRNA Pfizer vaccine confer a higher 242

protection than both two doses of the AstraZeneca vaccine and convalescence. 243

Boosting with an mRNA product provides even higher protection than two doses 244

of Pfizer vaccine, although the absolute differences in immune effectiveness is small 245

for severe (death and hospitalisation) outcomes, since two doses of Pfizer vaccine 246

already confers a very high degree of protection. 247

3.2 Predicting immune evasion and intrinsic transmissibility of 248

Omicron from epidemiological data 249

The joint posterior distributions over the degree of immune evasion and the rela- 250

tive intrinsic transmissibility of the Omicron variant versus Delta (Figure 2) show 251

how these estimated quantities changed as the model was re-parameterised with 252

new, and increasingly informative, data. With only South African reinfection and 253

reproduction rates data (left panel), the model estimated the Omicron variant to 254

most likely be intrinsically less transmissible than the Delta variant, but possess a 255

high degree of immune evasion (albeit with significant uncertainty on the strength 256

of evasion). Incorporating the UK vaccine effectiveness estimates (middle panel) 257

enabled the model to exclude very high levels of immune evasion from the plausi- 258

ble parameter space. Finally, when fitted to UK vaccine effectiveness estimates and 259

Danish household attack rate data (right panel), the model estimated that Omicron 260

is both intrinsically more transmissible, with a basic reproduction number around 261

1.2 times higher, and possesses a moderate to significant degree of immune evasion, 262

capable of reducing immune effectiveness against transmission by 20-60% compared 263

to the Delta variant. As the model was iteratively fitted to newer data, note that 264

uncertainty in posterior distributions has decreased, although there was significant 265

uncertainty even in the final iteration. 266
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Figure 1: Estimated immune protection against the Delta variant over time since
peak immunity (following administration of the first or second dose of either As-
traZeneca (AZ) or Pfizer vaccines, or after boosting with an mRNA vaccine). WT
= wild-type virus, which is assumed to confer the same level of immunity against
the Delta variant as a Delta infection. Estimates of vaccine effectiveness from var-
ious observational studies are indicated by dots (point estimates) and vertical bars
(95% confidence intervals), with horizontal bars indicating the range of days since
peak immunity for individuals included in the study.
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Figure 2: The joint posterior distributions over level of immune evasion and intrinsic
transmissibility of the Omicron variant, relative to the Delta variant. The dark and
light green areas show 95% and 50% density regions respectively. Joint parameter
estimates are from three iterations of the model fitted to the latest data sources: left
— South African reinfection and reproduction rates data, middle — South African
data and UK vaccine effectiveness estimates, right — UK vaccine effectiveness
estimates and Danish household attack rate data.

3.3 Immune protection predictions against the Omicron vari- 267

ant 268

Figure 3 shows predicted protection against the Omicron variant over time-since- 269

peak-immunity, for various outcomes of interest, as predicted by the final iteration 270

of the model in early 2022, including vaccine effectiveness data for both Delta and 271

Omicron. Note that immune effectiveness predictions of single dose Pfizer and AZ 272

vaccines are not shown here to assist visualising the more protective immunity pro- 273

files. When comparing the effectiveness predictions against symptomatic infections 274

to the data in Andrews et al., 2022 [19] shown in Figure 3, the model is more 275

pessimistic for two-dose AstraZeneca vaccines, especially in early phases of waning. 276

The model is likewise more pessimistic for Pfizer effectiveness at peak protection, 277

but it also predicts a more linear waning pattern compared to the data in Andrews 278

et al., 2022, which appears more biphasic with more rapid decline in the first 100 279

days and minimal waning thereafter. For an mRNA booster, the model prediction 280

against symptoms is consistent with the data up to around day 75, but it predicts 281

slower waning compared to the data point around day 100. Note that the outlying 282

data point for mRNA booster against symptoms at around day 150 was reported in 283

the UK report at the time of analysis and thus was included in the example analysis 284

representing this period of time, but it has since been removed in the published 285

version of Andrews et al., 2022. 286

Compared to immune effectiveness against the Delta variant, predicted immune 287

effectiveness of mRNA booster, two-dose Pfizer, and two-dose AstraZeneca vac- 288

cines are all lower against the Omicron variant. However, the relative ranking of 289

these three vaccine sources remains consistent, due to the assumption that the 290

degree of immune evasion is constant across the modelled immunity sources. In- 291

fection with the Omicron variant confers greater immunity to subsequent Omicron 292
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Figure 3: Estimated immune protection against the Omicron variant over time since
peak immunity following administration of the second dose of either AstraZeneca or
Pfizer vaccines, after boosting with an mRNA vaccine, and/or Omicron infection.
Estimates of vaccine effectiveness from various observational studies are indicated by
dots (point estimates) and vertical bars (95% confidence intervals), with horizontal
bars indicating the range of days since immune event for individuals included in the
study. Omicron sub-lineages BA.1 and BA.2 are assumed interchangeable both in
the immune protection conferred by infections, and the level of protection against
them.

exposure than any level of vaccination alone, due to the assumption that the level 293

of immune protection from Omicron against Omicron reinfection is equivalent to 294

that of previous wild-type infection against subsequent exposure to wild-type virus. 295

Third dose (“booster dose”) combined with infection gives a further substantial 296

increase in effectiveness, although at this point protection against severe outcomes 297

cannot increase much further since it is close to 100% effective. 298

4 Discussion 299

The model presented in this work uses a combination of correlates of protection and 300

vaccine effectiveness data to predict the level of protection conferred by vaccines 301

and prior infections, against various outcomes of interest. Our model extends upon 302

the neutralisation-level-to-clinical-efficacy model in Khoury et al. [21] by fitting 303

the level of protection directly against observed real-world effectiveness data. Our 304
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approach is similar to that used by Hogan et al. [33], although the two models 305

focus on different outcomes of infection. Hogan et al. focus on clinically relevant 306

endpoints for evaluating vaccine effectiveness, including hospitalisation, death, and 307

mild disease (mild symptomatic infection with some asymptomatic cases detected 308

through routine screening). Among these, predicted protection against death is 309

a particularly desirable addition to the outputs of Khoury et al. model as it has 310

not been tested in clinical trials [22]. Our model also predicts protection against 311

these outcomes, but by calibrating to a wider range of input data sources, our 312

model additionally predicts the level of protection against all infections irrespective 313

of clinical presentation and against onward transmission of breakthrough infections. 314

This ability to predict protection against onward transmission is important because 315

it can be combined with protection against acquisition of infection to calculate 316

the reductive (time-dependent) effect of immunity on community transmission (as 317

demonstrated in the Omicron extension in Appendix 1), which can be used in a 318

range of subsequent analyses such as informing transmission parameters in dynamics 319

models. 320

A powerful feature of our model is the flexibility to incorporate new types of pa- 321

rameters and data as needs arise. This was demonstrated in the Omicron adaptation 322

case study detailed in Appendix 1 where we extend the model to fit to non-vaccine- 323

effectiveness data (i.e., variant-differentiated reinfection and reproduction rates of 324

Delta and Omicron and Omicron household secondary attack rates) and predict new 325

outputs in addition to immune protection (i.e., immune evasion and intrinsic trans- 326

missibility of Omicron). By accurately representing the high degree of uncertainty 327

in the new parameters, e.g., by assuming the proportion of the modelled South 328

African population with immunity is between a broad range of 70-90% (the use of 329

this parameter is described in detail in Appendix 1), we ensure the posterior esti- 330

mations of the quantities of interest accurately reflect a large degree of uncertainty, 331

given the indirect and limited nature fo these data sources for inferring immune 332

responses. The flexibility of the modelling framework is also demonstrated in its 333

ability to be rapidly updated in the Omicron case study, utilising newer and better 334

data as they become available, to update risk assessments to inform public health 335

policy. These evolving estimates were reported to the Australian Commonwealth 336

government in near real-time, and helped inform key vaccine rollout policy changes 337

during this critical period, which saw the largest COVID-19 wave in the country to 338

date. 339

Our application of this model for epidemic analytics during the COVID-19 pan- 340

demic provided time-continuous and outcome-comprehensive predictions on the 341

likely impacts of vaccine programmes. The model predictions showed that full- 342

schedule vaccinations with either the Pfizer or AstraZeneca vaccines are effective 343

against severe infection outcomes from both the Delta and Omicron variants of 344

COVID-19, therefore demonstrating that vaccination is an effective tool for man- 345

aging morbidity and mortality burdens. These findings are in broad agreement with 346

similar estimates elsewhere [33,34]. 347

Before the widespread transmission of the immune evasive Omicron variant, a 348

key aim of some COVID-19 vaccine programmes, in addition to alleviating mortality 349

and morbidity burdens, was to achieve sustained reduction in community transmis- 350
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sions. This aim was for a time achieved in some populations such as in Australia in 351

late 2021 [3,35]. Important to this aim, our model predicts a fast rate of waning in 352

protection against the two transmission-related outcomes of acquiring infections and 353

onward transmissions. This suggests that the effectiveness of vaccine programmes 354

in reducing transmission likely depends on repeated admissions of additional doses 355

over time, broadly consistent with recommendations elsewhere [22, 36]. By linking 356

protection against acquisition and onward transmission estimates from our model 357

to information on the population-level immunity profile (proportions of the popula- 358

tion with different types of immunity, from vaccination or prior infection), one can 359

also predict reduction in community transmission due to immunity over continuous 360

time or in hypothetical scenarios. An example of potential application is in Ryan et 361

al. [3], where predicted reduction in transmission due to immunity is combined with 362

vaccine uptake scenarios to simulate the levels of community transmission under 363

different vaccination programme targets. An important finding of that study, which 364

informed the Australian government’s vaccination uptake thresholds for national 365

reopening of jurisdictional and international borders [35, 37], was determining the 366

levels of vaccine coverage required to achieve targets in community transmission, 367

and in turn whether and when non-pharmaceutical interventions could be relaxed, 368

whilst still retaining control on transmission mainly through immunity. This po- 369

tential use shows that the ability to estimate the reduction in transmission due to 370

immunity is a major strength of our model with demonstrated wide-reaching policy 371

impacts. 372

Due to its active use in risk assessment and policy planning objectives focusing 373

on short-term impacts of immunity, our model was developed with an emphasis 374

on short-term predictive accuracy. A further enhancement of the model would be 375

to calibrate to effectiveness estimates over longer time since peak immunity, which 376

were not available when the model was first developed. The model could also be re- 377

parameterised with a bi-phasic waning curve [33], where a more rapidly waning first 378

phase corresponds to rapid changes in antibody kinetics post immunising exposure, 379

and a more stable second phase reflecting when other more enduring mechanisms 380

such as T-cells play a bigger role in immunity [27]. Implementing bi-phasic waning 381

will likely bring the model’s prediction closer to the data for two-dose Pfizer vaccines 382

against Omicron in Figure 3. 383

Another potential extension, should relevant data be available, is to model differ- 384

ent levels of immune evasion in protection against different outcomes. For example, 385

immune evasion could lead to increased transmissibility but not pathogenicity. The 386

Omicron variant of SARS-CoV-2 demonstrates such a scenario, where mutations in 387

spike epitopes of the virus enable it to evade neutralisation by antibodies and infect 388

those with immunity, but the severity of these breakthrough infections is attenuated 389

by other more robust mechanisms such as T cells [38,39]. At the time of fitting our 390

model, there was insufficient knowledge on the protection against severe outcomes 391

from Omicron infections, so our model makes the necessary assumption of equal 392

immune evasion against all outcomes, and learns effectiveness against Omicron 393

mostly from the available data on symptomatic non-severe infections. Therefore, 394

the model likely predicts a degree of immune evasion more consistent with non- 395

severe outcomes (i.e., higher degree of immune evasion), likely explaining why the 396
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model under-predicted mRNA booster effectiveness against hospitalisation at around 397

day 120 in Figure 3. With available future data, the interaction between immune 398

evasion and outcomes can be explicitly modelled, for example with the addition 399

of learned interaction coefficients αv,o between pairs of variants and outcomes in 400

Equation 5 (replacing the term ni,v − To with ni,v − To + αv,o). 401

As the code for implementing the model presented in this work is open source, 402

it can be readily adapted for other research uses, such as modelling another dis- 403

ease, other vaccine types, or other outcomes of interest such as protection against 404

developing ’Long COVID’ (i.e., post-acute sequelae of COVID-19, [40]). A fur- 405

ther avenue of research here is to develop the code-base into a software package 406

with functions specifically designed to interface with a range of relevant data. This 407

would increase the accessibility of the model to the pandemic preparedness research 408

community, and enables its rapid deployment in public health response situations. 409

In conclusion, we present a model predicting the level of immune protection 410

against various outcomes of infection using vaccine effectiveness data, and demon- 411

strate its use for COVID-19. We showcase how the model outputs provide valuable 412

and timely information on a range of epidemic response questions, and we further 413

discuss potential improvements and extensions to the model that can be imple- 414

mented with future data. 415
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