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DEEP LEARNING BASED DETECTION OF URETHRAL STRICTURE: 

SEGMENTATION & CLASSIFICATION 
 

Abstract:  

Purpose:   

The retrograde urethrogram (RUG) has been a key diagnostic tool for over a 

century, remaining essential despite the availability of other imaging techniques for 

screening, diagnosis and follow up of Urethral strictures.   However, interpretation of 

RUG images has to be done manually and needs experience on the part of the treating 

urologist, which calls for a common understanding of RUGs and presents a chance to 

improve stricture management in a practical way. Artificial intelligence (AI) algorithms 

present a novel way to prevent human discrepancy while concomitantly improving the 

accuracy of stricture identification and classification. 

 

Methods:  

Dataset: We have used a balanced dataset which includes RUGs of 168 

strictured cases and 178 non-strictured(healthy) cases.  
 

Task#1:  The primary requirement is to identify the Urethral region in any 

clinically obtained RUGs and detect the presence of stricture in it.  We 

successfully deployed a Segmentation and Classification model to categorize 

the whole dataset as strictured or non-strictured RUGs.  
 

Task#2: On obtaining superior accuracy, we effectively went on to identify the 

type of stricture based on their location, which is of clinical importance.  

 

Results:   

With the above-mentioned available RUG dataset from 346 cases, we could 

train our Deep learning model and achieve a significant accuracy of 91.53% in 

detection and categorizing the type of stricture. At the end, a 10-fold cross-

validation yielded an accuracy of about 86.66%. 

 

Conclusion:   

Our attempts have successfully validated that using Deep learning (DL) tools, 

one could readily (i) Detect the presence of stricture in a given RUG and (ii) 

ultimately locate and classify these strictures effectively. Thus, these Deep 

learning tools could be of great clinical assistance for Urinary stricture related 

disease management.    
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Introduction  

Stricture in the male urethra is a common urological condition characterized by 

narrowing of the urethral passage that produces an obstruction to urine flow in men. 

Approximately 0.6% of males experience urethral stricture, and failure to treat it can result in 

serious urologic complications [1]. Globally, male urethral strictures are estimated to have a 

prevalence ranging from 229 to 627 per 100,000 individuals. In terms of healthcare utilization, 

male urethral strictures lead to around 5,000 hospital admissions and 1.5 million clinic visits 

annually in the US alone. In the United Kingdom, the prevalence is lower, estimated at 40 per 

100,000 in men up to 65 years old and 100 per 100,000 in men over 65 years old [2]. The 

distribution of urethral stricture etiology varies across the world, and also with age [3]. The 

obstruction can enormously impair the patient’s quality of life and has a propensity to damage 

the entire urinary tract if left untreated It usually manifests as obstructive lower urinary tract 

symptoms (LUTS) like poor stream, straining to void and can sometimes lead to complications 

such as infection, bladder stones, fistulas, sepsis, and eventually renal failure. 

Diagnostic investigations for suspected urethral strictures entail a series of procedures, 

such as cystoscopy, retrograde urethrography, and uroflowmetry. The retrograde urethrogram 

(RUG) has been a key diagnostic tool for over a century, remaining essential despite the 

availability of other imaging techniques and considered the current gold standard for evaluating 

strictures This method includes introducing a contrast dye into the urethra at the tip of the penis. 

The dye allows the doctor to see the whole anterior urethra and clearly define the strictured 

area. It is crucial to perform and interpret RUGs accurately for the correct diagnosis of urethral 

strictures and for planning surgical interventions [4]. The use of RUG in conjunction with other 

modalities can increase diagnostic accuracy in the evaluation of urethral stricture and aids in 

effective preoperative assessment and planning. However, interpretation of RUG is usually 

done manually and that can lead to a significant observer bias in identification and 

characterization of stricture. 

In healthcare, Artificial Intelligence (AI) has emerged as a powerful tool for improving 

medical diagnostics, personalized treatment plans and patient outcomes. In particular, AI-based 

image analysis techniques have shown great promise in aiding medical professionals in the 

early detection and diagnosis of diseases, including cancer, cardiovascular issues and 

neurological disorders. AI tools are currently being used in the field of urology, especially in 

uro-oncology and urolithiasis with its role in reconstructive urology that includes urethral 
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stricture still yet to be fully explored[5-6]. Herein, we propose a comprehensive AI tool in 

detecting and classifying these urethral Strictures from RUG.  

Materials & Methods  

DATA COLLECTION: Following approval from institutional REB, the retrospective RUG 

data was collected from the Department of Urology, Sri Sathya Sai Higher Medical Sciences 

(SSSIHMS), Prasanthigram, Andhra Pradesh. The dataset comprised 346 cases of patients 

treated at SSSIHMS for various urological health disorders and surgical procedures. We 

obtained a balanced dataset out of which 168 cases were identified as strictured and 178 cases 

were identified as non-strictured(healthy). The data was obtained in bitmap(bmp) format and 

anonymized using the KerasOCR (Optical Character Recognition) module which is used to 

detect and remove all patient identification text and ensure patient details confidentiality. The 

masks for training our Segmentation Model (UNet) were also generated using ImageJ. It is a 

popular, open-source image processing program designed for scientific and medical research 

which provides a wide range of image processing capabilities, such as filters, measurements, 

annotations, and transformations [7]. 

TOOLS:   

Google Colab: It is a cloud-based platform offered by Google that enables users to develop, 

run, and share Python programs using a web browser. It features a Jupyter notebook interface 

and free access to processing resources such as GPU and TPU accelerators [8]. The dataset 

preparation and model training were performed in Colab. The accelerator used was the 

NVIDIA TESLA K80 12GB.  

Frameworks: Keras and TensorFlow frameworks were used to build our deep learning models.  

Keras is an open-source, high-level neural networks API, written in Python and designed for 

simplicity and rapid prototyping [9]. It can run on top of other frameworks like TensorFlow, 

providing a user-friendly interface for building deep learning models. TensorFlow is an open-

source machine learning framework that provides a comprehensive ecosystem for model 

development and deployment [10]. It supports a wide range of tasks, including deep learning 

and reinforcement learning, with tools for both high-level API access through Keras and low-

level operations for custom algorithms. Optimized for performance on CPUs, GPUs, and TPUs, 

TensorFlow is widely used in the research community, providing the robust backend for Keras.  
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Deep Learning Approach:  

Figure 1 captures and renders an overview of the implementation of Deep learning 

technique at various stages in solving the current clinical problem. For training the 

Segmentation Model (Task 1a), masks were created manually using ImageJ software so that 

only the region of interest, i.e., urethra is focused. Masks for all the cases were created for 

training the model. The data was then split into training, validation and testing sets in the 

following proportion: 70%, 20% and 10% respectively. Similarly, the dataset for the 

classification model (Task 1b) was prepared from the output masks from the segmentation 

model. So, a total of 346 data samples were used for optimization. Further, data augmentation 

with zoom, rotation and horizontal flip were applied to generalize the model. Similarly, Task 

2a & 2b involving segmentation and classification model was developed for identifying the 

type of urethral Stricture. 

 

Segmentation model using UNet in Task-1a & 2a: UNet is a convolutional neural network 

used widely for the segmentation of biomedical images with encoding and decoding layers 

[11]. 2D convolutional layers with a kernel size of 3 was used. ReLU activation function was 

mainly used for hidden layers. The filter number increased from 16 and doubles up after every 

block in the contraction path (decoding block). The output of the present block was Max pooled 

to pass on to the next block. Dropout with the rate of 0.1- 0.3 was used as a regularizer. The 

layer input from the decoding block was concatenated with the output of the Conv2D layers. 

The number of filters for the encoding blocks decreased from 128 to 16. The output of the 

Conv2D layer was taken with the sigmoid activation function with the kernel size of one. 

Classification Model used in Task-1b & 2b: The model was built with four convolutional 

layers and four Max pooling layers. The first layer consists of 32 filters followed by 64 filters 

and the last two layers with 128 filters. After the last layer, a dropout layer was added to 

improve the performance. The model was trained with Adam optimizer with a learning rate of 

0.001 and binary cross entropy was used as the loss function. ReLu activation function was 

used for hidden layers and the sigmoid function for the output layer. Various types of metrics 

accuracy, precision and recall along with the callbacks ‘ModelCheckpoint’ and 

‘EarlyStopping’ were evaluated during the model training. Finally, a 10-fold Cross validation 

was also evaluated to check the behavior of the model. 
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Figure 1: Overall model summary – an input RUG imge is fed to the UNET architecture 

which outputs the segmented image. The resultant image is then given as an input to 

the classification model which will eventually classifiy the given image as strictured or 

normal. Further the strictured image was sub classified into bulbar and penile stricture. 
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Results  

Task-1a: Segmentation Model performance  

The U-net model was trained with a batch size of 32 along with the evaluation of 

accuracy, precision, recall, IoU (Intersection over Union) and dice coefficient metrics. The 

model achieved the highest dice coefficient value of 89.35% by using various optimization 

techniques such as batch normalization and he-normalization. Figure 2a and Figure 2b 

showcases a representative output predicted by the segmentation model for the test dataset for 

both non-strictured and strictured RUG cases. 

Task-1b: Classification Model performance  

Following the Segmentation Model which could exclusively identify the urethral region 

from the complex urethrogram, our focus was to categorize RUG with and without stricture as 

shown in Figure 2c. Our classification model, trained for 30 epochs, achieved the highest 

accuracy value of 87.88% with a binary cross entropy loss of 0.4082. Finally, to avoid 

overfitting and increase the robustness of the model, we carried out the 10-fold cross validation 

which yielded a value of 82.48%.  

 

Task-2a & 2b:  Spatial Classification of Urethral Strictures  

Classification of urethral strictures is based on two factors: location and its length. 

Among these, identifying the location of the stricture is a herculean task. In the current work, 

we have successfully attempted mapping the spatial information of the stricture. Typically, 

they are classified as (i) Penile strictures, (ii) Bulbar strictures and (iii) Penobulbar strictures 

[12]. Penile strictures spatially lies between the penoscrotal junction and the fossa navicularis. 

Bulbar strictures start at the penoscrotal junction to the bulbomembranous junction while 

Penobulbar strictures extend into the bulbar segment from the penile urethra, compromising 

lengthy urethral segments. With the available dataset we were able to classify Bulbar and Penile 

type stricture.  

As shown in figure 3, the model could predict the stricture region as well as classify it 

into a particular type. This is a significant milestone achievement as the developed model can 

clearly and readily aid clinicians in pre-operative planning and disease prognostication.  
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Figure 2:  Summary of Task-1a & Task-1b which is the identification of Strictured and Non-

Strictured Urethra in a given RUG data   
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Figure 3: (a-f) shows the ground truth and predicted masks by the segmentation model for 

the bulbar and penile stricture and (g-h) shows the classification of two types of stricture.  
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The Deep Learning model for classifying the strictures were developed in similar lines 

as of Task-1a & 1b which yielded better accuracy. Technically, as shown in Table 1, the 

segmentation model yielded a dice coefficient value of 80.81% and our classification model 

was able to achieve an accuracy of 91.53%.   

 

TABLE I: Collation of computational parameter obtained through deep learning 

process for the various tasks undertaken 

 

SEGMENTATION MODEL  

Metrics Task 1a Task 2a 

Dice coefficient 87.17 % 80.81 % 

IoU 77.26 % 67.81 % 

Accuracy 99.47 % 98.51 % 

Recall 87.58 % 74.86 % 

Precision 88.45 % 87.88 % 

Loss 0.215   0.308  

CLASSIFICATION MODEL 

Metrics Task  1b Task 2b 

Accuracy  87.88 %   91.53 % 

Recall 81.21 % 90.12 % 

Precision  84.29 % 91.43 % 

Cross Validation 82.48 % 86.66 % 

Loss 0.402 0.380 
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Discussion 

While machine learning based algorithms have been used extensively in a variety of 

sectors to categorize images in healthcare, relatively little work has been done in reconstructive 

urology, a field in which urethral stricture management plays a significant role. RUG is an 

invaluable test to evaluate and document the stricture and define stricture recurrence. 

Therefore, it is crucial to perform and interpret RUGs accurately for the correct diagnosis of 

urethral strictures and for planning surgical interventions. However, RUG has low sensitivity 

in determining the length, location, caliber, and other characteristics of strictures. It is generally 

suggested to be performed (or personally monitored) and interpreted by the treating urologist.  

Bach et al., study investigated the accuracy of retrograde urethrogram interpretation by 

primary physicians versus independent physicians [13]. The study aimed to evaluate the use of 

independent physician interpretations for pre-operative planning of urethral stricture surgery. 

The results indicated that primary physician-reported RUGs were more reliable than 

independently reported RUG. The interpretation of RUG images necessitates a greater level of 

expertise due to these limitations. As a result, it is crucial to foster a common understanding of 

RUGs, offering a valuable opportunity to enhance the practical management of strictures. 

There is potential for subjectivity in the interpretation of RUGs' findings because they are 

frequently open to expert interpretation. Additionally, when physicians choose the course of 

treatment for urethral strictures based on the results of the RUG, there might be differences in 

how they explain the success rates of each procedure and the objectively preferred kind of 

reconstructive surgery to their patients. There is presently no "validated" method of evaluating 

an RUG, in contrast to certain other imaging categories that have distinct criteria for 

classification, including the CT classification of acute renal injury [4]. Because of this, 

interpreting an RUG requires professional judgment, which isn't often available in healthcare 

settings. 

In this report, we have detailed our implementation of AI tools for (i) Identification of 

Urethral stricture in a given clinical RUG data, (ii) detecting the site/region of the urethral 

stricture which was a very challenging task radiologically and (iii) ultimately, extended the AI 

model to do multi-label classification of stricture types.  We could successfully execute this 

with the support of an independently in-house developed DL model which significantly offered 

more precision to this task. Using a balanced in-house dataset of 346 cases, we have achieved 

a detection accuracy of 91.53% and a 10-fold cross-validation accuracy of 86.66%. These 

results demonstrate the efficacy of deep learning models in identifying strictures and 
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determining their type and location, enhancing clinical decision-making and reducing human 

error. Thus, it could be conceived as a decision supporting tool for the clinicians (irrespective 

of his/her experience) and help them identify the strictures efficiently. Leveraging our AI 

model, we can proficiently detect strictures, precisely determine their location and categorizing 

strictures based on its specific location. Our model is being developed further to ascertain the 

length of the stricture and offer prognostic insights for managing urethral strictures.  

 

Earlier, a preliminary “proof of the concept” evaluation work was reported by Kim et 

al and their research group at Hospital for Sick Children, Division of Urology, Canada [6]. This 

was the first but very limited AI-based detection scheme reported for urethral strictures in 2022 

using only 242 studies. They reported a very simple binary classification of mere presence or 

absence of strictures using a Convolutional neural network (CNN) model. Their work uses the 

whole RUG image for the classification, which may not give accurate results. Moreover, their 

dataset is not available in the public domain for utilizing and validating for other groups. 

Subsequently, we have found limited or no literature/reports by any other groups on these lines.  

 

Unlike this deep learning model reported earlier by the Kim et al, our work is the first 

investigation to assess the possibility of using CNN-based algorithm in identifying RUGs and 

further classifying them based on location, which can provide valuable clinical information 

regarding strictures for further reconstruction. We aimed to develop a machine learning based 

algorithm to correctly identify the strictured area and categorize RUG images based on location 

as penile, bulbar and penobulbar. We demonstrated that we could achieve accuracy up to 87.88 

% in classifying the stricture with normal RUG data and an accuracy of 91.53 % in classifying 

the bulbar and the penile stricture respectively. Our current model by segmenting the region of 

interest in the whole RUG where strictures are present and uses it further for classification of 

the stricture to a particular type is a comprehensive solution to the clinical requirement. 
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Limitations 

 

There are limits to this work, even if it is a novel attempt to identify and categorize 

urethral strictures according to their spatial location. The data was susceptible to possible 

overfitting from its training images because there weren't many RUG images available for 

training. We have minimized this by performing data augmentation, which enables the model 

to function well with different types of altered images. While length is an important criterion 

during surgical planning a disease prognostication, there are other criteria also that will be need 

to be considered like length, etiology and luminal diameter.    Nonetheless, we plan to further 

collaborate with other high-volume reconstructive urology centers and to prospectively obtain 

additional RUG images to develop more complex models that may characterize length and 

luminal diameter.  

 

Conclusion 

Our study highlights the potential of AI-based deep learning tools in improving the 

accuracy and reliability of Retrograde UrethroGram (RUG) interpretations for detecting and 

classifying urethral strictures. Integrating these tools into pre-operative evaluations could 

significantly improve urethral stricture management. This advancement promises better patient 

outcomes and streamlined clinical workflows. Future work will focus on extending the model 

to accurately identify stricture length, further enhancing its clinical utility. 
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