1 Original research article

2	
3	Efficacy and Safety of Edoxaban in Anticoagulant Therapy Early after Surgical
4	Bioprosthetic Valve Replacement: the ENBALV trial
5	
6	Chisato IzumI, MD, PhD ¹ , Masashi Amano, MD, PhD ¹ , Satsuki Fukushima, MD, PhD ² , Hitoshi Yaku,
7	MD, PhD ³ , Kiyoyuki Eishi ⁴ , MD, PhD, Taichi Sakaguchi, MD, PhD ⁵ , Nobuhisa Ohno, MD, PhD ⁶ , Arudo
8	Hiraoka, MD, PhD ⁷ , Kenji Okada, MD, PhD ⁸ , Yoshikatsu Saiki, MD, PhD ⁹ , Takashi Miura, MD, PhD ¹⁰ ,
9	Tatsuhiko Komiya, MD, PhD ¹¹ , Manabu Minami, MD, PhD ¹² , Haruko Yamamoto, MD, PhD ¹² , Katsuhiro
10	Omae, PhD ¹² , for the ENBALV Trial investigators*
11	
12	¹ Department of Heart Failure and Transplant, National Cerebral and Cardiovascular Center, Suita, Japan
13	² Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Japan
14	³ Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine. Kyoto, Japan
15	⁴ Department of Cardiovascular Surgery, Hakujyuji Hospital. Fukuoka, Japan
16	⁵ Department of Cardiovascular Surgery, Hyogo Medical University, Nishinomiya, Japan
17	⁶ Department of Cardiovascular Surgery, Kokura Memorial Hospital
18	⁷ Department of Cardiovascular Surgery, Sakakibara Heart Institute of Okayama
19	⁸ Department of Cardiovascular Surgery, Kobe University Graduate School of Medicine
20	⁹ Department of Cardiovascular Surgery, Tohoku University Graduate School of Medicine
21	¹⁰ Department of Cardiovascular Surgery, Nagasaki University Graduate School of Biomedical Sciences
22	Notepartment of condinewreserv, Kurashiki central Hospital review and should not be used to guide clinical practice.

23	¹² Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan
24	
25	
26	* A full list of the investigators in the ENBALV trial is provided in the Supplemental
27	material.
28	
29	Running title; edoxaban early after bioprosthetic valve surgery
30	
31	Address for correspondence: Chisato Izumi, MD, PhD
32	ORCHiD: https://orcid.org/0000-0002-3282-1327
33	Director, Department of Heart Failure and Transplantation, National Cerebral and
34	Cardiovascular Center, 6-1 Kishibe Shimmachi, Suita, Osaka 564-8565 Japan.
35	Tel: +81-661701070
36	Fax: +81-661701069
37	E-mail: <u>izumi-ch@ncvc.go.jp</u>
38	
39	Total word count: 3104 (5651 including title page, abstract, text, references, tables, and figure
40	legends)
41	
42	2

43 Abstract

44

45 Background

Anticoagulant therapy with vitamin K antagonists is recommended in the current guidelines for 3 to 6 months following bioprosthetic valve replacement to prevent thromboembolic events, including in patients with sinus rhythm. However, in the era of direct oral anticoagulants (DOACs), there is a paucity of evidence regarding the efficacy and safety of DOACs in this patient group.

51 Methods

The ENBALV trial was an investigator-initiated, phase 3, randomized, open-label, multicenter study that aimed to evaluate the efficacy and safety of edoxaban compared to warfarin within 3 months following bioprosthetic valve replacement at the aortic and/or mitral position. The primary outcome was stroke or systemic embolism. The secondary outcomes included major bleeding, intracardiac thrombus, and a composite of stroke, systemic embolism, or major bleeding.

58 **Results**

Of 410 enrolled patients, 389 were included in the final analysis (73±6 years, 56.8% male,
79.4% sinus rhythm, edoxaban group: n=195, warfarin group: n=194). The primary outcome
occurred in 0.5% (n=1) in the edoxaban group, whereas in 1.5% (n=3) in the warfarin group

62	(risk difference, -1.03, 95% confidence interval [CI], -4.34 to 1.95). Major bleeding											
63	occurred in 4.1% (n=8) in the edoxaban group and in 1.0% (n=2) in the warfarin (risk											
64	difference, 3.07; 95% CI, -0.67 to 7.27). The incidence of major bleeding was numerically											
65	higher in the edoxaban group, but no fatal bleeding or intracranial hemorrhage was observed											
66	in patients treated with edoxaban, whereas one fatal intracranial hemorrhage occurred in the											
67	warfarin group. Intracardiac thrombus did not occur in any of the patients in the edoxaban											
68	group, but did occur in 1.0% (n=2) in the warfarin group.											
69	Conclusions											
70	Edoxaban had comparable efficacy to warfarin for the prevention of thromboembolic events											
71	in patients early after bioprosthetic valve replacement, suggesting that it is a potential											
72	alternative anticoagulant therapy.											
73												
74	Trial registration											
75	The study was registered with the Japan Registry of Clinical Trials (jRCT), with reference											
76	number 2051210209 (30 March 2022; https://jrct.niph.go.jp/latest-detail/jRCT2051210209).											
77												
78	Key words											
79	Anticoagulant, Bioprosthetic valve, Cardiac surgery, Embolism, Hemorrhage											
80												

81 Clinical perspective

82

83 What is new?

84	• Current guidelines recommend the administration of warfarin for patients early after
85	bioprosthetic valve replacement, including those with sinus rhythm, but there is a paucity
86	of evidence regarding the efficacy and safety of direct oral anticoagulants (DOACs) in
87	this patient group.
88	• ENBALV trial provides the first large-scale evidence on the use of DOAC in patients
89	early after bioprosthetic valve surgery.
90	• ENBALV trial demonstrated that edoxaban had comparable efficacy to warfarin for
91	preventing thromboembolism. No fatal or intracranial hemorrhage was observed with
92	edoxaban. Our results suggest that edoxaban could be an alternative to warfarin in this
93	patient group.
94	
95 V	What are the clinical implications?
96	• The availability of edoxaban could offer more flexibility in anticoagulant treatment
97	options after bioprosthetic valve surgery. Since edoxaban does not require regular and
98	frequent blood testing, it could simplify the care process, reduce the burden on patients,

and improve their quality of life, especially in the crucial early period after surgery.

- The availability of edoxaban also give benefits for medical stuffs as well as patients,
- 101 because edoxaban can be used with constant dose, no need of routine monitoring of
- 102 anticoagulation activity, and a low risk of interaction with other drugs and food.

104 Introduction

105

The number of patients with valvular heart disease has been increasing and this trend has been paralleled by an increase in the prevalence of bioprosthetic valve replacement with aging society.¹ The incidence of embolic events has been reported to be high early after bioprosthetic valve replacement;^{2–6} therefore, anticoagulant therapy with vitamin K antagonists is recommended in the current guidelines for 3 to 6 months following bioprosthetic valve replacement to prevent thromboembolic events, including in patients with sinus rhythm.^{7–9}

113 Randomized clinical trials have demonstrated the efficacy and safety of direct oral 114 anticoagulants (DOACs) versus warfarin for the treatment of patients with nonvalvular atrial 115 fibrillation (AF),^{10–12} and DOACs have become widely used, because the routine monitoring 116 of anticoagulation activity is not required and there is a low risk of interaction with other 117 drugs and food.

Evidence supporting the use of DOACs in patients with AF who have undergone bioprosthetic valve replacement has been provided by several subgroup analyses of randomized clinical trials^{13–15} and observational studies^{16–18}. In addition, a randomized clinical trial that compared the use of rivaroxaban and warfarin in patients with AF and a bioprosthetic mitral valve¹⁹ revealed the non-inferiority of rivaroxaban to warfarin with

123	respect to a composite outcome of death, major cardiovascular events, or major bleeding.
124	However, fewer than 20% (n=189) of the participants had undergone bioprosthetic valve
125	replacement within the preceding 3 months, and there were no participants with sinus rhythm.
126	In addition, another study demonstrated the efficacy and safety of edoxaban versus warfarin
127	in patients who underwent mitral valve repair or bioprosthetic valve replacement, but the
128	bioprosthetic valve replacement group was small (n=152). ²⁰
129	The efficacy and safety of EdoxabaN in anticoagulant therapy after surgical
130	Bioprosthetic vALVe replacement (ENBALV) trial was a randomized clinical trial that aimed
131	to evaluate the efficacy and safety of edoxaban compared to warfarin early after bioprosthetic
132	valve replacement.
133	
134	Methods

135

136 Trial design and oversight

137 The trial design has been described previously.²¹ Briefly, the ENBALV trial was an 138 investigator-initiated, phase 3, randomized, open-label, multicenter study. We evaluated the 139 efficacy and safety of the use of edoxaban compared to warfarin within 3 months following 140 bioprosthetic valve replacement. Details of the participating investigators and trial 141 organization are provided in the Supplementary material.

142	All the procedures involving human participants were performed in accordance with the
143	1964 Declaration of Helsinki and its later amendments or comparable ethical standards, and
144	with the Japanese Pharmaceutical Affairs Act and related laws and regulations. The study
145	protocol was approved by the National Cerebral and Cardiovascular Center Review Board in
146	addition to the Institutional Review Board of each participating institution and it was
147	registered with the Japan Registry of Clinical Trials (jRCT 2051210209). Written informed
148	consent was obtained from all the patients before they were recruited.
149	An independent safety monitoring committee monitored all the safety data and was
150	involved in decisions regarding trial continuation or protocol changes. All suspected
151	outcomes and the results of imaging evaluations were adjudicated by an independent event

152 committee, the members of which were unaware of the trial group assignments.

153

154 *Trial population*

We studied patients aged 18 to 85 years who underwent bioprosthetic valve replacement at the aortic and/or mitral position. Patients with both sinus rhythm and AF were included. The main exclusion criteria were a contraindication to the use of either warfarin or edoxaban, an extremely high risk of hemorrhage, and the presence of a mechanical valve or greater than moderate mitral stenosis, except if replacement of the mechanical valve or stenotic mitral valve by a bioprosthetic valve was performed at this operation. Further details regarding the

161 inclusion and exclusion criteria of the ENBALV trial are shown in Table S1. To minimize the risk of withdrawal because of worsening renal function after surgery, the patient selection 162 criterion for renal function was set as a creatinine clearance of \geq 30 mL/min, not \geq 15 mL/min. 163 164 Trial procedures 165 166 Eligible patients were randomly allocated to either the edoxaban or warfarin group at a 1:1 ratio using a web-based randomization system and the minimization method. The adjustment 167 factors were 1) the valve position (aortic valve alone, mitral valve alone, or both valves), 2) 168 the presence of AF, and 3) the administration of antiplatelet drugs. 169 Bioprosthetic valve replacement was performed within 8 weeks of randomization. 170 171 Edoxaban or warfarin administration was started following bioprosthetic valve replacement, as soon as the surgeons had determined that it was appropriate for anticoagulant therapy to 172 commence. Anticoagulant therapy initiation could be delayed according to patients' condition 173 such as postoperative wound bleeding. The present study was performed during the unstable 174 period immediately following open heart surgery; therefore, the surgeons could use their 175 discretion to determine when anticoagulant therapy should be initiated, to prioritize patient 176 177 safety. Edoxaban was orally administered at the dose of 60 mg once daily, or 30 mg once daily 178

10

when the patient's creatinine clearance was 30 to 50 mL/min (calculated using the

180	Cockcroft–Gault equation), their body weight was ≤ 60 kg, or they were being concomitantly
181	treated with a P-glycoprotein inhibitor. The dose of warfarin was adjusted under monitoring
182	the prothrombin time-international normalized ratio (PT-INR). Administration of edoxaban
183	or warfarin was continued for 12 weeks after surgery if the patient did not meet any of the
184	criteria for its discontinuation, and their administration could be continued until 24 weeks at
185	the surgeons' discretion. Clinical evaluations were conducted from the initiation of study
186	drug administration to the end of study treatment.
187	The patients underwent clinical assessment and laboratory testing 1 and 7 days after the
188	administration of edoxaban or warfarin commenced and at discharge. After discharge, they

were scheduled to visit an outpatient clinic 4, 8, and 12 weeks after initiation of anticoagulant

therapy. Clinical assessments, including the evaluation of symptoms suggestive of clinical

thromboembolic or hemorrhagic events and laboratory testing, were performed at the

electrocardiography 193 The patients underwent а 12-lead and transthoracic echocardiography as part of eligibility assessment prior to randomization, at discharge, and 194 195 12 weeks after initiation of anticoagulant therapy. Brain magnetic resonance imaging (MRI) or computed tomography (CT) was also performed during the eligibility assessment process 196 prior to randomization and 12 weeks after initiation of anticoagulant therapy. 197

198

189

190

191

192

outpatient visits.

199 Primary and secondary outcomes

200	The primary outcome was a composite of stroke or systemic embolism. The key
201	secondary outcomes were major bleeding, intracardiac thrombus, and a composite of stroke,
202	systemic embolism, or major bleeding, according to the definition of the International Society
203	on Thrombosis and Haemostasis. The secondary outcomes also included the individual
204	components of the composite outcome and other clinical events. A complete list of trial
205	endpoints is provided in Table S2.
206	
207	Statistical analysis
208	The event rates for the primary endpoints in the study and control treatment groups were
209	estimated to be 1% to 3%, based on historical reports. ^{2–5} Thus, the difference in the event rate
210	between the control and study treatment groups was not expected to be very large.
211	Furthermore, the number of patients that could be included within a reasonable study period
212	was estimated to be approximately 450, and it was judged not to be reasonable to conduct a
213	non-inferiority trial on this scale to test the hypothesis. Therefore, to determine whether the
214	study drug was not significantly inferior to the control drug, we decided to evaluate whether
215	the difference in the point estimates of the event rate for the primary endpoint was below a
216	certain threshold. A previous study ² that included data from a no-treatment group estimated
217	that the event rate within 3 months after surgery in the absence of treatment was >7%. On

218 this basis, the experts in our study group determined that 2% is a clinically acceptable and reasonable threshold for the difference in event rate between the treatment and control groups. 219 Given the 450 enrolled patients, 1:1 allocation, and a dropout rate of approximately 10%, the 220 primary endpoint was expected to be assessed in 202 patients in each group. The event rates p 221 222 and q for the treatment and control groups were assumed to follow a uniform distribution 223 within the interval [0.01, 0.03], and the occurrence of events in the treatment and control 224 groups were assumed to follow a Bernoulli distribution with occurrence probabilities p and q, respectively. Under these conditions, the probability that the point estimate of p-q is <2% 225 was evaluated by a simulation study and estimated to be approximately 90%. On the basis of 226 the above considerations, the target number of patients to be enrolled in the trial was set as 227 450. 228

The primary analysis of the trial data was performed in a full analysis set (FAS) based 229 on intention-to-treat principles. The FAS consisted of all the assigned study participants, 230 excluding those who did not meet the primary enrollment criteria, those who never received 231 any study treatments, those for whom post-assignment data were not available, and those who 232 withdrew consent for the use of their data. The point estimate of the event rate for the primary 233 endpoint was calculated for each of the study and control treatment groups to determine 234 whether the difference in event rates was $\leq 2\%$. As an additional analysis, a similar evaluation 235 was conducted on the per-protocol set, a population of the FAS that excludes subjects who 236

237	were found to have violations or deviations from the study protocol that would affect the
238	evaluation of the primary endpoint. Other endpoints were summarized and compared by
239	groups, with subpopulation analyses conducted as necessary. All analyses were performed
240	using SAS software, version 9.4 (SAS Institute Inc., Cary, NC, USA).
241	
242	Results
243	

244 Patient backgrounds and follow-up

Between May 6, 2022, and January 25, 2024, a total of 430 patients gave their consent to participate and were assessed for eligibility at 24 institutions. Of these, 410 patients underwent randomization (205 were assigned to receive edoxaban and 205 were assigned to receive warfarin). Of these 410 patients, 21 did not receive edoxaban or warfarin; therefore, 389 patients were included in the final analysis (edoxaban group, n=195; warfarin group, n=194) (Figure 1).

The clinical characteristics of the patients are shown in Table 1. The two groups were well balanced with respect to their baseline characteristics. The mean age was 73 years, including 42 (10.8%) patients of \geq 80 years of age, and 56.8% were male. The CHADS₂ score, CHA₂DS₂-VASc score, and HAS-BLED score were 2.0±1.2, 3.4±1.4, and 1.1±0.6, respectively. Positions of bioprosthetic valve were aortic valve only in 339 (87.1%) patients,

mitral valve only in 37 (9.5%) patients, and both in 13 (3.3%) patients. Of the 389 patients,
67 (17.2%) were taking antiplatelet drugs and 80 (20.6%) had atrial fibrillation, namely, the
majority of patients had sinus rhythm.

The date of the last patient follow-up was April 25, 2024. The median duration of participation in the trial was 98 days (interquartile range, 92 to 106 days). Of the 389 patients, 20 in the edoxaban group (11 discontinued edoxaban because of adverse events, and nine were judged as lack of capability to continue participation in the trial) and 17 in the warfarin group (six discontinued warfarin because of adverse events, two withdrew their consent, eight were judged as lack of capability to continue participation in the trial, and one died) did not complete the trial.

The patients in the warfarin group had PT-INR values within the therapeutic range (2.0–3.0 seconds) for a median of 19.0% (interquartile range, 7.0%–31.4%) of the study period.

269

270 Primary and secondary outcomes

The primary outcome occurred in one patient (0.5%) in the edoxaban group, whereas in three patients (1.5%) in the warfarin group (risk difference, -1.03; 95% confidence interval [CI], -4.34 to 1.95) (Figures 2 and 3A). Systemic embolism did not occur in any of the study patients; thus all of the events of primary outcome were stroke. Intracardiac thrombus did not

275	occur in any of the patients in the edoxaban group, but did occur in two patients (1.0%) in the
276	warfarin group (risk difference, -1.03; 95% CI, -4.07 to 1.52) (Figures 2 and 3B).
277	Major bleeding occurred in eight patients (4.1%) in the edoxaban group and in two
278	patients (1.0%) in the warfarin group (risk difference, 3.07; 95% CI, -0.67 to 7.27) (Figures 2
279	and 3C). The sites of the major bleeding in each group are shown in Table S3. No fatal
280	bleeding or intracranial hemorrhage was observed in patients treated with edoxaban despite
281	high incidence of gastrointestinal bleeding. In the warfarin group, one patient died of cerebral
282	hemorrhage. Clinically relevant hemorrhage occurred in 11 patients (5.6%) taking edoxaban
283	and five (2.6%) taking warfarin (risk difference, 3.06; 95% CI, -1.46 to 7.84).
284	The net outcome (the composite of stroke, systemic embolism, or major bleeding)
285	occurred in nine patients (4.6%) in the edoxaban group and in four patients (2.1%) in the
286	warfarin group (risk difference, 2.55; 95% CI, -1.64 to 7.02) (Figures 2 and 3D).
287	The incidences of the other secondary outcomes were also similar for the two groups
288	(Figure 2).
289	

290 Results of the subgroup analysis

The incidences of the primary endpoint in the two groups were generally consistent across all the prespecified subgroups (Figure 4). With respect to major bleeding and the net outcome, the results were also generally consistent across all the prespecified subgroups (Figures S1

and S2).

295

296 Discussion

297

The present study provides the first large-scale evidence on the use of DOAC in patients early after bioprosthetic valve surgery. Notably, approximately 80% of the study patients had sinus rhythm.

The incidence of embolic events has been reported to be high early after bioprosthetic valve replacement.^{2-6, 22} This high incidence of thromboembolic events may be caused by thrombus formation associated with the lack of endothelialization of prosthetic valves,²³ the high prevalence of perioperative AF, and cardiac dysfunction early after bioprosthetic valve surgery. Therefore, current guidelines^{7–9} recommend anticoagulant therapy with vitamin K antagonists for 3 to 6 months following bioprosthetic valve replacement.

Warfarin has a narrow therapeutic range. Therefore, we need to adjust the dose of warfarin by blood monitoring of anticoagulation activity, and it takes a few days to enter the therapeutic range. In contrast, we can use constant dose of edoxaban determined by body weight, renal function and concurrent drugs, with no need of routine monitoring of anticoagulation activity. The effects of edoxaban emerge within 3 hours after administration, and edoxaban as well as other DOACs have a low risk of interaction with other drugs and

313 food. The prevalence of DOAC administration has been increasing, and DOACs are prescribed in approximately 70% of patients with newly diagnosed AF, because of the 314 aforementioned properties of DOAC.^{24–26} These properties are beneficial for patients early 315 after cardiac surgery, when their condition is unstable. According to the results of a database 316 analysis performed in the United States in 2020, the administration of DOACs at the time of 317 318 discharge following bioprosthetic valve replacement had been increasing since 2011 in real-world clinical practice, despite this being off-label use in patients with sinus rhythm.²⁷ 319 Several studies have shown the efficacy and safety of DOACs in patients with a history 320 of bioprosthetic valve replacement and AF.^{13–19} However, in the era of DOACs, there is a 321 paucity of evidence regarding the efficacy and safety of DOACs in patients early after 322 bioprosthetic valve replacement including patients with sinus rhythm.²⁰ 323 The results of the ENBALV trial demonstrate that edoxaban is comparable to warfarin 324 with respect to the primary endpoint of stroke or systemic embolism in patients early after 325 bioprosthetic valve replacement. The results of this clinical study met the primary endpoint, 326 which was agreed by the Japanese Regulatory Pharmaceuticals and Medica Devices Agency. 327 328 In addition, intracardiac thrombus did not occur in any of the patients taking edoxaban, but did occur in two patients taking warfarin. Thus, in patients early after bioprosthetic valve 329 replacement, who are at a high risk of thromboembolic events, edoxaban showed efficacy 330 compared to warfarin for the prevention of thromboembolic event and intracardiac thrombus 331

332 formation.

333	The incidence of major bleeding events was numerically higher in the edoxaban group
334	(4.1% vs 1.0%; risk difference, 3.07; 95% CI, -0.67 to 7.27). However, fatal bleeding or
335	intracranial hemorrhage did not occur despite high incidence of gastrointestinal bleeding. On
336	the other hand, one patient died of cerebral hemorrhage in the warfarin group. In addition, the
337	incidence of major bleeding in the edoxaban group in the present study was similar to that
338	identified in previous studies ^{2, 3, 5, 20, 28, 29} evaluating clinical events early after bioprosthetic
339	valve replacement.

The time in therapeutic range in the warfarin group was very short (19.0%) in the 340 present study. During the unstable period immediately following open heart surgery, there is 341 a significant risk of hemorrhage; therefore, surgeons tend to underdose patients, such that 342 their PT-INRs are shorter than would be ideal. In addition, it is difficult to achieve 343 appropriate therapeutic range of warfarin during the relatively short period of hospitalization. 344 The short time in therapeutic range may influence on the occurrence rate of embolic events 345 and bleeding. However, this undertreatment with warfarin reflects the current clinical 346 situation and is precisely the problem associated with warfarin administration. Increase in 347 treatment option of anticoagulant therapy early after cardiac surgery may have clinical 348 advantages, because the conditions of the patients are highly variable during this period. It 349 may give benefits for medical stuffs as well as patients, because edoxaban can be used with 350

351 constant dose, no need of routine monitoring of anticoagulation activity, and a low risk of352 interaction with other drugs and food.

The present study had several limitations. First, the open-label protocol could have 353 introduced bias. Warfarin should be administered with monitoring of dose adjustments using 354 the PT-INR, whereas the dose of edoxaban is constant, determined by renal function and 355 356 body weight, not the PT-INR. Therefore, we were unable to blind the participants or their physicians with regard to the treatment group. However, outcome assessments were 357 conducted by assessors who were blinded to the treatment allocation. In addition, data 358 management and monitoring were performed by independent clinical research entities to 359 minimize the risk of bias. Second, the timing of the initiation of anticoagulant therapy was 360 determined by the surgeons, which may have influenced the incidences of the clinical events. 361 However, the present study was of patients in an unstable condition immediately after 362 open-heart surgery, and therefore the study protocol was designed to prioritize patient safety. 363 Third, we did not include patients undergoing transcatheter aortic valve replacement. 364 However, the strategy of antithrombotic therapy after bioprosthetic valve replacement differs 365 for patients who undergo surgical or transcatheter aortic valve replacement, according to the 366 current guidelines.^{7–9} Therefore, the study population was limited to patients undergoing 367 surgical bioprosthetic valve replacement. 368

369

In conclusion, edoxaban demonstrated comparable efficacy to warfarin for the

- 370 prevention of thromboembolic events in patients early after undergoing bioprosthetic valve
- 371 replacement, suggesting that it is a potential alternative anticoagulant therapy.

372

374 Acknowledgments

375	We thank al	1 the	investigators	(listed	in	the	Supplemental	Materials) and	the study	y nurses
				\					/		

- 376 /study coordinators involved in the ENBALV trial, and the staff members of DOT WORLD
- 377 Co., Ltd for their assistance in the management of data collection, storage, and analysis.
- 378 We also thank Mark Cleasby, PhD from Edanz (<u>https://jp.edanz.com/ac</u>) for editing a draft of
- this manuscript.

380

381 Sources	of	fundin	g
-------------	----	--------	---

382 This investigator-initiated trial was funded by Daiichi Sankyo Co., Ltd.

383

384 Disclosures

- 385 Dr Izumi has received speaker honoraria from Daiichi Sankyo Co., Ltd., Nippon Boehringer
- 386 Ingelheim, and Novartis and research funding from Pfizer, LSI Medience Co., PPD-SNBL
- 387 K.K., Abbott Medical Japan, Bristol-Myers Squibb, and Eli Lilly and Company.
- 388 Dr. Sakaguchi has received speaker honoraria from Abbott Medical Japan and Medtronic

389 Japan.

390 The other authors have no relevant financial or non-financial interests to disclose.

- 392
- 393

394 Supplemental material

- 395 List of investigators
- 396 Trial committee members
- 397 Tables S1–S3
- 398 Figures S1–S2

399

401 **References**

403	1. Head SJ, Çelik M, Kappetein AP. Mechanical versus bioprosthetic aortic valve
404	replacement. Eur Heart J. 2017;38:2183-2191. doi: 10.1093/eurheartj/ehx141
405	2. Mérie C, Køber L, Olsen PS, Andersson C, Gislason G, Jensen JS, Torp-Pedersen C.
406	Association of warfarin therapy duration after bioprosthetic aortic valve replacement
407	with risk of mortality, thromboembolic complications, and bleeding. JAMA.
408	2012;308:2118–2125. doi: 10.1001/jama.2012.54506
409	3. Brennan JM, Edwards FH, Zhao Y, O'Brien S, Booth ME, Dokholyan RS, Douglas
410	PS, Peterson ED; DEcIDE AVR Research Team. Early anticoagulation of bioprosthetic
411	aortic valves in older patients: results from the Society of Thoracic Surgeons Adult
412	Cardiac Surgery National Database. J Am Coll Cardiol. 2012;60:971-977. doi:
413	10.1016/j.jacc.2012.05.029
414	4. Heras M, Chesebro JH, Fuster V, Penny WJ, Grill DE, Bailey KR, Danielson GK,
415	Orszulak TA, Pluth JR, Puga FJ, et al. High risk of thromboemboli early after
416	bioprosthetic cardiac valve replacement. J Am Coll Cardiol. 1995;25:1111-1119. doi:
417	10.1016/0735-1097(94)00563-6
418	5. Zhang H, Dong Y, Ao X, Fu B, Dong L; CLIATHVR (Chinese Low Intensity
419	Anticoagulant Therapy After Heart Valve Replacement) multicenter clinical study team.

420	Comparison of antithrombotic strategies in Chinese patients in sinus rhythm after
421	bioprosthetic mitral valve replacement: early outcomes from a multicenter registry in
422	China. Cardiovasc Drugs Ther. 2021;35:1–10. doi: 10.1007/s10557-020-07069-8
423	6. Russo A, Grigioni F, Avierinos JF, Freeman WK, Suri R, Michelena H, Brown R,
424	Sundt T, Enriquez-Sarano M. Thromboembolic complications after surgical correction of
425	mitral regurgitation incidence, predictors, and clinical implications. J Am Coll Cardiol.
426	2008;51:1203–1211. doi: 10.1016/j.jacc.2007.10.058
427	7. Izumi C, Eishi K, Ashihara K, Arita T, Otsuji Y, Kunihara T, Komiya T, Shibata T,
428	Seo Y, Daimon M, et al. JCS/JSCS/JATS/JSVS 2020 Guidelines on the management of
429	valvular heart disease. Circ J. 2020;84:2037–2119. doi: 10.1253/circj.CJ-20-0135
430	8. Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin 3 rd JP, Gentile F, Jneid
431	H, Krieger EV, Mack M, McLeod C, et al. 2020 ACC/AHA Guideline for the
432	management of patients with valvular heart disease: executive summary: a report of the
433	American College of Cardiology/American Heart Association Joint Committee on
434	Clinical Practice Guidelines. Circulation. 2021;143:e35–e71. doi:
435	10.1161/CIR.000000000000932
436	9. Vahanian A, Beyersdorf F, Praz F, Milojevic M, Baldus S, Bauersachs J, Capodanno
437	D, Conradi L, De Bonis M, De Paulis R, et al. 2021 ESC/EACTS Guidelines for the
438	management of valvular heart disease. Eur Heart J. 2022;43:561–632. doi:

439 10.1093/eurheartj/ehab395

440	10. Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, Waldo
441	AL, Ezekowitz MD, Weitz JI, Špinar J, et al. Edoxaban versus warfarin in patients with
442	atrial fibrillation. N Engl J Med. 2013;369:2093–2104. doi: 10.1056/NEJMoa1310907
443	11. Granger CB, Alexander JH, McMurray JJV, Lopes RD, Hylek EM, Hanna M,
444	Al-Khalidi HR, Ansell J, Atar D, Avezum A, et al. Apixaban versus warfarin in patients
445	with atrial fibrillation. N Engl J Med. 2011;365:981–992. doi: 10.1056/NEJMoa1107039
446	12. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, Breithardt G,
447	Halperin JL, Hankey GJ, Piccini JP, et al. Rivaroxaban versus warfarin in nonvalvular
448	atrial fibrillation. N Engl J Med. 2011;365:883–891. doi: 10.1056/NEJMoa1009638
449	13. Avezum A, Lopes RD, Schulte PJ, Lanas F, Gersh BJ, Hanna M, Pais P, Erol C,
450	Diaz R, Bahit MC, et al. Apixaban in comparison with warfarin in patients with atrial
451	fibrillation and valvular heart disease: findings from the Apixaban for Reduction in
452	Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial.
453	Circulation. 2015;132:624-632. doi: 10.1161/CIRCULATIONAHA.114.014807
454	14. Carnicelli AP, De Caterina R, Halperin JL, Renda G, Ruff CT, Trevisan M, Nordio F,
455	Mercuri MF, Antman E, Giugliano RP, et al. Edoxaban for the prevention of
456	thromboembolism in patients with atrial fibrillation and bioprosthetic valves. Circulation.
457	2017;135:1273-1275. doi: 10.1161/CIRCULATIONAHA.116.026714

458	15. Guimarães PO, Pokorney SD, Lopes RD, Wojdyla DM, Gersh BJ, Giczewska A,
459	Carnicelli A, Lewis BS, Hanna M, Wallentin L, et al. Efficacy and safety of apixaban vs
460	warfarin in patients with atrial fibrillation and prior bioprosthetic valve replacement or
461	valve repair: insights from the ARISTOTLE trial. Clin Cardiol. 2019;42:568-571. doi:
462	10.1002/clc.23178
463	16. Guimaraes HP, Lopes RD, de Barros e Silva PGM, Liporace IL, Sampaio RO,
464	Tarasoutchi F, Hoffmann-Filho CR, Patriota RdeLS, Leiria TLL, Lamprea D, et al.
465	Rivaroxaban in patients with atrial fibrillation and a bioprosthetic mitral value. $N Engl J$
466	Med. 2020;383:2117–2126. doi: 10.1056/NEJMoa2029603
467	17. Izumi C, Miyake M, Fujita T, Koyama T, Tanaka H, Ando K, Komiya T, Izumo M,
468	Kawai H, Eishi K, et al. Antithrombotic therapy for patients with atrial fibrillation and
469	bioprosthetic valves - real-world data from the multicenter, prospective, observational
470	BPV-AF Registry. Circ J. 2022;86:440–448. doi: 10.1253/circj.CJ-21-0564
471	18. Suppah M, Kamal A, Saadoun R, Baradeiya AMA, Abraham B, Alsidawi S, Sorajja
472	D, Fortuin FD, Arsanjani R. An evidence-based approach to anticoagulation therapy
473	comparing direct oral anticoagulants and vitamin K antagonists in patients with atrial
474	fibrillation and bioprosthetic valves: a systematic review, meta-analysis, and network
475	meta-analysis. Am J Cardiol. 2023;206:132–150. doi: 10.1016/j.amjcard.2023.07.141
476	19. Pasciolla S, Zizza LF, Le T, Wright K. Comparison of the efficacy and safety of

477	direct oral anticoagulants and warfarin after bioprosthetic valve replacements. Clin Drug
478	Investig. 2020;40:839–845. doi: 10.1007/s40261-020-00939-x
479	20. Shim CY, Seo J, Kim YJ, Lee SH, De Caterina R, Lee S, Hong G-R. Efficacy and
480	safety of edoxaban in patients early after surgical bioprosthetic valve implantation or
481	valve repair: a randomized clinical trial. J Thorac Cardiovasc Surg. 2023;165:58-67.
482	doi: 10.1016/j.jtcvs.2021.01.127
483	21. Izumi C, Amano M, Fukushima S, Yaku H, Eishi K, Sakaguchi T, Minami M,
484	Yamamoto H, Onda K, Omae K. Efficacy and safety of edoxaban in anticoagulant
485	therapy early after surgical bioprosthetic valve replacement: rationale and design of the
486	ENBALV trial. Cardiovasc Drugs Ther. 2024 Jun 24. doi:
487	10.1007/s10557-024-07585-x. Online ahead of print.
488	22. Chang WT, Ho CH, Chang CL, Cheng BC, Wu NC, Chen ZC. Influence of warfarin
489	on cardiac and cerebrovascular events following bioprosthetic aortic valve replacement:
490	a nationwide cohort study. J Thorac Cardiovasc Surg. 2020;159:1730-1739. doi:
491	10.1016/j.jtcvs.2019.04.096
492	23. Makkar RR, Fontana G, Jilaihawi H, Chakravarty T, Kofoed KF, De Backer O, Asch
493	FM, Ruiz CE, Olsen NT, Trento A, et al. Possible subclinical leaflet thrombosis in
494	bioprosthetic aortic valves. N Engl J Med. 2015;373:2015–2024. doi:
495	10.1056/NEJMoa1509233

496	24. Gadsbøll K, Staerk L, Fosbøl EL, Sindet-Pedersen C, Gundlund A, Lip GYH,
497	Gislason GH, Olesen JB. Increased use of oral anticoagulants in patients with atrial
498	fibrillation: temporal trends from 2005 to 2015 in Denmark. Eur Heart J. 2017;38:899-
499	906. doi: 10.1093/eurheartj/ehw658
500	25. Maura G, Billionnet C, Drouin J, Weill A, Neumann A, Pariente A. Oral
501	anticoagulation therapy use in patients with atrial fibrillation after the introduction of
502	non-vitamin K antagonist oral anticoagulants: findings from the French healthcare
503	databases, 2011–2016. BMJ Open. 2019;9:e026645. doi:10.1136/bmjopen-2018-026645
504	26. Koretsune Y, Yamashita T, Akao M, Atarashi H, Ikeda T, Okumura K, Shimizu W,
505	Tsutsui H, Toyoda K, Hirayama A, et al. Baseline demographics and clinical
506	characteristics in the All Nippon AF in the Elderly (ANAFIE) Registry. Circ J
507	2019;83:1538–1545. doi: 10.1253/circj.CJ-19-0094
508	27. Beller JP, Krebs ED, Hawkins RB, Mehaffey JH, Quader MA, Speir AM, Kiser AC,
509	Joseph M, Yarboro LT, Teman NR, et al. Non-vitamin K oral anticoagulant use after
510	cardiac surgery is rapidly increasing. J Thorac Cardiovasc Surg. 2020;160:1222-1231.
511	doi: 10.1016/j.jtcvs.2019.09.064
512	28. ElBardissi AW, DiBardino DJ, Chen FY, Yamashita MH, Cohn LH. Is early
513	antithrombotic therapy necessary in patients with bioprosthetic aortic valves in normal
514	sinus rhythm? J Thorac Cardiovasc Surg. 2010;139:1137–1145. doi:

515 10.1016/j.jtcvs.2009.10.064

29. Bravata DM,	Coffing JM, l	Kansagara D	, Myers J, 1	Murphy L, Homoya BJ, I	Perkins
AJ, Snow K, Quin	n JA, Zhang Y	Y, et al. Asso	ociation bet	ween antithrombotic med	lication
use after bioprost	hetic aortic va	alve replacer	ment and or	utcomes in the Veterans	Health
Administration	System.	JAMA	Surg.	2019;145:e184679.	doi:
10.1001/jamasurg.	2018.4679				
	 29. Bravata DM, AJ, Snow K, Quin use after bioprosth Administration 10.1001/jamasurg. 	 29. Bravata DM, Coffing JM, I AJ, Snow K, Quin JA, Zhang Y use after bioprosthetic aortic va Administration System. 10.1001/jamasurg.2018.4679 	 29. Bravata DM, Coffing JM, Kansagara D AJ, Snow K, Quin JA, Zhang Y, et al. Asso use after bioprosthetic aortic valve replacer Administration System. <i>JAMA</i> 10.1001/jamasurg.2018.4679 	 29. Bravata DM, Coffing JM, Kansagara D, Myers J, I AJ, Snow K, Quin JA, Zhang Y, et al. Association bet use after bioprosthetic aortic valve replacement and or Administration System. <i>JAMA Surg.</i> 10.1001/jamasurg.2018.4679 	 29. Bravata DM, Coffing JM, Kansagara D, Myers J, Murphy L, Homoya BJ, AJ, Snow K, Quin JA, Zhang Y, et al. Association between antithrombotic mechanism use after bioprosthetic aortic valve replacement and outcomes in the Veterans Administration System. <i>JAMA Surg.</i> 2019;145:e184679. 10.1001/jamasurg.2018.4679

522 Figure legends

523

- 524 **Figure 1.** Enrollment, randomization, and follow-up of the patients
- 525 Figure 2. Primary and secondary endpoints
- 526 Figure 3. Kaplan–Meier analysis of the primary and key secondary endpoints
- 527 A: Primary endpoint. B: Intracardiac thrombus. C: Major bleeding. D: Net outcome
- 528 (composite of stroke, systemic embolism, or major bleeding).
- 529 **Figure 4.** Results of the subgroup analysis of the primary endpoint
- 530 Ccr, creatinine clearance.

	porporary.	
All rights received	No rause allowed without permission	
All fights reserved.		

	All Patients	Edoxaban	Warfarin
Characteristic	(N=389)	(N=195)	(N=194)
Age,			
Mean± SD, yr	72.7 ± 6.1	72.9 ± 6.3	72.5 ± 5.8
Distribution			
<65yr	33 (8.5)	16 (8.2)	17 (8.8)
≥65 yr and <75 yr	204 (52.4)	93 (47.7)	111 (57.2)
≥75 yr and <80 yr	90 (28.3)	69 (35.4)	41 (21.1)
≥80 yr	42 (10.8)	17 (8.7)	25 (12.9)
Male sex-no. (%)	221 (56.8)	100 (51.3)	121 (62.4)
Weight			
Mean± SD, kg	60.6 ± 11.4	59.0 ± 10.6	62.3 ± 12.0
Distribution			
≤60kg	194 (49.9)	110 (56.4)	84 (43.3)
>60Kg	195 (50.1)	85 (43.6)	110 (56.7)
Creatinine clearance			
Mean± SD, ml/min	63.7 ± 1.5	63.3 ± 1.5	64.0 ± 1.5
Distribution			
>50ml/min	293 (75.3)	150 (76.9)	143 (73.7)
≤50ml/min	96 (24.7)	45 (23.1)	51 (26.3)
CHADS ₂ Score	2.0 ± 1.2	2.1 ± 1.2	2.0 ± 1.1
CHA2DS2-VASc Score	3.4 ± 1.4	3.5 ± 1.4	3.4 ± 1.4
HAS-BLED Score	1.1 ± 0.6	1.1 ± 0.6	1.1 ± 0.6

Table 1: Demographic and Clinical Characteristics of the Patients

All rights reserved.	No reuse	allowed without	permission.
/ In fighte received.	10010000	anomou miniour	

Atrial Fibrillation, no (%)	80 (20.6)	42 (21.5)	38 (19.6)
Antiplatelet drug, no (%)	67 (17.2)	33 (16.9)	34 (17.5)
New York Heart Association class			
Class III or IV, no (%)	26 (6.7)	13 (6.7)	13 (6.7)
Prosthetic valve position, no (%)			
Aortic only	339 (87.1)	168 (86.2)	171 (88.1)
Mitral only	37 (9.5)	20 (10.3)	17 (8.8)
Both	13 (3.3)	7 (3.6)	6 (3.1)
Initial dose of edoxaban			
Distribution, no (%)			
60mg		64 (32.8)	
30mg		131 (67.2)	

SD, standard deviation

	Edoxaban (n=195)	Warfarin (n=194)				Risk	95% Confidence
End Point	No of patients with event (%)						Interval
Stroke or Systemic Embolism	1 (0.5)	3 (1.5)		⊢∎+	:	-1.034	-4.340, 1.946
Stroke, Systemic Embolism, or Major Bleeding	9 (4.6)	4 (2.1)		· ++-•	∍	2.554	-1.641, 7.023
Stroke	1 (0.5)	3 (1.5)				-1.034	-4.340, 1.946
Systemic Embolism	0 (0.0)	0 (0.0)				-	-
Major Bleeding	8 (4.1)	2 (1.0)			▫──┤	3.072	-0.669, 7.269
Asymptomatic Cerebral Infarction or hemorrhage	37 (19.0)	26 (13.4)				5.572	-2.156, 13.253
Intracardiac Thrombus	0 (0.0)	2 (1.0)		┝╼┿┥		-1.031	-4.069, 1.523
Cerebral hemorrhage except hemorrhagic cerebral infarction	0 (0.0)	0 (0.0)				-	-
Cardiovascular Death	0 (0.0)	1 (0.5)		┝╼┫┥┥		-0.515	-3.279, 1.942
Myocardial Infarction (Intervention induced)	0 (0.0)	0 (0.0)				-	-
Myocardial Infarction (Spontaneous)	0 (0.0)	0 (0.0)				-	-
Cardiovascular events	1 (0.5)	3 (1.5)		┝╼┼┥		-1.034	-4.340, 1.946
Clinically Relevant Bleeding	11 (5.6)	5 (2.6)		H	▫──┤	3.064	-1.455, 7.840
Minor Bleeding	9 (4.6)	8 (4.1)		-	—	0.492	-4.258, 5.270
Prosthetic Valve Dysfunction	0 (0.0)	0 (0.0)				-	-
All-cause death	1 (0.5)	1 (0.5)		⊢╋	4	-0.003	-2.809, 2.790
Major, Clinically Relevant or Minor Bleeding	27 (13.8)	15 (7.7)				6.114	-0.479, 12.765
			-0.1		17		
			-0.1	0.0			
		E	doxaban E	Better	Warfarin Better		
			•		\rightarrow		

А

В

С

D

		Ed (n=	Edoxaban (n=195)		Warfarin (n=194)				Dick	95%
Subgroup		No of patients	No of patients with event (%)	No of patients	No of patients with event (%)				difference	Confidence Interval
Sex	Male	100	1 (1.0)	121	1 (0.8)				0.174	-4.295, 5.473
	Female	95	0 (0.0)	73	2 (2.7)		⊢ d i		-2.740	-10.439, 2.606
Age, distribution1	< 75 yr	109	0 (0.0)	128	1 (0.8)		Н		-0.781	-4.918, 3.525
5,	≥ 75 yr	86	1 (1.2)	66	2 (3.0)		⊢∎-I		-1.868	-10.387, 4.679
Age distribution2	< 80 yr	178	1 (0.6)	169	3 (1.8)				-1.213	-4.988, 2.068
	≥ 80 yr	17	0 (0.0)	25	0 (0.0)				-	-
Position of bioprosthetic valve	Aortic only	168	1 (0.6)	171	2 (1.2)				-0.574	-4.053, 2.749
	Mitral only	20	0 (0.0)	17	0 (0.0)				-	-
	Both	7	0 (0.0)	6	1 (16.7)				-16.667	-63.518, 29.993
Presence of atrial fibrillation	No	153	0 (0.0)	156	3 (1.9)	•	Lei I	·	-1.923	-5.958, 1.446
	Yes	42	1 (2.4)	38	0 (0.0)				2.381	-9.273, 14.095
Administration of antiplatelet drugs	No	162	1 (0.6)	160	3 (1.9)				-1.258	-5.239, 2.317
	Yes	33	0 (0.0)	34	0 (0.0)				-	-
History of major bleeding	No	194	1 (0.5)	194	3 (1.5)		Har I.		-1.031	-4.338, 1.961
	Yes	1	0 (0.0)	0	-		'T'		-	-
History of Stroke	No	179	1 (0.6)	171	3 (1.8)		lei lei		-1.196	-4.928, 2.064
	Yes	16	0 (0.0)	23	0 (0.0)		'T'		-	-
History of systemic embolism	No	194	1 (0.5)	194	3 (1.5)		La la		-1.031	-4.338, 1.961
	Yes	1	0 (0.0)	0	-		'T'		-	-
Body weight 1	≤ 60 kg	110	0 (0.0)	84	1 (1.2)				-1.190	-7.375.3.164
	> 60 kg	85	1 (1.2)	110	2(1.8)				-0.642	-6.000, 5.656
Body weight 2	≤ 45 kg	15	0 (0 0)	15	0(00)		'1'		-	-
	> 45 kg	180	1 (0.6)	179	3 (1.7)		La la		-1.120	-4.695.2.102
Ccr(mL/min)	15≤.30>	3	0 (0 0)	4	0 (0 0)		141		-	-
	30 ≤. 50 ≥	42	0 (0 0)	47	0 (0 0)				-	-
	50<	150	1 (0.7)	143	3 (2.1)		щ		-1 431	-5.862, 2.443
CHADS ₂ Score	0-1	66	0(0.0)	72	1(14)				-1 389	-8 538 5 589
	2-6	129	1 (0.8)	122	2 (1.6)		'цц'		-0.864	-5 670 3 460
		129	1 (0.0)	122	2 (1.0)		141		0.001	5.67 0, 5.100
					_					
					0					
					-0	1.0	-0.4 0.0	0.4 0.8		
						Edo	xaban Better Wa	farin Better		
						4				
								-		