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Abstract

The serial interval of an infectious disease is a key instrument to understand transmission dynam-

ics. Estimation of the serial interval distribution from illness onset data extracted from trans-

mission pairs is challenging due to the presence of censoring and state-of-the-art frequentist or

Bayesian methods mostly rely on parametric models. We present a fully data-driven methodology

to estimate the serial interval distribution based on (coarse) serial interval data. The proposal

combines a nonparametric estimator of the cumulative distribution function with the bootstrap

and yields point and interval estimates of any desired feature of the serial interval distribution.

Algorithms underlying our approach are simple, fast and stable, and are thus easily implementable

in any programming language most desired by modelers from the infectious disease community.

The nonparametric routines are included in the EpiLPS package for ease of implementation. Our

method complements existing parametric approaches for serial interval estimation and permits to

straightforwardly analyze past, current, or future illness onset data streams.
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1 Introduction

The serial interval (SI) of an infectious disease is an epidemiological delay characterizing a duration

between two well-defined events related to a disease. It represents the time between symptom(s)

onset in a primary case or infector and the symptom(s) onset in a secondary case or infectee

(Simpson, 1948). This time delay can be negative as nothing restrains the illness onset time of

the infector to be larger than the onset time of the infectee. In the literature, this interval is also

known as the clinical onset serial interval (Cowling et al., 2009; Te Beest et al., 2014). A different,

but closely related delay quantity is the generation interval (GI), which is defined as the duration

between infection events in an infector-infectee pair (Svensson, 2007). Contrary to the SI, the GI

is a delay quantity that is always positive. The timing of an infection event is typically less likely

to be observed than the timing of a symptom event and it is common practice to approximate

the distribution of generation times by the SI distribution (Lehtinen et al., 2021; Chen et al.,

2022). Serving as a proxy for generation intervals, serial intervals can be used as an instrument

to measure the time scale of disease transmission (Park et al., 2021) and are therefore key in

linking the epidemic growth rate with the time-varying reproduction number (Wallinga and Lip-

sitch, 2007; Torneri et al., 2021). The crucial role played by serial intervals in disease transmission

models emphasizes the need to have reliable, stable, and replicable statistical methodologies to

estimate this transmission interval. Ideally, these methodologies should also follow best practices

as recently described in Charniga et al. (2024).

Different methods exist to estimate the distribution and features of the serial interval of an

infectious disease based on data. When time intervals of illness onset between infectors and in-

fectees are observed, the data is considered as a random sample from the population. In that

case, essential features of the serial interval are estimated by either directly computing summary

statistics from empirical serial intervals (e.g. mean, median, standard deviation) or by fitting a

parametric distribution to observed data (Boëlle et al., 2011; Griffin et al., 2020). Parametric

methods are by far the most common and usually include the Lognormal, Weibull, Gamma or

Gaussian distributions (Lessler et al., 2009; Cowling et al., 2010; Li et al., 2020; Nishiura et al.,

2020; Ma et al., 2020; Kremer et al., 2022). Estimation of model parameters is typically carried

out with the maximum likelihood principle or by using the Bayesian approach, and often on a few

observations. To our knowledge, only few attempts have been made in applying nonparametric

methods to serial interval data analysis. For instance, Cowling et al. (2009) compute a nonpara-
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metric estimate of the cumulative distribution function of the serial interval of influenza based on

the method of Turnbull (1976) to see whether different parametric models are in agreement with

it; and Mettler et al. (2020) use the nonparametric bootstrap to compute confidence intervals for

the clinical onset SI of SARS-CoV-2.

By definition, serial intervals involve transmission pairs. It means that a minimal requirement

for SI estimation is to have data on symptom(s) onset times for the infector and infectee. Such

data can be extracted from contact tracing programmes, which permit to gain knowledge about

who infected whom and provide information on timings of symptoms in infector-infectee pairs

(Yang et al., 2020; Müller and Kretzschmar, 2021). Commonly, serial interval data are coarse in

that only lower and upper limits of illness onset timing is observed. This characteristic is known

as censoring and adds a layer of complexity to the estimation problem. If coarseness concerns

either the infector or infectee, data are said to be single interval-censored; and if coarseness affects

both actors in the transmission pair, data are called doubly interval-censored (Reich et al., 2009).

Thinking from a continuous time perspective, serial interval data is more often than not doubly

interval-censored due to the time resolution of reporting. When the time resolution for reporting

illness onset is a calendar day (as is often the case), coarseness is inherent to the calendar day, i.e.

the precise timing of illness onset within the reported calendar day remains unknown. Therefore,

even if exact calendar dates are observed, it is good practice to still consider the data as doubly

interval-censored (Charniga et al., 2024).

Despite the large number of studies conducted on the serial interval of different pathogens,

most methods are difficult or impossible to reproduce in the sense that independent researchers

are confronted with serious difficulties in reusing existing procedures to new data (Gandrud,

2018). The field of infectious disease modeling suffers from alarmingly low computational repro-

ducibility rates (Henderson et al., 2024), which hinders applicability and misaligns with pandemic

preparedness objectives. This reproducibility conundrum has several causes. For instance, recent

meta-epidemiological surveys found that very few publications share code or data (Collins and

Alexander, 2022; Zavalis and Ioannidis, 2022). Other potential causes are code incompleteness

and complex dependencies among multiple scripts without clear guidelines regarding computation

order (Henderson et al., 2024). The study of Vink et al. (2014) highlights that finding evidence

supporting frequently cited serial interval values in the literature is a challenging task.

Hopefully, more applicable tools and methods have recently emerged to estimate epidemiolog-
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ical delay distributions. Originally developed for estimation of incubation period distributions,

the methodology of Reich et al. (2009) is available in an R software package (Reich et al., 2021)

and associated routines are embedded in the EpiEstim package of Cori et al. (2013) to estimate

the serial interval (Thompson et al., 2019). Vink et al. (2014) reanalyze published serial interval

data on different respiratory infections by using a common statistical method and provide R code

and data sets for reproducibility. The epidist R package (Park et al., 2024) is also operational for

serial interval estimation and accounts for censoring and truncation. These tools rely on para-

metric methods imposing distributional assumptions on the serial interval distribution and leave

no room for data-driven inference.

In an attempt to complement the above-mentioned parametric methods, we develop a non-

parametric approach to estimate the serial interval distribution based on coarsely observed illness

onset data. The proposed method is entirely data-driven and applicable on a wide range of serial

interval data commonly analyzed in the literature. Its chief merits are its simplicity and the fact

that it relies on two powerful statistical tools, namely the inverse-cdf method and the bootstrap.

Since R is among the most popular programming languages used in the infectious disease mod-

eling community (Batra et al., 2021; Henderson et al., 2024), the computer code underlying our

nonparametric methodology is included in the EpiLPS package (Gressani, 2021; Gressani et al.,

2022, 2024; Sumalinab et al., 2024) available on the Comprehensive R Archive Network (CRAN)

repository. Source code comes in a lightweight format and spans only a few lines. It can thus be

easily translated in another programming language if needed (e.g. Python).

Next, we present our nonparametric estimator and briefly discuss some of its theoretical prop-

erties. The performance of our method is assessed in extensive simulation scenarios. Applications

to transmission pair data extracted from previous analyses for a diverse set of pathogens under-

lines the wide, general, and straightforward applicability of our approach. The article concludes

with a discussion on the main strengths and limitations of the proposed nonparametric toolbox

for serial interval estimation.
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2 Methods

2.1 Notation

Let S be a real-valued random variable representing the serial interval of an infectious disease and

denote by FS(·) the cumulative distribution function (cdf) of S with FS(s) = P (S ≤ s) ∀s ∈ R.

For the sake of generality, our model is formulated in continuous time. At the level of the ith

transmission pair,
#

tSi ≥ 0 denotes the (finite) illness onset time of the infector and tSi ≥ 0 stands

for the (finite) illness onset time of the infectee. In practice, the illness onset time is reported

in calendar time and the serial interval is expressed in days. Conversion from calendar time to

analysis time is usually done by assigning an integer to a calendar date. When illness onset

timings are considered exactly observed, the serial interval for the ith transmission pair is simply

si = tSi −
#

tSi . If the illness onset time of the infectee precedes the onset time of the infector, the

serial interval is negative (si < 0) and the transmission event is called presymptomatic. In presence

of coarse data, either
#

tSi or tSi (single interval-censored data) or both (doubly interval-censored

data) are only known to lie within a time interval, so that
#

tSi ∈
[ #  

tSiL,
#  

tSiR
]
, with 0 ≤

#  

tSiL <
#  

tSiR < +∞

for the infector and tSi ∈
[
tSiL, t

S
iR

]
, with 0 ≤ tSiL < tSiR < +∞ for the infectee. Following Reich

et al. (2009), single or doubly interval-censored data can be transformed to interval-reduced data,

containing the earliest possible and the latest possible serial interval time. For instance, if
#

tSi is

exactly observed and the illness onset time of the infectee is interval-censored, the earliest possible

SI time is siL = tSiL−
#

tSi and the latest possible time is siR = tSiR−
#

tSi . With doubly interval-censored

observations, interval-reduced data is obtained by computing siL = tSiL −
#  

tSiR and siR = tSiR −
#  

tSiL.

Note that both siL and siR can be negative and siR > siL will always hold. Even when
#

tSi and tSi

are exactly observed, we express the data as interval censored by constructing a displacement of

length δ from si in both directions, i.e. siL = si−δ and siR = si+δ for an arbitrary δ (here δ = 0.5

to recover serial interval windows of unit length). For a sample containing n transmission pairs,

the observed dataset has 2n elements and is denoted by D = {s1L, s1R, . . . , snL, snR}. The set of

features of S is denoted by ΘS = {θ1, θ2, . . . , θJ} and contains all features of the serial interval

that are of interest to the modeler. For example, if the aim is to estimate the mean, median

and variance of S, the set ΘS is a triplet with θ1 := E(S), θ2 := inf{s ∈ R : FS(s) ≥ 0.5} and

θ3 := E
(
(S − E(S))2

)
. The goal is to provide data-driven point and interval estimates of elements

of ΘS based on D without imposing any parametric assumption.
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2.2 A simple nonparametric estimator of FS(·)

Departing from a dataset D, we build a nonparametric estimator of FS(·) based on a simple

idea. The available information at the level of the ith transmission pair is given by the left

and right boundaries of the serial interval window, i.e. siL and siR. Any point in the interval

[siL, siR] corresponding to the true (and unobserved) serial interval of the ith pair can be seen as

an observation from the continuous serial interval distribution (population). Therefore, the data

points siL and siR extracted from the ith transmission pair can also be viewed as two observations

or draws from FS(·). A natural way to obtain a continuous estimate of FS(·) based on siL and siR

is to smooth the empirical cdf by linear interpolation (Bratley et al., 1987), yielding the following

piecewise-linear empirical cdf (Kaczynski et al., 2012):

F̃
(i)
S (s) =

(
s− siL
siR − siL

)
I(siL ≤ s < siR) + I(s ≥ siR) ∀s ∈ R,

where I(·) is the indicator function. Extending this reasoning to the entire set of pairs in the

dataset, we propose to estimate FS(·) by averaging F̃
(i)
S (·) over all n transmission pairs. This

data-driven estimator is given by:

F̂S(s) =
1

n

n∑
i=1

{(
s− siL
siR − siL

)
I(siL ≤ s < siR) + I(s ≥ siR)

}
∀s ∈ R. (1)

The above estimator is a (finite) linear combination of continuous functions F̃
(i)
S (·) and is therefore

itself a continuous function in R. Moreover, it is a non-decreasing function since it essentially

accumulates intervals when moving along the real line in the positive direction. It is also easy

to verify that lims→−∞ F̂S(s) = 0 and lims→+∞ F̂S(s) = 1, so that F̂S(·) is a bona fide cdf. In

addition, F̂S(·) is a piecewise-linear function with breakpoints or “bends” arising at points in D,

so that the cdf is almost everywhere differentiable (except at the set of points in D).

The properties of our estimator can be exploited to efficiently generate samples from F̂S(·),

which can be viewed as approximate samples from the target serial interval distribution FS(·).

Let DO = {s(1), s(2), . . . , s(2n)} denote the set of order statistics for D. Using the inverse-cdf

method, the (pseudo) random-variate generation algorithm proceeds as follows (see e.g. Bratley

et al., 1987):
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1. Generate a uniform random variable U in (0, 1), i.e. U ∼ U(0, 1).

2. Find s(i) such that F̂S(s(i)) ≤ U ≤ F̂S(s(i+1)).

3. If F̂S(s(i)) = F̂S(s(i+1)) return s∗ = s(i).

4. Else return s∗ =
(
F̂S(s(i+1))− F̂S(s(i))

)−1 ((
F̂S(s(i+1))− U

)
s(i) +

(
U − F̂S(s(i))

)
s(i+1)

)
.

2.3 The bootstrap

The bootstrap principle is used to calculate point and interval estimates of features of S. Using the

random-variate generation algorithm presented in the previous section, B independent bootstrap

samples X ∗(b) =
{
s
∗(b)
1 , . . . , s

∗(b)
n

}
, b = 1, . . . , B of size n are generated from F̂S(·). Let Tj(X ∗(b))

denote the statistic serving as an estimator of the feature θj ∈ ΘS . Based on the empirical

bootstrap distribution Tj(X ∗(b)), b = 1, . . . , B, a point estimate of θj is given by the mean of

the statistics generated by the resampling scheme, i.e. θ̂j = B−1
∑B

b=1 Tj(X ∗(b)). A 100(1 − α)%

confidence interval for θj is given by CI
(1−α)
θj

=
[
ξ∗Tj ,α/2

, ξ∗Tj ,1−α/2

]
, where ξ∗Tj ,α/2

denotes the α/2

quantile and ξ∗Tj ,1−α/2 the 1−α/2 quantile of the empirical bootstrap distribution. Most software

has readily available routines to compute these quantiles (e.g. the quantile function in R).

3 Simulations

3.1 Data generating mechanism for artificial serial interval data

To simulate artificial serial interval data, we assume that the target SI distribution belongs to a

parametric family indexed by a vector η and denote this by S ∼ Pη. In particular, we consider two

distributions inspired from the literature. The first is a Gaussian distribution S ∼ N (2.8, 2.52)

with a mean of 2.8 days and a standard deviation of 2.5 days, mimicking the SI distribution

of SARS-CoV-2 Omicron (Kremer et al., 2022), designated by the World Health Organization

as a variant of concern (World Health Organization). The second is a Weibull distribution

S ∼ W(2.36, 3.18) with shape 2.36 and scale 3.18 that imitates the SI distribution of influenza A

(Lessler et al., 2009).

We denote by A the artificial serial interval dataset produced by our data generating mech-

anism (DGM). The DGM proceeds in a loop, where each iteration generates serial interval data

for the ith transmission pair. At iteration i, a SI value is drawn from the target serial interval
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distribution si ∼ Pη. Next, an arbitrary positive real number is assigned to the illness onset time

of the infector through the uniform distribution
#

tSi ∼ U
(
|si| + c, |si| + c + 1

)
, where c > 0 is a

scalar that will be clarified later on. The illness onset time of the infectee is simply tSi =
#

tSi + si

and note that the constraints tSi ≥ 0 and
#

tSi ≥ 0 are satisfied.

In presence of censoring, a rule is needed to determine the left and right boundaries of the

illness onset interval reported by a member of the ith transmission pair. We illustrate this rule for

the infectee. The same rule holds for the infector. It is important to generate illness onset intervals

of various widths ∆i = tSiR − tSiL to mimic the fact that different individuals will typically report

different illness onset intervals (heterogeneity of the population in the reporting process). In that

direction, we assume that ∆i is random and governed by a Gamma distribution ∆i ∼ G(a, b) with

shape a and rate b, so that E(∆i) = a/b and V(∆i) = a/b2. We fix a = b = 4, yielding illness

onset intervals with an average width of one day. There is also less than 1% chance to generate

interval widths above three days and roughly 95% chance to generate interval widths below two

days.

Once ∆i is available, another rule is required to determine the location of the boundaries tSiL

and tSiR with respect to tSi . A simple rule would be to fix tSiL = tSi −0.5∆i and tSiR = tSi +0.5∆i. We

believe that this rule is not realistic as it assumes that the individual is able to perfectly center

the reported interval around the true illness onset time. A more realistic rule is to allow the

interval to move randomly around tSi . This can be achieved by generating a proportion according

to a Beta distribution, say ρi ∼ B(5, 5), and interpret it as the proportion of the distance ∆i that

separates tSiL from tSi . In other words, once ρi is obtained, simply compute tSiL = tSi − ρi∆i and

tSiR = tSi + (1− ρi)∆i. If ρi = 0, the left boundary of the interval is equal to tSi and tSiR = tSi +∆i.

If ρi = 1, the right boundary of the interval is equal to tSi and the left boundary is tSiL = tSi −∆i.

Any ρi ∈ (0, 1) generates a scenario in between these two extremes. The constant c > 0 used

to generate
#

tSi is simply there to ensure that
#  

tSiL ≥ 0 (and tSiL ≥ 0). Without this constant, we

could be in a scenario where tSiL = tSi − ρ∆i < 0. To avoid this, we fix c to an arbitrary large

value (here c = 10). When data are exactly observed and after n cycles (reflecting a dataset

with n transmission pairs), the DGM outputs A = {s1, . . . , sn}. In case of interval censoring, the

DGM outputs A = {s1L, s1R, . . . , snL, snR} after n cycles, where each element of A contains either

exactly observed data for at least one actor in the transmission pair (single interval censoring) or

interval censored data for both actors in the transmission pair (doubly interval-censored data).
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3.2 Simulation settings and results

The performance of our nonparametric method is assessed in different scenarios. For the Gaussian

and Weibull target SI distributions described in Section 3.1, we consider small n = 10, medium

n ∈ {20, 50} and large n = 100 sample sizes for doubly and single interval-censored data, as well

as for exactly observed serial interval data (no censoring). This yields a total of 2 × 4 × 3 = 24

scenarios, which are summarized in Table 1. Each scenario involves M = 500 dataset replications

and the performance of our approach is assessed on seven features of the serial interval S, namely,

the mean, standard deviation (SD) and the 5th, 25th, 50th, 75th and 95th percentiles denoted by

q0.05, q0.25, q0.50, q0.75 and q0.95, respectively. For each feature, we report the bias, empirical

standard error (ESE) and root mean square error (RMSE), as well as the coverage probability

(CP) and median interval width (∆CI) of 90% and 95% confidence intervals. Detailed formulas

for these performance indicators are given in Appendix A1.

Scenarios imitating SARS-CoV-2 serial interval data (Scenarios 1-12) show that the bias has a

tendency to decrease with increasing sample size. Without surprise, the bias is largest for the 5th

and 95th percentiles for small to medium sample size (n ≤ 50) since information carried by the

data is not rich enough to accurately capture the tail behavior of the target SI distribution. For

large sample size (n = 100), the bias becomes negligible, even for percentiles in the tails. Moreover,

the ESE and RMSE systematically decline as the sample size increases. Coverage probability of

the 90% and 95% confidence interval, respectively, tends to come closer to its respective nominal

value as the sample size increases.

Note that even under small to moderate sample size, the coverage probability is reasonably close

to its nominal level, except for the 5th and 95th percentiles, where undercoverage is observed.

Globally, the median width of confidence intervals obtained with the percentile bootstrap method

tends to decrease with increasing sample size.

Similar interpretations of the simulation results can be made for the scenarios mimicking in-

fluenza A serial interval data (Scenarios 13-24). For doubly interval-censored data, our method has

difficulties to estimate the standard deviation (Scenarios 13-16) and confidence intervals tend to

undercover. This phenomenon vanishes when considering single interval-censored data or exactly

observed serial interval data.
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Scenario SI target distribution Sample size Censoring scheme Results

1 N (2.8, 2.52) n = 10 Doubly interval-censored Table 2

2 N (2.8, 2.52) n = 20 Doubly interval-censored Table 2

3 N (2.8, 2.52) n = 50 Doubly interval-censored Table 2

4 N (2.8, 2.52) n = 100 Doubly interval-censored Table 2

5 N (2.8, 2.52) n = 10 Single interval-censored Table 3

6 N (2.8, 2.52) n = 20 Single interval-censored Table 3

7 N (2.8, 2.52) n = 50 Single interval-censored Table 3

8 N (2.8, 2.52) n = 100 Single interval-censored Table 3

9 N (2.8, 2.52) n = 10 No censoring Table 4

10 N (2.8, 2.52) n = 20 No censoring Table 4

11 N (2.8, 2.52) n = 50 No censoring Table 4

12 N (2.8, 2.52) n = 100 No censoring Table 4

13 W(2.36, 3.18) n = 10 Doubly interval-censored Table 5

14 W(2.36, 3.18) n = 20 Doubly interval-censored Table 5

15 W(2.36, 3.18) n = 50 Doubly interval-censored Table 5

16 W(2.36, 3.18) n = 100 Doubly interval-censored Table 5

17 W(2.36, 3.18) n = 10 Single interval-censored Table 6

18 W(2.36, 3.18) n = 20 Single interval-censored Table 6

19 W(2.36, 3.18) n = 50 Single interval-censored Table 6

20 W(2.36, 3.18) n = 100 Single interval-censored Table 6

21 W(2.36, 3.18) n = 10 No censoring Table 7

22 W(2.36, 3.18) n = 20 No censoring Table 7

23 W(2.36, 3.18) n = 50 No censoring Table 7

24 W(2.36, 3.18) n = 100 No censoring Table 7

Table 1: Target SI distribution, sample size and censoring scheme considered in the scenarios of
the simulation study. The N (2.8, 2.52) target mimics the SI distribution of SARS-CoV-2 Omicron
(Kremer et al., 2022) and the Weibull target W(2.36, 3.18) mimics the SI distribution of influenza
A (Lessler et al., 2009).
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Scenario 1 (n = 10) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean -0.024 0.788 0.788 86.60 93.20 2.514 2.968

SD -0.125 0.547 0.561 81.60 86.00 1.636 1.937

q0.05 0.976 1.095 1.466 59.60 64.40 2.942 3.421

q0.25 0.160 0.875 0.889 89.20 94.60 3.372 3.970

q0.50 -0.008 0.815 0.815 91.80 96.20 3.006 3.643

q0.75 -0.212 0.896 0.920 89.00 92.40 3.300 3.873

q0.95 -1.040 1.116 1.524 56.20 59.40 2.935 3.463

Scenario 2 (n = 20) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean 0.049 0.565 0.566 88.60 93.40 1.855 2.197

SD 0.005 0.388 0.388 87.60 91.80 1.192 1.421

q0.05 0.511 0.843 0.985 76.20 80.60 2.783 3.279

q0.25 0.081 0.653 0.658 93.00 96.40 2.439 2.929

q0.50 0.063 0.632 0.635 93.00 96.00 2.308 2.754

q0.75 0.010 0.689 0.688 89.80 95.40 2.350 2.833

q0.95 -0.430 0.842 0.945 80.80 84.60 2.785 3.251

Scenario 3 (n = 50) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean 0.009 0.343 0.343 92.40 95.20 1.177 1.400

SD 0.026 0.254 0.255 88.80 93.80 0.798 0.952

q0.05 0.157 0.605 0.625 88.60 93.80 2.149 2.536

q0.25 0.024 0.424 0.424 92.60 96.80 1.556 1.847

q0.50 0.004 0.374 0.374 94.20 98.00 1.428 1.710

q0.75 -0.008 0.421 0.421 93.60 96.60 1.563 1.864

q0.95 -0.124 0.613 0.625 86.60 92.40 2.106 2.527

Scenario 4 (n = 100) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean 0.002 0.254 0.253 89.00 95.40 0.841 1.006

SD 0.061 0.175 0.185 90.20 94.80 0.586 0.700

q0.05 -0.007 0.444 0.443 92.60 96.60 1.634 1.971

q0.25 -0.021 0.313 0.313 92.20 96.80 1.136 1.355

q0.50 0.010 0.287 0.287 94.00 97.60 1.038 1.240

q0.75 0.028 0.309 0.310 92.20 96.60 1.118 1.335

q0.95 -0.001 0.435 0.435 92.20 96.40 1.665 1.986

Table 2: Simulation results for Scenarios 1-4 with a Gaussian target SI distribution N (2.8, 2.52)
and doubly interval-censored data. The first column contains the selected features of S, namely the
mean, standard deviation, 5th, 25th, 50th, 75th and 95th percentiles. Bias, ESE, RMSE, coverage
probability (CP) and median confidence interval width ∆CI are used to assess the performance
of the nonparametric approach.
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Scenario 5 (n = 10) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean 0.006 0.847 0.847 83.00 88.40 2.422 2.866

SD -0.226 0.512 0.559 77.40 82.60 1.546 1.818

q0.05 1.168 1.104 1.607 50.00 51.60 2.716 3.113

q0.25 0.272 0.934 0.972 88.60 93.00 3.308 3.785

q0.50 0.011 0.910 0.909 83.40 92.00 2.908 3.599

q0.75 -0.250 0.942 0.974 86.40 89.60 3.232 3.701

q0.95 -1.174 1.126 1.626 45.20 49.00 2.619 3.004

Scenario 6 (n = 20) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean -0.037 0.575 0.575 87.20 92.80 1.778 2.115

SD -0.090 0.409 0.419 81.20 87.20 1.177 1.394

q0.05 0.552 0.904 1.059 71.20 74.00 2.619 2.979

q0.25 0.076 0.691 0.695 88.00 93.00 2.344 2.796

q0.50 -0.015 0.618 0.618 90.40 95.20 2.155 2.600

q0.75 -0.156 0.652 0.669 87.80 92.60 2.271 2.758

q0.95 -0.651 0.913 1.120 68.80 72.40 2.670 3.030

Scenario 7 (n = 50) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean 0.004 0.354 0.353 88.40 94.20 1.148 1.370

SD -0.027 0.254 0.255 86.80 92.00 0.783 0.932

q0.05 0.220 0.632 0.669 84.40 87.60 2.168 2.575

q0.25 0.053 0.429 0.432 90.80 95.80 1.520 1.815

q0.50 0.013 0.403 0.403 90.00 95.40 1.405 1.696

q0.75 -0.033 0.440 0.441 89.40 94.40 1.514 1.821

q0.95 -0.238 0.619 0.662 83.60 88.40 2.160 2.510

Scenario 8 (n = 100) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean 0.010 0.248 0.248 88.80 94.40 0.826 0.985

SD 0.007 0.173 0.173 89.20 93.80 0.563 0.671

q0.05 0.094 0.447 0.457 88.80 93.00 1.585 1.889

q0.25 0.016 0.320 0.320 92.20 95.80 1.113 1.336

q0.50 0.005 0.300 0.300 89.60 96.20 1.012 1.212

q0.75 0.011 0.310 0.310 92.00 97.00 1.108 1.322

q0.95 -0.076 0.418 0.425 88.60 93.60 1.568 1.871

Table 3: Simulation results for Scenarios 5-8 with a Gaussian target SI distribution N (2.8, 2.52)
and single interval-censored data. The first column contains the selected features of S, namely the
mean, standard deviation, 5th, 25th, 50th, 75th and 95th percentiles. Bias, ESE, RMSE, coverage
probability (CP) and median confidence interval width ∆CI are used to assess the performance
of the nonparametric approach.
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Scenario 9 (n = 10) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean -0.024 0.781 0.781 87.20 89.20 2.402 2.850

SD -0.196 0.543 0.576 78.00 83.20 1.589 1.887

q0.05 1.092 1.113 1.558 51.60 53.80 2.772 3.190

q0.25 0.216 0.885 0.910 89.40 92.20 3.455 3.901

q0.50 -0.007 0.830 0.829 89.40 93.80 2.925 3.606

q0.75 -0.249 0.891 0.924 88.80 91.60 3.297 3.782

q0.95 -1.176 1.103 1.612 46.60 49.00 2.582 3.030

Scenario 10 (n = 20) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean -0.010 0.577 0.576 87.80 93.60 1.760 2.088

SD -0.112 0.369 0.385 82.00 87.60 1.159 1.378

q0.05 0.631 0.880 1.082 67.80 70.20 2.627 3.013

q0.25 0.118 0.702 0.711 86.60 92.40 2.306 2.709

q0.50 -0.011 0.637 0.637 89.60 94.20 2.145 2.554

q0.75 -0.147 0.639 0.656 90.00 93.00 2.266 2.730

q0.95 -0.641 0.847 1.061 69.80 72.60 2.702 3.042

Scenario 11 (n = 50) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean -0.007 0.350 0.350 89.20 94.60 1.159 1.380

SD -0.020 0.247 0.247 87.20 93.00 0.795 0.943

q0.05 0.233 0.615 0.657 85.60 90.20 2.186 2.532

q0.25 0.036 0.431 0.432 90.40 94.40 1.500 1.791

q0.50 -0.032 0.403 0.404 90.20 94.60 1.400 1.672

q0.75 -0.060 0.447 0.451 89.60 95.60 1.545 1.858

q0.95 -0.184 0.600 0.627 88.40 91.20 2.198 2.564

Scenario 12 (n = 100) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean 0.011 0.257 0.257 88.20 94.00 0.825 0.981

SD 0.009 0.171 0.171 91.60 95.60 0.571 0.679

q0.05 0.097 0.441 0.451 88.80 93.40 1.593 1.909

q0.25 0.013 0.323 0.323 90.80 96.00 1.109 1.332

q0.50 0.024 0.297 0.298 91.40 95.60 1.017 1.218

q0.75 0.002 0.322 0.322 89.40 95.80 1.076 1.287

q0.95 -0.083 0.444 0.451 90.00 94.00 1.620 1.924

Table 4: Simulation results for Scenarios 9-12 with a Gaussian target SI distribution N (2.8, 2.52)
and exactly observed data. The first column contains the selected features of S, namely the
mean, standard deviation, 5th, 25th, 50th, 75th and 95th percentiles. Bias, ESE, RMSE, coverage
probability (CP) and median confidence interval width ∆CI are used to assess the performance
of the nonparametric approach.
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Scenario 13 (n = 10) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean -0.007 0.425 0.425 86.60 93.20 1.378 1.648

SD 0.049 0.250 0.254 94.40 97.40 0.930 1.099

q0.05 0.232 0.426 0.485 85.00 89.40 1.613 1.900

q0.25 0.088 0.427 0.436 93.60 97.60 1.642 1.958

q0.50 0.033 0.448 0.448 91.80 96.00 1.667 2.002

q0.75 -0.041 0.504 0.505 90.80 96.20 1.895 2.226

q0.95 -0.453 0.640 0.784 68.60 74.00 1.947 2.267

Scenario 14 (n = 20) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean -0.014 0.286 0.286 91.40 94.60 1.024 1.217

SD 0.112 0.178 0.210 94.20 97.80 0.673 0.797

q0.05 -0.010 0.298 0.298 96.60 99.20 1.422 1.690

q0.25 -0.014 0.294 0.294 96.00 98.20 1.244 1.488

q0.50 0.017 0.313 0.313 95.00 98.60 1.280 1.528

q0.75 0.032 0.361 0.362 94.40 97.60 1.422 1.696

q0.95 -0.166 0.473 0.501 87.60 92.20 1.786 2.123

Scenario 15 (n = 50) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean -0.001 0.184 0.184 92.40 95.80 0.657 0.784

SD 0.136 0.115 0.178 83.80 92.80 0.443 0.528

q0.05 -0.165 0.204 0.262 93.60 98.40 0.975 1.160

q0.25 -0.044 0.195 0.200 95.60 98.40 0.822 0.975

q0.50 0.024 0.203 0.205 94.80 97.40 0.833 0.992

q0.75 0.073 0.229 0.240 94.80 98.60 0.934 1.120

q0.95 0.067 0.332 0.339 94.60 96.60 1.327 1.581

Scenario 16 (n = 100) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean -0.001 0.128 0.128 94.00 97.40 0.470 0.561

SD 0.154 0.081 0.174 54.40 68.40 0.323 0.385

q0.05 -0.234 0.145 0.275 84.60 93.20 0.737 0.876

q0.25 -0.065 0.137 0.152 94.60 97.80 0.586 0.701

q0.50 0.017 0.143 0.144 97.20 98.80 0.591 0.706

q0.75 0.091 0.162 0.186 93.80 97.20 0.684 0.817

q0.95 0.160 0.238 0.287 95.20 98.60 1.048 1.241

Table 5: Simulation results for Scenarios 13-16 with a Weibull target SI distribution W(2.36, 3.18)
and doubly interval-censored data. The first column contains the selected features of S, namely the
mean, standard deviation, 5th, 25th, 50th, 75th and 95th percentiles. Bias, ESE, RMSE, coverage
probability (CP) and median confidence interval width ∆CI are used to assess the performance
of the nonparametric approach.
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Scenario 17 (n = 10) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean -0.005 0.415 0.415 87.00 93.00 1.289 1.533

SD -0.050 0.279 0.283 83.60 87.60 0.824 0.973

q0.05 0.402 0.411 0.575 66.20 70.00 1.283 1.499

q0.25 0.132 0.412 0.432 89.00 93.20 1.502 1.792

q0.50 0.022 0.452 0.452 89.80 94.60 1.572 1.902

q0.75 -0.099 0.530 0.539 88.60 92.60 1.873 2.169

q0.95 -0.583 0.668 0.886 55.80 59.60 1.669 1.946

Scenario 18 (n = 20) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean 0.007 0.281 0.281 88.60 93.40 0.921 1.099

SD -0.016 0.202 0.202 84.60 90.20 0.602 0.715

q0.05 0.205 0.322 0.381 82.40 86.40 1.166 1.387

q0.25 0.085 0.316 0.327 89.40 94.60 1.146 1.359

q0.50 0.035 0.327 0.328 90.20 95.20 1.135 1.363

q0.75 -0.036 0.359 0.361 90.80 94.60 1.303 1.554

q0.95 -0.316 0.499 0.591 73.80 77.60 1.604 1.851

Scenario 19 (n = 50) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean -0.012 0.166 0.166 92.40 97.20 0.608 0.723

SD 0.029 0.118 0.121 91.60 95.20 0.401 0.476

q0.05 0.010 0.190 0.190 95.80 98.00 0.794 0.947

q0.25 -0.005 0.176 0.176 95.40 97.60 0.743 0.887

q0.50 0.007 0.193 0.193 95.00 98.80 0.769 0.924

q0.75 0.002 0.232 0.231 94.80 97.60 0.873 1.046

q0.95 -0.102 0.347 0.361 86.40 91.00 1.254 1.511

Scenario 20 (n = 100) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean 0.002 0.127 0.127 91.00 95.40 0.432 0.514

SD 0.040 0.088 0.097 89.00 94.20 0.291 0.345

q0.05 -0.023 0.146 0.147 95.20 98.60 0.603 0.715

q0.25 -0.006 0.143 0.143 92.80 95.80 0.533 0.639

q0.50 0.011 0.152 0.152 93.40 96.80 0.548 0.657

q0.75 0.019 0.176 0.177 91.60 96.00 0.630 0.756

q0.95 0.002 0.262 0.262 91.80 96.00 0.976 1.163

Table 6: Simulation results for Scenarios 17-20 with a Weibull target SI distribution W(2.36, 3.18)
and single interval-censored data. The first column contains the selected features of S, namely the
mean, standard deviation, 5th, 25th, 50th, 75th and 95th percentiles. Bias, ESE, RMSE, coverage
probability (CP) and median confidence interval width ∆CI are used to assess the performance
of the nonparametric approach.

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.16.24315600doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.16.24315600
http://creativecommons.org/licenses/by-nc-nd/4.0/


Scenario 21 (n = 10) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean -0.035 0.391 0.392 84.60 89.60 1.222 1.457

SD -0.111 0.239 0.263 79.40 85.20 0.767 0.911

q0.05 0.431 0.413 0.597 64.00 69.00 1.208 1.435

q0.25 0.140 0.419 0.442 87.60 91.80 1.474 1.737

q0.50 0.007 0.435 0.435 90.00 94.80 1.521 1.822

q0.75 -0.151 0.461 0.485 89.00 92.00 1.706 2.016

q0.95 -0.710 0.571 0.910 47.20 52.00 1.534 1.791

Scenario 22 (n = 20) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean -0.014 0.272 0.272 90.80 94.80 0.919 1.094

SD -0.033 0.182 0.184 85.20 89.80 0.579 0.684

q0.05 0.221 0.279 0.355 83.60 88.20 1.096 1.305

q0.25 0.062 0.301 0.307 92.00 96.40 1.099 1.310

q0.50 0.003 0.312 0.312 92.60 97.00 1.147 1.377

q0.75 -0.057 0.349 0.353 90.40 94.60 1.317 1.583

q0.95 -0.358 0.481 0.599 72.40 75.60 1.529 1.788

Scenario 23 (n = 50) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean 0.000 0.174 0.174 92.80 96.40 0.600 0.714

SD 0.019 0.125 0.127 89.00 95.60 0.392 0.466

q0.05 0.049 0.184 0.191 93.20 96.20 0.753 0.901

q0.25 0.013 0.187 0.187 94.80 97.80 0.727 0.871

q0.50 0.008 0.200 0.200 94.20 97.00 0.763 0.917

q0.75 0.000 0.239 0.239 94.00 97.40 0.876 1.047

q0.95 -0.092 0.366 0.377 87.60 92.40 1.265 1.490

Scenario 24 (n = 100) Bias ESE RMSE CP90% CP95% ∆CI90% ∆CI95%

Mean -0.003 0.131 0.131 88.00 94.20 0.426 0.506

SD 0.022 0.089 0.092 90.20 94.40 0.285 0.340

q0.05 0.002 0.139 0.139 95.80 98.20 0.580 0.692

q0.25 -0.005 0.143 0.143 93.60 97.60 0.528 0.631

q0.50 0.004 0.156 0.156 92.40 97.20 0.549 0.655

q0.75 0.007 0.179 0.179 91.60 95.20 0.625 0.747

q0.95 -0.036 0.266 0.268 90.60 94.60 0.943 1.127

Table 7: Simulation results for Scenarios 21-24 with a Weibull target SI distribution W(2.36, 3.18)
and exactly observed data. The first column contains the selected features of S, namely the
mean, standard deviation, 5th, 25th, 50th, 75th and 95th percentiles. Bias, ESE, RMSE, coverage
probability (CP) and median confidence interval width ∆CI are used to assess the performance
of the nonparametric approach.
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4 Applications to real serial interval data

We illustrate our nonparametric approach on five real serial interval datasets that are publicly

available. Results can be reproduced with code available on the GitHub repository based on the

EpiLPS package (https://github.com/oswaldogressani/Serial_interval).

4.1 Influenza A (2009 H1N1 influenza) at a New York City school

We start by analyzing a dataset based on illness onset dates of n = 16 infector-infectee pairs

obtained from the supplementary appendix of Lessler et al. (2009). After fitting a Weibull dis-

tribution to the data, the authors obtain a median serial interval of 2.7 days (CI95% 2.0-3.5)

and a 95th percentile of 5.1 days (CI95% 3.6-6.5). Our nonparametric method estimates that

the median SI is 2.8 days (CI95% 1.6-4.0) and the 95th percentile estimate is 4.9 days (CI95%

4.1-5.8). Figure 1 summarizes the observed serial interval windows and the point and interval

estimates of selected features of the serial interval S. The light blue curves represent smoothed

estimates of the cdf of S for B = 5000 bootstrap samples, where smoothing is implemented with

the Laplacian-P-splines methodology (Gressani and Lambert, 2018, 2021).

4.2 Influenza A (2009 H1N1 influenza) in San Antonio, Texas, USA

Another dataset on influenza is downloaded from the EpiEstim package (Cori et al., 2013) and

contains doubly interval-censored serial interval data from the 2009 influenza A outbreak in San

Antonio, Texas, USA (Morgan et al., 2010). Based on our nonparametric methodology, EpiLPS

estimates a mean serial interval of 4.0 days (CI95% 3.1-5.0). The standard deviation of the serial

interval is estimated at 1.9 days (CI95% 1.2-2.6) and the 95th percentile is at 7.0 days (CI95%

5.0-8.7). Serial interval windows and estimates of different features of S are shown in Figure 2.

4.3 Illness onset data for 2019-nCoV in Wuhan, China

Li et al. (2020) share data on illness onset dates of n = 6 infector-infectee pairs and estimate that

the serial interval has a mean of 7.5 days (CI95% 5.3-19) based on a parametric model involving a

Gamma distribution. EpiLPS obtains a mean serial interval estimate of 6.3 days (CI95% 4.7-7.8)

and a median SI of 6.5 days (CI95% 4.1-8.0).
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Figure 1: (A) Serial interval windows of influenza A for n = 16 infector-infectee pairs at a New
York City school (Lessler et al., 2009). (B) Nonparametric estimate F̂S(·) (dark blue); smoothed
estimates of the cdf of S for B = 5000 bootstrap samples (light blue) and 95% CIs for selected
percentiles with associated point estimate (dark blue dot).

Figure 2: (A) Serial interval windows of influenza A for n = 16 infector-infectee pairs in San An-
tonio, Texas, USA (Cori et al., 2013). (B) Nonparametric estimate F̂S(·) (dark green); smoothed
estimates of the cdf of S for B = 5000 bootstrap samples (light green) and 95% CIs for selected
percentiles with associated point estimate (dark green dot).

4.4 Illness onset data for 2019-nCoV with n = 28 infector-infectee pairs

A richer serial interval dataset on 2019-nCoV is provided by Nishiura et al. (2020). They obtained

doubly interval-censored data on n = 28 infector-infectee pairs and estimated features of the serial

interval based on a Bayesian parametric approach. The authors estimate the median serial interval

to be 4.0 days (CrI95% 3.1-4.9), where CrI denotes the credible interval. The mean and standard

deviation of the serial interval are estimated at 4.7 days (CrI95% 3.7-6.0) and 2.9 days (CrI95%

1.9-4.9), respectively. Our nonparametric method estimates the median serial interval at 3.8 days
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(CI95% 3.1-4.9). Also, EpiLPS estimates the mean and standard deviation of the serial interval

at 4.6 days (CI95% 3.7-5.6) and 2.6 days (CI95% 1.9-3.2), respectively. A graphical output of the

EpiLPS results is shown in Figure 3.

Figure 3: (A) Serial interval windows of 2019-nCoV for n = 28 infector-infectee pairs (Nishiura
et al., 2020). (B) Nonparametric estimate F̂S(·) (red); smoothed estimates of the cdf of S for
B = 5000 bootstrap samples (orange) and 95% CIs for selected percentiles with associated point
estimate (red dot).

4.5 Illness onset data for SARS-CoV-2 in Belgium

Kremer et al. (2022) report data on illness onset dates of n = 2161 transmission pairs for the

Omicron variant of SARS-CoV-2 and n = 334 infector-infectee pairs for the Delta variant. Fitting

a Gaussian distribution to the data using a Bayesian approach, the authors obtain a median serial

interval of 2.75 days (CrI95% 2.65-2.86) and a standard deviation of 2.54 days (CrI95% 2.46-2.61)

for Omicron. For Delta, they obtain a median serial interval of 3.00 days (CrI95% 2.73-3.26) and a

standard deviation of 2.49 days (CrI95% 2.31-2.69). With our nonparametric approach in EpiLPS,

we obtain an estimated median SI at 2.62 days (CI95% 2.50-2.74) and a standard deviation of 2.55

days (CI95% 2.46-2.64) for Omicron. For Delta, EpiLPS estimates the median SI at 3.05 days

(CI95% 2.76-3.34) and the estimated standard deviation is 2.49 days (CI95% 2.30-2.69). Results

are summarized in Figure 4.
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Figure 4: (A) Empirical distribution of serial intervals for SARS-CoV-2 Omicron. (B) Empirical
distribution of serial intervals for SARS-CoV-2 Delta. (C) Nonparametric estimate F̂S(·) for
Omicron (dark blue); smoothed estimates of the cdf for B = 5000 bootstrap samples (light
blue) and 95% CIs for selected percentiles with associated point estimate (dark blue dot). (D)
Nonparametric estimate F̂S(·) for Delta (dark green); smoothed estimates of the cdf for B = 5000
bootstrap samples (light green) and 95% CIs for selected percentiles with associated point estimate
(dark green dot).

5 Conclusion

We propose a nonparametric approach to estimate the serial interval distribution of an infectious

disease from illness onset data. The bootstrap technique is used to sample the nonparametric

estimate of the cumulative distribution function and the generated samples can be used to com-

pute point and interval estimates of any desired features of the serial interval. The proposed

methodology has the following strengths and limitations.

Strengths. Our method is entirely data-driven and does not require to input a parametric

distribution for serial interval estimation. As such, we can directly sketch the main characteristics

of the SI distribution without having to adjust parametric distributions to the data and compare

which model fits best according to a given selection criterion (e.g. AIC, BIC or LOOIC). Also,

if the modeler wants to fit a parametric distribution to the data, the nonparametric estimate of
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the cdf can be used as a benchmark to visually assess whether the chosen parametric model is in

agreement with a data-driven fit, i.e. as an informal lack-of-fit test. Furthermore, our approach

naturally deals with negative serial interval values. The bootstrap permits to compute interval

estimates of any desired feature of S. Thus, confidence intervals are easily accessible and can

be directly reported alongside point estimates following best practices outlined in Charniga et al.

(2024). Algorithms underlying our nonparametric methodology are relatively simple and can be

implemented at low computational cost. The small footprint of the associated code implies that

it can be straightforwardly written in virtually any programming language most preferred by the

user. The proposed method is available in the EpiLPS package Gressani (2021) and requires only

minimal input by the user. Finally, the simple framework of our method favors reproducibility

and facilitates serial interval analyses on past, current or future illness onset data streams.

Limitations. For the moment, the proposed nonparametric method does not adjust for right

truncation; a feature that may be encountered when serial interval data are observed in real-

time. Another weakness of our approach is that the current bootstrap sampling process can only

generate variates that are within the set of order statistics for the observed serial interval data.

Methods exist to simulate variates beyond this range (see e.g. Kaczynski et al., 2012) and could

be considered as a future improvement of our method.
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Appendix

Appendix A1

The bias, ESE and RMSE used in the simulation study of Section 3 to assess the performance of

the point estimator of θj ∈ ΘS are given by:

Bias(θ̂j) :=
1

M

M∑
m=1

(
θ̂
(m)
j − θj

)
,

ESE(θ̂j) :=

(
1

M − 1

M∑
m=1

(
θ̂
(m)
j − θ̂j

)2) 1
2

with θ̂j = M−1
M∑

m=1

θ̂
(m)
j ,

RMSE(θ̂j) :=

(
1

M

M∑
m=1

(
θ̂
(m)
j − θj

)2) 1
2

.

Performance of the interval estimator is measured through the coverage probability:

CP90%(θj) :=
1

M

M∑
m=1

I
(
θj ∈ CI

(m)
90%,θj

)
,

CP95%(θj) :=
1

M

M∑
m=1

I
(
θj ∈ CI

(m)
95%,θj

)
,

where CI90%,θj and CI95%,θj denote the 90% and 95% confidence interval, respectively, of θj .
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Svensson, Å. (2007). A note on generation times in epidemic models. Mathematical Biosciences,

208(1):300–311.

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.16.24315600doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.16.24315600
http://creativecommons.org/licenses/by-nc-nd/4.0/


Te Beest, D. E., Henderson, D., Van Der Maas, N. A., De Greeff, S. C., Wallinga, J., Mooi, F. R.,

and Van Boven, M. (2014). Estimation of the serial interval of pertussis in Dutch households.

Epidemics, 7:1–6.

Thompson, R. N., Stockwin, J. E., van Gaalen, R. D., Polonsky, J. A., Kamvar, Z. N., Demarsh,

P. A., Dahlqwist, E., Li, S., Miguel, E., Jombart, T., et al. (2019). Improved inference of

time-varying reproduction numbers during infectious disease outbreaks. Epidemics, 29:100356.

Torneri, A., Libin, P., Scalia Tomba, G., Faes, C., Wood, J. G., and Hens, N. (2021). On realized

serial and generation intervals given control measures: The COVID-19 pandemic case. PLoS

Computational Biology, 17(3):e1008892.

Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped, censored and

truncated data. Journal of the Royal Statistical Society: Series B (Methodological), 38(3):290–

295.

Vink, M. A., Bootsma, M. C. J., and Wallinga, J. (2014). Serial intervals of respiratory infectious

diseases: a systematic review and analysis. American Journal of Epidemiology, 180(9):865–875.

Wallinga, J. and Lipsitch, M. (2007). How generation intervals shape the relationship between

growth rates and reproductive numbers. Proceedings of the Royal Society B: Biological Sciences,

274(1609):599–604.

World Health Organization. Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Con-

cern. [Cited September 26th, 2024]. https://www.who.int/news/item/26-11-2021-classification-

of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern.

Yang, L., Dai, J., Zhao, J., Wang, Y., Deng, P., and Wang, J. (2020). Estimation of incubation

period and serial interval of COVID-19: analysis of 178 cases and 131 transmission chains in

Hubei province, China. Epidemiology & Infection, 148:e117.

Zavalis, E. A. and Ioannidis, J. P. (2022). A meta-epidemiological assessment of transparency

indicators of infectious disease models. PLoS ONE, 17(10):e0275380.

26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.16.24315600doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.16.24315600
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Notation
	A simple nonparametric estimator of FS()
	The bootstrap

	Simulations
	Data generating mechanism for artificial serial interval data
	Simulation settings and results

	Applications to real serial interval data
	Influenza A (2009 H1N1 influenza) at a New York City school
	Influenza A (2009 H1N1 influenza) in San Antonio, Texas, USA
	Illness onset data for 2019-nCoV in Wuhan, China
	Illness onset data for 2019-nCoV with n=28 infector-infectee pairs
	Illness onset data for SARS-CoV-2 in Belgium

	Conclusion

