Nonparametric serial interval estimation

Oswaldo Gressani
1 * and Niel Hens^{1,2}

¹ Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Data Science Institute, Hasselt University, Hasselt, Belgium

² Centre for Health Economics Research and Modelling Infectious Diseases, Vaxinfectio, University of Antwerp, Antwerp, Belgium

Abstract

The serial interval of an infectious disease is a key instrument to understand transmission dynamics. Estimation of the serial interval distribution from illness onset data extracted from transmission pairs is challenging due to the presence of censoring and state-of-the-art frequentist or Bayesian methods mostly rely on parametric models. We present a fully data-driven methodology to estimate the serial interval distribution based on (coarse) serial interval data. The proposal combines a nonparametric estimator of the cumulative distribution function with the bootstrap and yields point and interval estimates of any desired feature of the serial interval distribution. Algorithms underlying our approach are simple, fast and stable, and are thus easily implementable in any programming language most desired by modelers from the infectious disease community. The nonparametric routines are included in the EpiLPS package for ease of implementation. Our method complements existing parametric approaches for serial interval estimation and permits to straightforwardly analyze past, current, or future illness onset data streams.

Keywords: Serial interval; Nonparametric; Bootstrap; EpiLPS.

* Corresponding author: oswaldo.gressani@uhasselt.be

1 Introduction

The serial interval (SI) of an infectious disease is an epidemiological delay characterizing a duration between two well-defined events related to a disease. It represents the time between symptom(s) onset in a primary case or infector and the symptom(s) onset in a secondary case or infectee (Simpson, 1948). This time delay can be negative as nothing restrains the illness onset time of the infector to be larger than the onset time of the infectee. In the literature, this interval is also known as the clinical onset serial interval (Cowling et al., 2009; Te Beest et al., 2014). A different, but closely related delay quantity is the generation interval (GI), which is defined as the duration between infection events in an infector-infectee pair (Svensson, 2007). Contrary to the SI, the GI is a delay quantity that is always positive. The timing of an infection event is typically less likely to be observed than the timing of a symptom event and it is common practice to approximate the distribution of generation times by the SI distribution (Lehtinen et al., 2021; Chen et al., 2022). Serving as a proxy for generation intervals, serial intervals can be used as an instrument to measure the time scale of disease transmission (Park et al., 2021) and are therefore key in linking the epidemic growth rate with the time-varying reproduction number (Wallinga and Lipsitch, 2007; Torneri et al., 2021). The crucial role played by serial intervals in disease transmission models emphasizes the need to have reliable, stable, and replicable statistical methodologies to estimate this transmission interval. Ideally, these methodologies should also follow best practices as recently described in Charniga et al. (2024).

Different methods exist to estimate the distribution and features of the serial interval of an infectious disease based on data. When time intervals of illness onset between infectors and infectees are observed, the data is considered as a random sample from the population. In that case, essential features of the serial interval are estimated by either directly computing summary statistics from empirical serial intervals (e.g. mean, median, standard deviation) or by fitting a parametric distribution to observed data (Boëlle et al., 2011; Griffin et al., 2020). Parametric methods are by far the most common and usually include the Lognormal, Weibull, Gamma or Gaussian distributions (Lessler et al., 2009; Cowling et al., 2010; Li et al., 2020; Nishiura et al., 2020; Ma et al., 2020; Kremer et al., 2022). Estimation of model parameters is typically carried out with the maximum likelihood principle or by using the Bayesian approach, and often on a few observations. To our knowledge, only few attempts have been made in applying nonparametric methods to serial interval data analysis. For instance, Cowling et al. (2009) compute a nonpara-

metric estimate of the cumulative distribution function of the serial interval of influenza based on the method of Turnbull (1976) to see whether different parametric models are in agreement with it; and Mettler et al. (2020) use the nonparametric bootstrap to compute confidence intervals for the clinical onset SI of SARS-CoV-2.

By definition, serial intervals involve transmission pairs. It means that a minimal requirement for SI estimation is to have data on symptom(s) onset times for the infector and infectee. Such data can be extracted from contact tracing programmes, which permit to gain knowledge about who infected whom and provide information on timings of symptoms in infector-infectee pairs (Yang et al., 2020; Müller and Kretzschmar, 2021). Commonly, serial interval data are coarse in that only lower and upper limits of illness onset timing is observed. This characteristic is known as censoring and adds a layer of complexity to the estimation problem. If coarseness concerns either the infector or infectee, data are said to be single interval-censored; and if coarseness affects both actors in the transmission pair, data are called doubly interval-censored (Reich et al., 2009). Thinking from a continuous time perspective, serial interval data is more often than not doubly interval-censored due to the time resolution of reporting. When the time resolution for reporting illness onset is a calendar day (as is often the case), coarseness is inherent to the calendar day, i.e. the precise timing of illness onset within the reported calendar day remains unknown. Therefore, even if exact calendar dates are observed, it is good practice to still consider the data as doubly interval-censored (Charniga et al., 2024).

Despite the large number of studies conducted on the serial interval of different pathogens, most methods are difficult or impossible to reproduce in the sense that independent researchers are confronted with serious difficulties in reusing existing procedures to new data (Gandrud, 2018). The field of infectious disease modeling suffers from alarmingly low computational reproducibility rates (Henderson et al., 2024), which hinders applicability and misaligns with pandemic preparedness objectives. This reproducibility conundrum has several causes. For instance, recent meta-epidemiological surveys found that very few publications share code or data (Collins and Alexander, 2022; Zavalis and Ioannidis, 2022). Other potential causes are code incompleteness and complex dependencies among multiple scripts without clear guidelines regarding computation order (Henderson et al., 2024). The study of Vink et al. (2014) highlights that finding evidence supporting frequently cited serial interval values in the literature is a challenging task.

Hopefully, more applicable tools and methods have recently emerged to estimate epidemiolog-

ical delay distributions. Originally developed for estimation of incubation period distributions, the methodology of Reich et al. (2009) is available in an R software package (Reich et al., 2021) and associated routines are embedded in the EpiEstim package of Cori et al. (2013) to estimate the serial interval (Thompson et al., 2019). Vink et al. (2014) reanalyze published serial interval data on different respiratory infections by using a common statistical method and provide R code and data sets for reproducibility. The epidist R package (Park et al., 2024) is also operational for serial interval estimation and accounts for censoring and truncation. These tools rely on parametric methods imposing distributional assumptions on the serial interval distribution and leave no room for data-driven inference.

In an attempt to complement the above-mentioned parametric methods, we develop a nonparametric approach to estimate the serial interval distribution based on coarsely observed illness onset data. The proposed method is entirely data-driven and applicable on a wide range of serial interval data commonly analyzed in the literature. Its chief merits are its simplicity and the fact that it relies on two powerful statistical tools, namely the inverse-cdf method and the bootstrap. Since R is among the most popular programming languages used in the infectious disease modeling community (Batra et al., 2021; Henderson et al., 2024), the computer code underlying our nonparametric methodology is included in the EpiLPS package (Gressani, 2021; Gressani et al., 2022, 2024; Sumalinab et al., 2024) available on the Comprehensive R Archive Network (CRAN) repository. Source code comes in a lightweight format and spans only a few lines. It can thus be easily translated in another programming language if needed (e.g. Python).

Next, we present our nonparametric estimator and briefly discuss some of its theoretical properties. The performance of our method is assessed in extensive simulation scenarios. Applications to transmission pair data extracted from previous analyses for a diverse set of pathogens underlines the wide, general, and straightforward applicability of our approach. The article concludes with a discussion on the main strengths and limitations of the proposed nonparametric toolbox for serial interval estimation.

2 Methods

2.1 Notation

Let \mathcal{S} be a real-valued random variable representing the serial interval of an infectious disease and denote by $F_{\mathcal{S}}(\cdot)$ the cumulative distribution function (cdf) of \mathcal{S} with $F_{\mathcal{S}}(s) = P(\mathcal{S} \leq s) \ \forall s \in \mathbb{R}$. For the sake of generality, our model is formulated in continuous time. At the level of the ith transmission pair, $\vec{t_i^S} \ge 0$ denotes the (finite) illness onset time of the infector and $t_i^S \ge 0$ stands for the (finite) illness onset time of the infectee. In practice, the illness onset time is reported in calendar time and the serial interval is expressed in days. Conversion from calendar time to analysis time is usually done by assigning an integer to a calendar date. When illness onset timings are considered exactly observed, the serial interval for the ith transmission pair is simply $s_i = t_i^S - \vec{t_i^S}$. If the illness onset time of the infectee precedes the onset time of the infector, the serial interval is negative $(s_i < 0)$ and the transmission event is called presymptomatic. In presence of coarse data, either $\vec{t}_i^{\vec{S}}$ or $t_i^{\vec{S}}$ (single interval-censored data) or both (doubly interval-censored data) are only known to lie within a time interval, so that $\vec{t_i^S} \in [\vec{t_{iL}^S}, \vec{t_{iR}^S}]$, with $0 \le \vec{t_{iL}^S} < +\infty$ for the infector and $t_i^S \in [t_{iL}^S, t_{iR}^S]$, with $0 \le t_{iL}^S < t_{iR}^S < +\infty$ for the infectee. Following Reich et al. (2009), single or doubly interval-censored data can be transformed to interval-reduced data, containing the earliest possible and the latest possible serial interval time. For instance, if $\vec{t_i^S}$ is exactly observed and the illness onset time of the infectee is interval-censored, the earliest possible SI time is $s_{iL} = t_{iL}^S - \vec{t_i^S}$ and the latest possible time is $s_{iR} = t_{iR}^S - \vec{t_i^S}$. With doubly interval-censored observations, interval-reduced data is obtained by computing $s_{iL} = t_{iL}^S - \overrightarrow{t_{iR}^S}$ and $s_{iR} = t_{iR}^S - \overrightarrow{t_{iL}^S}$. Note that both s_{iL} and s_{iR} can be negative and $s_{iR} > s_{iL}$ will always hold. Even when $\vec{t_i^S}$ and t_i^S are exactly observed, we express the data as interval censored by constructing a displacement of length δ from s_i in both directions, i.e. $s_{iL} = s_i - \delta$ and $s_{iR} = s_i + \delta$ for an arbitrary δ (here $\delta = 0.5$ to recover serial interval windows of unit length). For a sample containing n transmission pairs, the observed dataset has 2n elements and is denoted by $\mathcal{D} = \{s_{1L}, s_{1R}, \dots, s_{nL}, s_{nR}\}$. The set of features of S is denoted by $\Theta_{S} = \{\theta_1, \theta_2, \dots, \theta_J\}$ and contains all features of the serial interval that are of interest to the modeler. For example, if the aim is to estimate the mean, median and variance of S, the set Θ_S is a triplet with $\theta_1 := \mathbb{E}(S), \theta_2 := \inf\{s \in \mathbb{R} : F_S(s) \ge 0.5\}$ and $\theta_3 := \mathbb{E}\left((\mathcal{S} - \mathbb{E}(\mathcal{S}))^2\right)$. The goal is to provide data-driven point and interval estimates of elements of $\Theta_{\mathcal{S}}$ based on \mathcal{D} without imposing any parametric assumption.

2.2 A simple nonparametric estimator of $F_{\mathcal{S}}(\cdot)$

Departing from a dataset \mathcal{D} , we build a nonparametric estimator of $F_{\mathcal{S}}(\cdot)$ based on a simple idea. The available information at the level of the *i*th transmission pair is given by the left and right boundaries of the serial interval window, i.e. s_{iL} and s_{iR} . Any point in the interval $[s_{iL}, s_{iR}]$ corresponding to the true (and unobserved) serial interval of the *i*th pair can be seen as an observation from the continuous serial interval distribution (population). Therefore, the data points s_{iL} and s_{iR} extracted from the *i*th transmission pair can also be viewed as two observations or draws from $F_{\mathcal{S}}(\cdot)$. A natural way to obtain a continuous estimate of $F_{\mathcal{S}}(\cdot)$ based on s_{iL} and s_{iR} is to smooth the empirical cdf by linear interpolation (Bratley et al., 1987), yielding the following piecewise-linear empirical cdf (Kaczynski et al., 2012):

$$\widetilde{F}_{\mathcal{S}}^{(i)}(s) = \left(\frac{s - s_{iL}}{s_{iR} - s_{iL}}\right) \mathbb{I}(s_{iL} \le s < s_{iR}) + \mathbb{I}(s \ge s_{iR}) \quad \forall s \in \mathbb{R},$$

where $\mathbb{I}(\cdot)$ is the indicator function. Extending this reasoning to the entire set of pairs in the dataset, we propose to estimate $F_{\mathcal{S}}(\cdot)$ by averaging $\widetilde{F}_{\mathcal{S}}^{(i)}(\cdot)$ over all *n* transmission pairs. This data-driven estimator is given by:

$$\widehat{F}_{\mathcal{S}}(s) = \frac{1}{n} \sum_{i=1}^{n} \left\{ \left(\frac{s - s_{iL}}{s_{iR} - s_{iL}} \right) \mathbb{I}(s_{iL} \le s < s_{iR}) + \mathbb{I}(s \ge s_{iR}) \right\} \quad \forall s \in \mathbb{R}.$$

$$\tag{1}$$

The above estimator is a (finite) linear combination of continuous functions $\widetilde{F}_{\mathcal{S}}^{(i)}(\cdot)$ and is therefore itself a continuous function in \mathbb{R} . Moreover, it is a non-decreasing function since it essentially accumulates intervals when moving along the real line in the positive direction. It is also easy to verify that $\lim_{s\to-\infty} \widehat{F}_{\mathcal{S}}(s) = 0$ and $\lim_{s\to+\infty} \widehat{F}_{\mathcal{S}}(s) = 1$, so that $\widehat{F}_{\mathcal{S}}(\cdot)$ is a *bona fide* cdf. In addition, $\widehat{F}_{\mathcal{S}}(\cdot)$ is a piecewise-linear function with breakpoints or "bends" arising at points in \mathcal{D} , so that the cdf is almost everywhere differentiable (except at the set of points in \mathcal{D}).

The properties of our estimator can be exploited to efficiently generate samples from $\widehat{F}_{\mathcal{S}}(\cdot)$, which can be viewed as approximate samples from the target serial interval distribution $F_{\mathcal{S}}(\cdot)$. Let $\mathcal{D}_O = \{s_{(1)}, s_{(2)}, \ldots, s_{(2n)}\}$ denote the set of order statistics for \mathcal{D} . Using the inverse-cdf method, the (pseudo) random-variate generation algorithm proceeds as follows (see e.g. Bratley et al., 1987):

- 1. Generate a uniform random variable U in (0, 1), i.e. $U \sim \mathcal{U}(0, 1)$.
- 2. Find $s_{(i)}$ such that $\widehat{F}_{\mathcal{S}}(s_{(i)}) \leq U \leq \widehat{F}_{\mathcal{S}}(s_{(i+1)})$.
- 3. If $\widehat{F}_{\mathcal{S}}(s_{(i)}) = \widehat{F}_{\mathcal{S}}(s_{(i+1)})$ return $s^* = s_{(i)}$.

4. Else return
$$s^* = \left(\widehat{F}_{\mathcal{S}}(s_{(i+1)}) - \widehat{F}_{\mathcal{S}}(s_{(i)})\right)^{-1} \left(\left(\widehat{F}_{\mathcal{S}}(s_{(i+1)}) - U\right)s_{(i)} + \left(U - \widehat{F}_{\mathcal{S}}(s_{(i)})\right)s_{(i+1)}\right).$$

2.3 The bootstrap

The bootstrap principle is used to calculate point and interval estimates of features of S. Using the random-variate generation algorithm presented in the previous section, B independent bootstrap samples $\mathcal{X}^{*(b)} = \{s_1^{*(b)}, \ldots, s_n^{*(b)}\}, b = 1, \ldots, B$ of size n are generated from $\widehat{F}_S(\cdot)$. Let $T_j(\mathcal{X}^{*(b)})$ denote the statistic serving as an estimator of the feature $\theta_j \in \Theta_S$. Based on the empirical bootstrap distribution $T_j(\mathcal{X}^{*(b)}), b = 1, \ldots, B$, a point estimate of θ_j is given by the mean of the statistic generated by the resampling scheme, i.e. $\widehat{\theta}_j = B^{-1} \sum_{b=1}^B T_j(\mathcal{X}^{*(b)})$. A $100(1 - \alpha)\%$ confidence interval for θ_j is given by $\operatorname{CI}_{\theta_j}^{(1-\alpha)} = [\xi_{T_j,\alpha/2}^*, \xi_{T_j,1-\alpha/2}^*]$, where $\xi_{T_j,\alpha/2}^*$ denotes the $\alpha/2$ quantile and $\xi_{T_j,1-\alpha/2}^*$ the $1 - \alpha/2$ quantile of the empirical bootstrap distribution. Most software has readily available routines to compute these quantiles (e.g. the quantile function in R).

3 Simulations

3.1 Data generating mechanism for artificial serial interval data

To simulate artificial serial interval data, we assume that the target SI distribution belongs to a parametric family indexed by a vector $\boldsymbol{\eta}$ and denote this by $\mathcal{S} \sim \mathcal{P}_{\boldsymbol{\eta}}$. In particular, we consider two distributions inspired from the literature. The first is a Gaussian distribution $\mathcal{S} \sim \mathcal{N}(2.8, 2.5^2)$ with a mean of 2.8 days and a standard deviation of 2.5 days, mimicking the SI distribution of SARS-CoV-2 Omicron (Kremer et al., 2022), designated by the World Health Organization as a variant of concern (World Health Organization). The second is a Weibull distribution $\mathcal{S} \sim \mathcal{W}(2.36, 3.18)$ with shape 2.36 and scale 3.18 that imitates the SI distribution of influenza A (Lessler et al., 2009).

We denote by \mathcal{A} the artificial serial interval dataset produced by our data generating mechanism (DGM). The DGM proceeds in a loop, where each iteration generates serial interval data for the *i*th transmission pair. At iteration *i*, a SI value is drawn from the target serial interval

distribution $s_i \sim \mathcal{P}_{\eta}$. Next, an arbitrary positive real number is assigned to the illness onset time of the infector through the uniform distribution $\vec{t}_i^{\vec{S}} \sim \mathcal{U}(|s_i| + c, |s_i| + c + 1)$, where c > 0 is a scalar that will be clarified later on. The illness onset time of the infectee is simply $t_i^S = \vec{t}_i^{\vec{S}} + s_i$ and note that the constraints $t_i^S \ge 0$ and $\vec{t}_i^{\vec{S}} \ge 0$ are satisfied.

In presence of censoring, a rule is needed to determine the left and right boundaries of the illness onset interval reported by a member of the *i*th transmission pair. We illustrate this rule for the infectee. The same rule holds for the infector. It is important to generate illness onset intervals of various widths $\Delta_i = t_{iR}^S - t_{iL}^S$ to mimic the fact that different individuals will typically report different illness onset intervals (heterogeneity of the population in the reporting process). In that direction, we assume that Δ_i is random and governed by a Gamma distribution $\Delta_i \sim \mathcal{G}(a, b)$ with shape a and rate b, so that $\mathbb{E}(\Delta_i) = a/b$ and $\mathbb{V}(\Delta_i) = a/b^2$. We fix a = b = 4, yielding illness onset intervals with an average width of one day. There is also less than 1% chance to generate interval widths above three days and roughly 95% chance to generate interval widths below two days.

Once Δ_i is available, another rule is required to determine the location of the boundaries t_{iL}^S and t_{iR}^S with respect to t_i^S . A simple rule would be to fix $t_{iL}^S = t_i^S - 0.5\Delta_i$ and $t_{iR}^S = t_i^S + 0.5\Delta_i$. We believe that this rule is not realistic as it assumes that the individual is able to perfectly center the reported interval around the true illness onset time. A more realistic rule is to allow the interval to move randomly around t_i^S . This can be achieved by generating a proportion according to a Beta distribution, say $\rho_i \sim \mathcal{B}(5,5)$, and interpret it as the proportion of the distance Δ_i that separates t_{iL}^S from t_i^S . In other words, once ρ_i is obtained, simply compute $t_{iL}^S = t_i^S - \rho_i \Delta_i$ and $t_{iR}^S = t_i^S + (1 - \rho_i)\Delta_i$. If $\rho_i = 0$, the left boundary of the interval is equal to t_i^S and $t_{iR}^S = t_i^S + \Delta_i$. If $\rho_i = 1$, the right boundary of the interval is equal to t_i^S and the left boundary is $t_{iL}^S = t_i^S - \Delta_i$. Any $\rho_i \in (0,1)$ generates a scenario in between these two extremes. The constant c > 0 used to generate $\vec{t_i^S}$ is simply there to ensure that $\vec{t_{iL}^S} \ge 0$ (and $t_{iL}^S \ge 0$). Without this constant, we could be in a scenario where $t_{iL}^S = t_i^S - \rho \Delta_i < 0$. To avoid this, we fix c to an arbitrary large value (here c = 10). When data are exactly observed and after n cycles (reflecting a dataset with n transmission pairs), the DGM outputs $\mathcal{A} = \{s_1, \ldots, s_n\}$. In case of interval censoring, the DGM outputs $\mathcal{A} = \{s_{1L}, s_{1R}, \dots, s_{nL}, s_{nR}\}$ after *n* cycles, where each element of \mathcal{A} contains either exactly observed data for at least one actor in the transmission pair (single interval censoring) or interval censored data for both actors in the transmission pair (doubly interval-censored data).

3.2 Simulation settings and results

The performance of our nonparametric method is assessed in different scenarios. For the Gaussian and Weibull target SI distributions described in Section 3.1, we consider small n = 10, medium $n \in \{20, 50\}$ and large n = 100 sample sizes for doubly and single interval-censored data, as well as for exactly observed serial interval data (no censoring). This yields a total of $2 \times 4 \times 3 = 24$ scenarios, which are summarized in Table 1. Each scenario involves M = 500 dataset replications and the performance of our approach is assessed on seven features of the serial interval S, namely, the mean, standard deviation (SD) and the 5th, 25th, 50th, 75th and 95th percentiles denoted by q0.05, q0.25, q0.50, q0.75 and q0.95, respectively. For each feature, we report the bias, empirical standard error (ESE) and root mean square error (RMSE), as well as the coverage probability (CP) and median interval width (Δ CI) of 90% and 95% confidence intervals. Detailed formulas for these performance indicators are given in Appendix A1.

Scenarios imitating SARS-CoV-2 serial interval data (Scenarios 1-12) show that the bias has a tendency to decrease with increasing sample size. Without surprise, the bias is largest for the 5th and 95th percentiles for small to medium sample size ($n \leq 50$) since information carried by the data is not rich enough to accurately capture the tail behavior of the target SI distribution. For large sample size (n = 100), the bias becomes negligible, even for percentiles in the tails. Moreover, the ESE and RMSE systematically decline as the sample size increases. Coverage probability of the 90% and 95% confidence interval, respectively, tends to come closer to its respective nominal value as the sample size increases.

Note that even under small to moderate sample size, the coverage probability is reasonably close to its nominal level, except for the 5th and 95th percentiles, where undercoverage is observed. Globally, the median width of confidence intervals obtained with the percentile bootstrap method tends to decrease with increasing sample size.

Similar interpretations of the simulation results can be made for the scenarios mimicking influenza A serial interval data (Scenarios 13-24). For doubly interval-censored data, our method has difficulties to estimate the standard deviation (Scenarios 13-16) and confidence intervals tend to undercover. This phenomenon vanishes when considering single interval-censored data or exactly observed serial interval data.

Scenario	SI target distribution	Sample size	Censoring scheme	Results
1	$\mathcal{N}(2.8, 2.5^2)$	n = 10	Doubly interval-censored	Table 2
2	$\mathcal{N}(2.8, 2.5^2)$	n = 20	Doubly interval-censored	Table 2
3	$\mathcal{N}(2.8, 2.5^2)$	n = 50	Doubly interval-censored	Table 2
4	$\mathcal{N}(2.8, 2.5^2)$	n = 100	Doubly interval-censored	Table 2
5	$\mathcal{N}(2.8, 2.5^2)$	n = 10	Single interval-censored	Table 3
6	$\mathcal{N}(2.8, 2.5^2)$	n = 20	Single interval-censored	Table 3
7	$\mathcal{N}(2.8, 2.5^2)$	n = 50	Single interval-censored	Table 3
8	$\mathcal{N}(2.8, 2.5^2)$	n = 100	Single interval-censored	Table 3
9	$\mathcal{N}(2.8, 2.5^2)$	n = 10	No censoring	Table 4
10	$\mathcal{N}(2.8, 2.5^2)$	n = 20	No censoring	Table 4
11	$\mathcal{N}(2.8, 2.5^2)$	n = 50	No censoring	Table 4
12	$\mathcal{N}(2.8, 2.5^2)$	n = 100	No censoring	Table 4
13	$\mathcal{W}(2.36, 3.18)$	n = 10	Doubly interval-censored	Table 5
14	$\mathcal{W}(2.36, 3.18)$	n = 20	Doubly interval-censored	Table $\frac{5}{5}$
15	$\mathcal{W}(2.36, 3.18)$	n = 50	Doubly interval-censored	Table 5
16	$\mathcal{W}(2.36, 3.18)$	n = 100	Doubly interval-censored	Table 5
17	$\mathcal{W}(2.36, 3.18)$	n = 10	Single interval-censored	Table 6
18	$\mathcal{W}(2.36, 3.18)$	n = 20	Single interval-censored	Table 6
19	$\mathcal{W}(2.36, 3.18)$	n = 50	Single interval-censored	Table 6
20	$\mathcal{W}(2.36, 3.18)$	n = 100	Single interval-censored	Table 6
21	$\mathcal{W}(2.36, 3.18)$	n = 10	No censoring	Table 7
22	$\mathcal{W}(2.36, 3.18)$	n = 20	No censoring	Table 7
23	$\mathcal{W}(2.36, 3.18)$	n = 50	No censoring	Table 7
24	$\mathcal{W}(2.36, 3.18)$	n = 100	No censoring	Table 7

Table 1: Target SI distribution, sample size and censoring scheme considered in the scenarios of the simulation study. The $\mathcal{N}(2.8, 2.5^2)$ target mimics the SI distribution of SARS-CoV-2 Omicron (Kremer et al., 2022) and the Weibull target $\mathcal{W}(2.36, 3.18)$ mimics the SI distribution of influenza A (Lessler et al., 2009).

Scenario 1 $(n = 10)$	Bias	ESE	RMSE	$CP_{90\%}$	$\mathrm{CP}_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
Mean	-0.024	0.788	0.788	86.60	93.20	2.514	2.968
SD	-0.125	0.547	0.561	81.60	86.00	1.636	1.937
q0.05	0.976	1.095	1.466	59.60	64.40	2.942	3.421
q0.25	0.160	0.875	0.889	89.20	94.60	3.372	3.970
q0.50	-0.008	0.815	0.815	91.80	96.20	3.006	3.643
q0.75	-0.212	0.896	0.920	89.00	92.40	3.300	3.873
q0.95	-1.040	1.116	1.524	56.20	59.40	2.935	3.463
Scenario 2 $(n = 20)$	Bias	ESE	RMSE	$\mathrm{CP}_{90\%}$	$\mathrm{CP}_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
Mean	0.049	0.565	0.566	88.60	93.40	1.855	2.197
SD	0.005	0.388	0.388	87.60	91.80	1.192	1.421
q0.05	0.511	0.843	0.985	76.20	80.60	2.783	3.279
q0.25	0.081	0.653	0.658	93.00	96.40	2.439	2.929
q0.50	0.063	0.632	0.635	93.00	96.00	2.308	2.754
q0.75	0.010	0.689	0.688	89.80	95.40	2.350	2.833
q0.95	-0.430	0.842	0.945	80.80	84.60	2.785	3.251
Scenario 3 $(n = 50)$	Bias	ESE	RMSE	$CP_{90\%}$	$CP_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
Mean	0.009	0.343	0.343	92.40	95.20	1.177	1.400
SD	0.026	0.254	0.255	88.80	93.80	0.798	0.952
a0.05	0.157	0.005	0.005	00 60	02.80	2.140	2 536
10.00	0.157	0.605	0.625	88.00	95.60	2.149	2.000
q0.25	0.157 0.024	0.605 0.424	0.625 0.424	92.60	95.80 96.80	1.556	1.847
q0.25 q0.50	0.137 0.024 0.004	$\begin{array}{c} 0.605 \\ 0.424 \\ 0.374 \end{array}$	$\begin{array}{c} 0.625 \\ 0.424 \\ 0.374 \end{array}$	92.60 94.20	96.80 98.00	1.556 1.428	1.847 1.710
q0.25 q0.50 q0.75	0.137 0.024 0.004 -0.008	$\begin{array}{c} 0.605 \\ 0.424 \\ 0.374 \\ 0.421 \end{array}$	$\begin{array}{c} 0.625 \\ 0.424 \\ 0.374 \\ 0.421 \end{array}$	88.60 92.60 94.20 93.60	96.80 96.80 98.00 96.60	$ 1.556 \\ 1.428 \\ 1.563 $	$ 1.847 \\ 1.710 \\ 1.864 $
$ \begin{array}{c} q0.25 \\ q0.50 \\ q0.75 \\ q0.95 \\ \end{array} $	0.137 0.024 0.004 -0.008 -0.124	$\begin{array}{c} 0.605 \\ 0.424 \\ 0.374 \\ 0.421 \\ 0.613 \end{array}$	$\begin{array}{c} 0.625 \\ 0.424 \\ 0.374 \\ 0.421 \\ 0.625 \end{array}$	88.00 92.60 94.20 93.60 86.60	95.80 96.80 98.00 96.60 92.40	$ 1.556 \\ 1.428 \\ 1.563 \\ 2.106 $	$ 1.847 \\ 1.710 \\ 1.864 \\ 2.527 $
$ \begin{array}{r} q0.25 \\ q0.50 \\ q0.75 \\ q0.95 \\ \end{array} $ Scenario 4 $(n = 100)$	0.137 0.024 0.004 -0.008 -0.124 Bias	0.605 0.424 0.374 0.421 0.613 ESE	0.625 0.424 0.374 0.421 0.625 RMSE	88.00 92.60 94.20 93.60 86.60 CP _{90%}	95.80 96.80 98.00 96.60 92.40 CP _{95%}	$\begin{array}{c} 2.149\\ 1.556\\ 1.428\\ 1.563\\ 2.106\\ \hline \Delta \text{CI}_{90\%} \end{array}$	$\begin{array}{c} 2.530\\ 1.847\\ 1.710\\ 1.864\\ 2.527\\ \hline \Delta \text{CI}_{95\%} \end{array}$
$ \begin{array}{r} q0.25 \\ q0.50 \\ q0.75 \\ q0.95 \\ \hline Scenario 4 (n = 100) \\ \hline Mean \\ \end{array} $	0.137 0.024 0.004 -0.008 -0.124 Bias 0.002	0.605 0.424 0.374 0.421 0.613 ESE 0.254	0.625 0.424 0.374 0.421 0.625 RMSE 0.253	88.00 92.60 94.20 93.60 86.60 CP _{90%} 89.00	$\begin{array}{c} 93.80\\ 96.80\\ 98.00\\ 96.60\\ 92.40\\ \hline CP_{95\%}\\ 95.40\\ \end{array}$	$\begin{array}{c} 2.149\\ 1.556\\ 1.428\\ 1.563\\ 2.106\\ \hline \Delta \text{CI}_{90\%}\\ 0.841 \end{array}$	$\begin{array}{c} 2.530\\ 1.847\\ 1.710\\ 1.864\\ 2.527\\ \hline \Delta CI_{95\%}\\ 1.006 \end{array}$
$ \begin{array}{r} q0.25 \\ q0.50 \\ q0.75 \\ q0.95 \\ \hline Scenario 4 (n = 100) \\ \hline Mean \\ SD \\ \end{array} $	0.137 0.024 0.004 -0.008 -0.124 Bias 0.002 0.061	0.605 0.424 0.374 0.421 0.613 ESE 0.254 0.175	0.625 0.424 0.374 0.421 0.625 RMSE 0.253 0.185	$\begin{array}{c} 88.00\\ 92.60\\ 94.20\\ 93.60\\ 86.60\\ \hline CP_{90\%}\\ 89.00\\ 90.20\\ \end{array}$	$\begin{array}{c} 95.30\\ 96.80\\ 98.00\\ 96.60\\ 92.40\\ \hline CP_{95\%}\\ 95.40\\ 94.80\\ \end{array}$	$\begin{array}{c} 2.149\\ 1.556\\ 1.428\\ 1.563\\ 2.106\\ \hline \Delta \text{CI}_{90\%}\\ 0.841\\ 0.586\end{array}$	$\begin{array}{c} 2.530\\ 1.847\\ 1.710\\ 1.864\\ 2.527\\ \hline \Delta CI_{95\%}\\ 1.006\\ 0.700\\ \end{array}$
$ \begin{array}{r} q0.25 \\ q0.50 \\ q0.75 \\ q0.95 \\ \hline Scenario 4 (n = 100) \\ \hline Mean \\ SD \\ q0.05 \\ \end{array} $	0.137 0.024 0.004 -0.008 -0.124 Bias 0.002 0.061 -0.007	0.605 0.424 0.374 0.421 0.613 ESE 0.254 0.175 0.444	0.625 0.424 0.374 0.421 0.625 RMSE 0.253 0.185 0.443	$\begin{array}{c} 88.00\\ 92.60\\ 94.20\\ 93.60\\ 86.60\\ \hline CP_{90\%}\\ 89.00\\ 90.20\\ 92.60\\ \end{array}$	$\begin{array}{c} 93.80\\ 96.80\\ 98.00\\ 96.60\\ 92.40\\ \hline CP_{95\%}\\ 95.40\\ 94.80\\ 96.60\\ \end{array}$	$\begin{array}{c} 2.149\\ \hline 1.556\\ \hline 1.428\\ \hline 1.563\\ \hline 2.106\\ \hline \Delta \text{CI}_{90\%}\\ \hline 0.841\\ \hline 0.586\\ \hline 1.634 \end{array}$	$\begin{array}{c} 2.530\\ 1.847\\ 1.710\\ 1.864\\ 2.527\\ \hline \Delta \text{CI}_{95\%}\\ 1.006\\ 0.700\\ 1.971\\ \end{array}$
$\begin{array}{c} q0.25 \\ q0.25 \\ q0.50 \\ q0.75 \\ \hline q0.95 \\ \hline \textbf{Scenario 4} (n = 100) \\ \hline \textbf{Mean} \\ \hline \textbf{SD} \\ q0.05 \\ q0.25 \\ \end{array}$	0.137 0.024 0.004 -0.008 -0.124 Bias 0.002 0.061 -0.007 -0.021	0.605 0.424 0.374 0.421 0.613 ESE 0.254 0.175 0.444 0.313	0.625 0.424 0.374 0.421 0.625 RMSE 0.253 0.185 0.443 0.313	$\begin{array}{c} 88.00\\ 92.60\\ 94.20\\ 93.60\\ \hline \\ 86.60\\ \hline \\ \hline \\ CP_{90\%}\\ 89.00\\ 90.20\\ 92.60\\ 92.20\\ \end{array}$	$\begin{array}{c} 95.80\\ 96.80\\ 98.00\\ 96.60\\ 92.40\\ \hline CP_{95\%}\\ 95.40\\ 94.80\\ 96.60\\ 96.80\\ \end{array}$	$\begin{array}{c} 2.149\\ 1.556\\ 1.428\\ 1.563\\ 2.106\\ \hline \Delta \text{CI}_{90\%}\\ 0.841\\ 0.586\\ 1.634\\ 1.136\\ \end{array}$	$\begin{array}{c} 2.530\\ 1.847\\ 1.710\\ 1.864\\ 2.527\\ \hline \Delta CI_{95\%}\\ 1.006\\ 0.700\\ 1.971\\ 1.355\\ \end{array}$
$\begin{array}{c} q0.25 \\ q0.25 \\ q0.50 \\ \hline q0.75 \\ \hline q0.95 \\ \hline \textbf{Scenario 4} (n = 100) \\ \hline \textbf{Mean} \\ \hline \textbf{SD} \\ q0.05 \\ \hline q0.25 \\ q0.50 \\ \hline \end{array}$	0.137 0.024 0.004 -0.008 -0.124 Bias 0.002 0.061 -0.007 -0.021 0.010	0.605 0.424 0.374 0.421 0.613 ESE 0.254 0.175 0.444 0.313 0.287	0.625 0.424 0.374 0.421 0.625 RMSE 0.253 0.185 0.443 0.313 0.287	$\begin{array}{c} 88.00\\ 92.60\\ 94.20\\ 93.60\\ 86.60\\ \hline CP_{90\%}\\ 89.00\\ 90.20\\ 92.60\\ 92.20\\ 94.00\\ \end{array}$	$\begin{array}{c} 95.80\\ 96.80\\ 98.00\\ 96.60\\ 92.40\\ \hline CP_{95\%}\\ 95.40\\ 94.80\\ 96.60\\ 96.80\\ 97.60\\ \end{array}$	$\begin{array}{c} 2.149\\ 1.556\\ 1.428\\ 1.563\\ 2.106\\ \hline \Delta \text{CI}_{90\%}\\ 0.841\\ 0.586\\ 1.634\\ 1.136\\ 1.038\\ \end{array}$	$\begin{array}{c} 2.330\\ 1.847\\ 1.710\\ 1.864\\ 2.527\\ \hline \Delta CI_{95\%}\\ 1.006\\ 0.700\\ 1.971\\ 1.355\\ 1.240\\ \end{array}$
$\begin{array}{c} q0.25 \\ q0.25 \\ q0.50 \\ \hline q0.75 \\ q0.95 \\ \hline \textbf{Scenario 4} (n = 100) \\ \hline \textbf{Mean} \\ \hline \textbf{SD} \\ q0.05 \\ q0.25 \\ q0.50 \\ q0.75 \\ \hline \end{array}$	0.137 0.024 0.004 -0.008 -0.124 Bias 0.002 0.061 -0.007 -0.021 0.010 0.028	0.605 0.424 0.374 0.421 0.613 ESE 0.254 0.175 0.444 0.313 0.287 0.309	0.625 0.424 0.374 0.421 0.625 RMSE 0.253 0.185 0.443 0.313 0.287 0.310	$\begin{array}{c} 88.00\\ 92.60\\ 94.20\\ 93.60\\ 86.60\\ \hline \\ CP_{90\%}\\ 89.00\\ 90.20\\ 92.20\\ 92.20\\ 94.00\\ 92.20\\ \end{array}$	$\begin{array}{c} 93.30\\ 96.80\\ 98.00\\ 96.60\\ 92.40\\ \hline CP_{95\%}\\ 95.40\\ 94.80\\ 94.80\\ 96.60\\ 96.80\\ 97.60\\ 96.60\\ \end{array}$	$\begin{array}{c} 2.149\\ 1.556\\ 1.428\\ 1.563\\ 2.106\\ \hline \Delta CI_{90\%}\\ 0.841\\ 0.586\\ 1.634\\ 1.136\\ 1.038\\ 1.038\\ 1.118\\ \end{array}$	$\begin{array}{c} 2.330\\ 1.847\\ 1.710\\ 1.864\\ 2.527\\ \hline \Delta CI_{95\%}\\ 1.006\\ 0.700\\ 1.971\\ 1.355\\ 1.240\\ 1.335\\ \end{array}$

Table 2: Simulation results for Scenarios 1-4 with a Gaussian target SI distribution $\mathcal{N}(2.8, 2.5^2)$ and doubly interval-censored data. The first column contains the selected features of \mathcal{S} , namely the mean, standard deviation, 5th, 25th, 50th, 75th and 95th percentiles. Bias, ESE, RMSE, coverage probability (CP) and median confidence interval width Δ CI are used to assess the performance of the nonparametric approach.

Scenario 5 $(n = 10)$	Bias	ESE	RMSE	$\mathrm{CP}_{90\%}$	$CP_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
Mean	0.006	0.847	0.847	83.00	88.40	2.422	2.866
SD	-0.226	0.512	0.559	77.40	82.60	1.546	1.818
q0.05	1.168	1.104	1.607	50.00	51.60	2.716	3.113
q0.25	0.272	0.934	0.972	88.60	93.00	3.308	3.785
q0.50	0.011	0.910	0.909	83.40	92.00	2.908	3.599
q0.75	-0.250	0.942	0.974	86.40	89.60	3.232	3.701
q0.95	-1.174	1.126	1.626	45.20	49.00	2.619	3.004
Scenario 6 $(n = 20)$	Bias	ESE	RMSE	$\mathrm{CP}_{90\%}$	$\mathrm{CP}_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
Mean	-0.037	0.575	0.575	87.20	92.80	1.778	2.115
SD	-0.090	0.409	0.419	81.20	87.20	1.177	1.394
q0.05	0.552	0.904	1.059	71.20	74.00	2.619	2.979
q0.25	0.076	0.691	0.695	88.00	93.00	2.344	2.796
q0.50	-0.015	0.618	0.618	90.40	95.20	2.155	2.600
q0.75	-0.156	0.652	0.669	87.80	92.60	2.271	2.758
q0.95	-0.651	0.913	1.120	68.80	72.40	2.670	3.030
Scenario 7 $(n = 50)$	Bias	ESE	RMSE	$CP_{90\%}$	$CP_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
$\begin{tabular}{ c c c c } \hline Scenario 7 & (n = 50) \\ \hline & \\ \hline \hline \\ \hline \\$	Bias 0.004	ESE 0.354	RMSE 0.353	CP _{90%} 88.40	$\frac{\mathrm{CP}_{95\%}}{94.20}$	$\frac{\Delta \text{CI}_{90\%}}{1.148}$	$\frac{\Delta \text{CI}_{95\%}}{1.370}$
$\begin{tabular}{ c c c c } \hline Scenario 7 & (n = 50) \\ \hline Mean \\ & SD \\ \hline \end{tabular}$	Bias 0.004 -0.027	ESE 0.354 0.254	RMSE 0.353 0.255	$\frac{CP_{90\%}}{88.40}$ 86.80	$\frac{CP_{95\%}}{94.20}$ 92.00	$\Delta CI_{90\%}$ 1.148 0.783	$\Delta CI_{95\%}$ 1.370 0.932
$\begin{tabular}{ c c c c c } \hline Scenario 7 & (n = 50) \\ \hline Mean \\ & SD \\ & q0.05 \\ \hline \end{tabular}$	Bias 0.004 -0.027 0.220	ESE 0.354 0.254 0.632	RMSE 0.353 0.255 0.669	$\begin{array}{c} CP_{90\%} \\ 88.40 \\ 86.80 \\ 84.40 \end{array}$	$\begin{array}{c} \rm CP_{95\%} \\ \hline 94.20 \\ 92.00 \\ 87.60 \end{array}$	$\begin{array}{c} \Delta {\rm CI}_{90\%} \\ \hline 1.148 \\ 0.783 \\ \hline 2.168 \end{array}$	$\begin{array}{c} \Delta {\rm CI}_{95\%} \\ \hline 1.370 \\ 0.932 \\ 2.575 \end{array}$
Scenario 7 $(n = 50)$ Mean SD $q0.05$ $q0.25$	Bias 0.004 -0.027 0.220 0.053	ESE 0.354 0.254 0.632 0.429	RMSE 0.353 0.255 0.669 0.432	CP _{90%} 88.40 86.80 84.40 90.80	$\begin{array}{c} {\rm CP}_{95\%} \\ 94.20 \\ 92.00 \\ 87.60 \\ 95.80 \end{array}$	$\begin{array}{c} \Delta \mathrm{CI}_{90\%} \\ 1.148 \\ 0.783 \\ 2.168 \\ 1.520 \end{array}$	$\begin{array}{c} \Delta \mathrm{CI}_{95\%} \\ 1.370 \\ 0.932 \\ 2.575 \\ 1.815 \end{array}$
Scenario 7 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$	Bias 0.004 -0.027 0.220 0.053 0.013	ESE 0.354 0.254 0.632 0.429 0.403	RMSE 0.353 0.255 0.669 0.432 0.403	CP _{90%} 88.40 86.80 84.40 90.80 90.00	$\begin{array}{c} {\rm CP}_{95\%} \\ 94.20 \\ 92.00 \\ 87.60 \\ 95.80 \\ 95.40 \end{array}$	$\begin{array}{c} \Delta \mathrm{CI}_{90\%} \\ \hline 1.148 \\ 0.783 \\ 2.168 \\ 1.520 \\ 1.405 \end{array}$	$\begin{array}{c} \Delta \mathrm{CI}_{95\%} \\ 1.370 \\ 0.932 \\ 2.575 \\ 1.815 \\ 1.696 \end{array}$
Scenario 7 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$	Bias 0.004 -0.027 0.220 0.053 0.013 -0.033	ESE 0.354 0.254 0.632 0.429 0.403 0.440	RMSE 0.353 0.255 0.669 0.432 0.403 0.441	CP _{90%} 88.40 86.80 84.40 90.80 90.00 89.40	$\begin{array}{c} {\rm CP}_{95\%} \\ 94.20 \\ 92.00 \\ 87.60 \\ 95.80 \\ 95.40 \\ 94.40 \end{array}$	$\begin{array}{c} \Delta \mathrm{CI}_{90\%} \\ 1.148 \\ 0.783 \\ 2.168 \\ 1.520 \\ 1.405 \\ 1.514 \end{array}$	$\begin{array}{c} \Delta \mathrm{CI}_{95\%} \\ 1.370 \\ 0.932 \\ 2.575 \\ 1.815 \\ 1.696 \\ 1.821 \end{array}$
Scenario 7 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$	Bias 0.004 -0.027 0.220 0.053 0.013 -0.033 -0.238	ESE 0.354 0.254 0.632 0.429 0.403 0.403 0.440 0.619	RMSE 0.353 0.255 0.669 0.432 0.403 0.441 0.662	CP _{90%} 88.40 86.80 84.40 90.80 90.00 89.40 83.60	$\begin{array}{c} {\rm CP}_{95\%} \\ 94.20 \\ 92.00 \\ 87.60 \\ 95.80 \\ 95.40 \\ 94.40 \\ 88.40 \end{array}$	$\begin{array}{c} \Delta \mathrm{CI}_{90\%} \\ 1.148 \\ 0.783 \\ 2.168 \\ 1.520 \\ 1.405 \\ 1.514 \\ 2.160 \end{array}$	$\begin{array}{c} \Delta \mathrm{CI}_{95\%} \\ 1.370 \\ 0.932 \\ 2.575 \\ 1.815 \\ 1.696 \\ 1.821 \\ 2.510 \end{array}$
Scenario 7 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 8 $(n = 100)$	Bias 0.004 -0.027 0.220 0.053 0.013 -0.033 -0.238 Bias	ESE 0.354 0.254 0.632 0.429 0.403 0.403 0.440 0.619 ESE	RMSE 0.353 0.255 0.669 0.432 0.403 0.441 0.662 RMSE	$\begin{array}{c} {\rm CP}_{90\%} \\ 88.40 \\ 86.80 \\ 84.40 \\ 90.80 \\ 90.00 \\ 89.40 \\ 83.60 \\ {\rm CP}_{90\%} \end{array}$	$\begin{array}{c} {\rm CP}_{95\%} \\ 94.20 \\ 92.00 \\ 87.60 \\ 95.80 \\ 95.40 \\ 94.40 \\ 88.40 \\ {\rm CP}_{95\%} \end{array}$	$\begin{array}{c} \Delta {\rm CI}_{90\%} \\ 1.148 \\ 0.783 \\ 2.168 \\ 1.520 \\ 1.405 \\ 1.514 \\ 2.160 \\ \Delta {\rm CI}_{90\%} \end{array}$	$\begin{array}{c} \Delta {\rm CI}_{95\%} \\ 1.370 \\ 0.932 \\ 2.575 \\ 1.815 \\ 1.696 \\ 1.821 \\ 2.510 \\ \Delta {\rm CI}_{95\%} \end{array}$
Scenario 7 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 8 $(n = 100)$ Mean	Bias 0.004 -0.027 0.220 0.053 0.013 -0.033 -0.238 Bias 0.010	ESE 0.354 0.254 0.632 0.429 0.403 0.403 0.440 0.619 ESE 0.248	RMSE 0.353 0.255 0.669 0.432 0.403 0.403 0.403 0.441 0.662 RMSE 0.248	CP _{90%} 88.40 86.80 90.80 90.00 89.40 83.60 CP _{90%} 88.80	$\begin{array}{c} {\rm CP}_{95\%} \\ 94.20 \\ 92.00 \\ 87.60 \\ 95.80 \\ 95.40 \\ 94.40 \\ 88.40 \\ {\rm CP}_{95\%} \\ 94.40 \end{array}$	$\begin{array}{c} \Delta {\rm CI}_{90\%} \\ 1.148 \\ 0.783 \\ 2.168 \\ 1.520 \\ 1.405 \\ 1.514 \\ 2.160 \\ \Delta {\rm CI}_{90\%} \\ 0.826 \end{array}$	$\begin{array}{c} \Delta {\rm CI}_{95\%} \\ 1.370 \\ 0.932 \\ 2.575 \\ 1.815 \\ 1.696 \\ 1.821 \\ 2.510 \\ \Delta {\rm CI}_{95\%} \\ 0.985 \end{array}$
Scenario 7 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 8 $(n = 100)$ Mean SD	Bias 0.004 -0.027 0.220 0.053 0.013 -0.033 -0.238 Bias 0.010 0.007	ESE 0.354 0.254 0.632 0.429 0.403 0.403 0.440 0.619 ESE 0.248 0.173	RMSE 0.353 0.255 0.669 0.432 0.403 0.441 0.662 RMSE 0.248 0.173	$\begin{array}{c} {\rm CP}_{90\%} \\ 88.40 \\ 86.80 \\ 84.40 \\ 90.80 \\ 90.00 \\ 89.40 \\ 83.60 \\ {\rm CP}_{90\%} \\ 88.80 \\ 89.20 \end{array}$	$\begin{array}{c} {\rm CP}_{95\%} \\ 94.20 \\ 92.00 \\ 87.60 \\ 95.80 \\ 95.40 \\ 94.40 \\ 88.40 \\ {\rm CP}_{95\%} \\ 94.40 \\ 93.80 \\ \end{array}$	$\begin{array}{c} \Delta {\rm CI}_{90\%} \\ 1.148 \\ 0.783 \\ 2.168 \\ 1.520 \\ 1.405 \\ 1.514 \\ 2.160 \\ \Delta {\rm CI}_{90\%} \\ 0.826 \\ 0.563 \end{array}$	$\begin{array}{r} \Delta {\rm CI}_{95\%} \\ 1.370 \\ 0.932 \\ 2.575 \\ 1.815 \\ 1.696 \\ 1.821 \\ 2.510 \\ \Delta {\rm CI}_{95\%} \\ 0.985 \\ 0.671 \end{array}$
Scenario 7 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 8 $(n = 100)$ Mean SD $q0.05$	Bias 0.004 -0.027 0.220 0.053 0.013 -0.033 -0.238 Bias 0.010 0.007 0.007	ESE 0.354 0.254 0.632 0.429 0.403 0.403 0.440 0.619 ESE 0.248 0.173 0.447	RMSE 0.353 0.255 0.669 0.432 0.403 0.403 0.403 0.441 0.662 RMSE 0.248 0.173 0.457	CP _{90%} 88.40 86.80 90.80 90.00 89.40 83.60 CP _{90%} 88.80 89.20 88.80	$\begin{array}{c} {\rm CP}_{95\%} \\ 94.20 \\ 92.00 \\ 87.60 \\ 95.80 \\ 95.40 \\ 94.40 \\ 88.40 \\ {\rm CP}_{95\%} \\ 94.40 \\ 93.80 \\ 93.00 \\ \end{array}$	$\begin{array}{c} \Delta {\rm CI}_{90\%} \\ 1.148 \\ 0.783 \\ 2.168 \\ 1.520 \\ 1.405 \\ 1.514 \\ 2.160 \\ \hline \Delta {\rm CI}_{90\%} \\ 0.826 \\ 0.563 \\ 1.585 \end{array}$	$\begin{array}{c} \Delta {\rm CI}_{95\%} \\ 1.370 \\ 0.932 \\ 2.575 \\ 1.815 \\ 1.696 \\ 1.821 \\ 2.510 \\ \Delta {\rm CI}_{95\%} \\ 0.985 \\ 0.671 \\ 1.889 \end{array}$
Scenario 7 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 8 $(n = 100)$ Mean SD $q0.05$ $q0.95$	Bias 0.004 -0.027 0.220 0.053 0.013 -0.033 -0.238 Bias 0.010 0.007 0.094 0.016	ESE 0.354 0.254 0.632 0.429 0.403 0.403 0.403 0.440 0.619 ESE 0.248 0.173 0.447 0.320	RMSE 0.353 0.255 0.669 0.432 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.248 0.173 0.457 0.320	CP _{90%} 88.40 86.80 90.80 90.00 89.40 83.60 CP _{90%} 88.80 89.20 88.80 92.20	$\begin{array}{c} {\rm CP}_{95\%} \\ 94.20 \\ 92.00 \\ 87.60 \\ 95.80 \\ 95.40 \\ 94.40 \\ 88.40 \\ {\rm CP}_{95\%} \\ 94.40 \\ 93.80 \\ 93.00 \\ 95.80 \\ \end{array}$	$\begin{array}{c} \Delta {\rm CI}_{90\%} \\ 1.148 \\ 0.783 \\ 2.168 \\ 1.520 \\ 1.405 \\ 1.514 \\ 2.160 \\ \Delta {\rm CI}_{90\%} \\ 0.826 \\ 0.563 \\ 1.585 \\ 1.113 \end{array}$	$\begin{array}{r} \Delta {\rm CI}_{95\%} \\ 1.370 \\ 0.932 \\ 2.575 \\ 1.815 \\ 1.696 \\ 1.821 \\ 2.510 \\ \Delta {\rm CI}_{95\%} \\ 0.985 \\ 0.671 \\ 1.889 \\ 1.336 \end{array}$
Scenario 7 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 8 $(n = 100)$ Mean $g0.05$ $q0.05$ $q0.95$ Scenario 8 $(n = 100)$ $q0.05$ $q0.25$ $q0.25$ $q0.25$ $q0.50$	Bias 0.004 -0.027 0.220 0.053 0.013 -0.033 -0.238 Bias 0.010 0.007 0.094 0.016 0.005	ESE 0.354 0.254 0.429 0.403 0.403 0.440 0.619 ESE 0.248 0.173 0.447 0.320 0.300	RMSE 0.353 0.255 0.669 0.432 0.403 0.403 0.403 0.441 0.662 RMSE 0.248 0.173 0.457 0.320 0.300	CP _{90%} 88.40 84.40 90.80 90.00 89.40 83.60 CP _{90%} 88.80 89.20 88.80 92.20 89.60	$\begin{array}{c} {\rm CP}_{95\%} \\ 94.20 \\ 92.00 \\ 87.60 \\ 95.80 \\ 95.40 \\ 94.40 \\ 88.40 \\ \hline {\rm CP}_{95\%} \\ 94.40 \\ 93.80 \\ 93.00 \\ 93.00 \\ 95.80 \\ 96.20 \\ \end{array}$	$\begin{array}{c} \Delta {\rm CI}_{90\%} \\ 1.148 \\ 0.783 \\ 2.168 \\ 1.520 \\ 1.405 \\ 1.514 \\ 2.160 \\ \hline \Delta {\rm CI}_{90\%} \\ 0.826 \\ 0.563 \\ 1.585 \\ 1.585 \\ 1.113 \\ 1.012 \end{array}$	$\begin{array}{c} \Delta {\rm CI}_{95\%} \\ 1.370 \\ 0.932 \\ 2.575 \\ 1.815 \\ 1.696 \\ 1.821 \\ 2.510 \\ \hline \Delta {\rm CI}_{95\%} \\ 0.985 \\ 0.671 \\ 1.889 \\ 1.336 \\ 1.212 \end{array}$
Scenario 7 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 8 $(n = 100)$ Mean SD $q0.05$ $q0.95$ Scenario 8 $(n = 100)$ Mean $q0.25$ $q0.05$ $q0.25$ $q0.50$ $q0.50$ $q0.75$	Bias 0.004 -0.027 0.220 0.053 0.013 -0.033 -0.238 Bias 0.010 0.007 0.094 0.016 0.005 0.011	ESE 0.354 0.254 0.632 0.429 0.403 0.403 0.403 0.440 0.619 ESE 0.248 0.173 0.248 0.173 0.248 0.173 0.320 0.300	RMSE 0.353 0.255 0.669 0.432 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.248 0.173 0.457 0.320 0.300 0.310	CP _{90%} 88.40 86.80 90.80 90.00 89.40 83.60 CP _{90%} 88.80 89.20 88.80 92.20 89.60	$\begin{array}{c} {\rm CP}_{95\%} \\ 94.20 \\ 92.00 \\ 87.60 \\ 95.80 \\ 95.40 \\ 94.40 \\ 88.40 \\ {\rm CP}_{95\%} \\ 94.40 \\ 93.80 \\ 93.80 \\ 93.00 \\ 95.80 \\ 95.80 \\ 96.20 \\ 97.00 \\ \end{array}$	$\begin{array}{r} \Delta {\rm CI}_{90\%} \\ 1.148 \\ 0.783 \\ 2.168 \\ 1.520 \\ 1.405 \\ 1.514 \\ 2.160 \\ 0.826 \\ 0.826 \\ 0.826 \\ 0.563 \\ 1.585 \\ 1.585 \\ 1.113 \\ 1.012 \\ 1.108 \\ \end{array}$	$\begin{array}{r} \Delta {\rm CI}_{95\%} \\ 1.370 \\ 0.932 \\ 2.575 \\ 1.815 \\ 1.696 \\ 1.821 \\ 2.510 \\ \hline \Delta {\rm CI}_{95\%} \\ 0.985 \\ 0.671 \\ 1.889 \\ 1.336 \\ 1.212 \\ 1.322 \\ \end{array}$

Table 3: Simulation results for Scenarios 5-8 with a Gaussian target SI distribution $\mathcal{N}(2.8, 2.5^2)$ and single interval-censored data. The first column contains the selected features of \mathcal{S} , namely the mean, standard deviation, 5th, 25th, 50th, 75th and 95th percentiles. Bias, ESE, RMSE, coverage probability (CP) and median confidence interval width Δ CI are used to assess the performance of the nonparametric approach.

Scenario 9 $(n = 10)$	Bias	ESE	RMSE	$CP_{90\%}$	$CP_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
Mean	-0.024	0.781	0.781	87.20	89.20	2.402	2.850
SD	-0.196	0.543	0.576	78.00	83.20	1.589	1.887
q0.05	1.092	1.113	1.558	51.60	53.80	2.772	3.190
q0.25	0.216	0.885	0.910	89.40	92.20	3.455	3.901
q0.50	-0.007	0.830	0.829	89.40	93.80	2.925	3.606
q0.75	-0.249	0.891	0.924	88.80	91.60	3.297	3.782
q0.95	-1.176	1.103	1.612	46.60	49.00	2.582	3.030
Scenario 10 $(n = 20)$	Bias	ESE	RMSE	$\mathrm{CP}_{90\%}$	$\mathrm{CP}_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
Mean	-0.010	0.577	0.576	87.80	93.60	1.760	2.088
SD	-0.112	0.369	0.385	82.00	87.60	1.159	1.378
q0.05	0.631	0.880	1.082	67.80	70.20	2.627	3.013
q0.25	0.118	0.702	0.711	86.60	92.40	2.306	2.709
q0.50	-0.011	0.637	0.637	89.60	94.20	2.145	2.554
q0.75	-0.147	0.639	0.656	90.00	93.00	2.266	2.730
q0.95	-0.641	0.847	1.061	69.80	72.60	2.702	3.042
	D .	DOD	DICOD	CD	CD	ACT	ACT
Scenario 11 $(n = 50)$	Bias	ESE	RMSE	$CP_{90\%}$	$CP_{95\%}$	$\Delta CI_{90\%}$	$\Delta OI_{95\%}$
$\frac{\text{Scenario 11} (n = 50)}{\text{Mean}}$	Bias -0.007	ESE 0.350	RMSE 0.350	CP _{90%} 89.20	$\frac{CP_{95\%}}{94.60}$	$\Delta CI_{90\%}$ 1.159	$\frac{\Delta CI_{95\%}}{1.380}$
Scenario 11 (n = 50) Mean SD SD	Bias -0.007 -0.020	ESE 0.350 0.247	RMSE 0.350 0.247	CP _{90%} 89.20 87.20	94.60 93.00	$\frac{\Delta CI_{90\%}}{1.159}$ 0.795	$ \begin{array}{c} \Delta \text{C1}_{95\%} \\ \hline 1.380 \\ 0.943 \\ \end{array} $
$\begin{tabular}{ c c c c } \hline Scenario 11 & (n = 50) \\ \hline Mean \\ SD \\ \hline q0.05 \\ \hline \end{tabular}$	Bias -0.007 -0.020 0.233	ESE 0.350 0.247 0.615	RMSE 0.350 0.247 0.657	CP _{90%} 89.20 87.20 85.60	CP _{95%} 94.60 93.00 90.20	$ \begin{array}{r} \Delta CI_{90\%} \\ \hline 1.159 \\ 0.795 \\ 2.186 \\ \end{array} $	$ \begin{array}{r} \Delta C1_{95\%} \\ \hline \\ 1.380 \\ 0.943 \\ 2.532 \\ \end{array} $
Scenario 11 $(n = 50)$ Mean SD $q0.05$ $q0.25$	Bias -0.007 -0.020 0.233 0.036	ESE 0.350 0.247 0.615 0.431	RMSE 0.350 0.247 0.657 0.432	89.20 87.20 85.60 90.40	94.60 93.00 90.20 94.40	$ \begin{array}{r} \Delta CI_{90\%} \\ \hline 1.159 \\ 0.795 \\ 2.186 \\ 1.500 \\ \end{array} $	$ \begin{array}{r} \Delta C1_{95\%} \\ \hline 1.380 \\ 0.943 \\ 2.532 \\ 1.791 \\ \end{array} $
Scenario 11 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$	Bias -0.007 -0.020 0.233 0.036 -0.032	ESE 0.350 0.247 0.615 0.431 0.403	RMSE 0.350 0.247 0.657 0.432 0.404	CP _{90%} 89.20 87.20 85.60 90.40 90.20	$\begin{array}{c} CP_{95\%} \\ 94.60 \\ 93.00 \\ 90.20 \\ 94.40 \\ 94.60 \end{array}$	$\frac{\Delta CI_{90\%}}{1.159}$ 0.795 2.186 1.500 1.400	$ \begin{array}{r} \Delta C1_{95\%} \\ \hline \\ 1.380 \\ 0.943 \\ 2.532 \\ 1.791 \\ 1.672 \\ \end{array} $
Scenario 11 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$	Bias -0.007 -0.020 0.233 0.036 -0.032 -0.060	ESE 0.350 0.247 0.615 0.431 0.403 0.447	RMSE 0.350 0.247 0.657 0.432 0.404 0.451	CP _{90%} 89.20 87.20 85.60 90.40 90.20 89.60	$\begin{array}{c} CP_{95\%} \\ 94.60 \\ 93.00 \\ 90.20 \\ 94.40 \\ 94.60 \\ 95.60 \end{array}$	$\frac{\Delta CI_{90\%}}{1.159}$ 0.795 2.186 1.500 1.400 1.545	$\begin{array}{c} \Delta C1_{95\%} \\ \hline 1.380 \\ 0.943 \\ 2.532 \\ \hline 1.791 \\ 1.672 \\ \hline 1.858 \end{array}$
Scenario 11 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$	Bias -0.007 -0.020 0.233 0.036 -0.032 -0.060 -0.184	ESE 0.350 0.247 0.615 0.431 0.403 0.447 0.600	RMSE 0.350 0.247 0.657 0.432 0.404 0.451 0.627	CP90% 89.20 87.20 85.60 90.40 90.20 89.60 88.40	$\begin{array}{c} CP_{95\%} \\ 94.60 \\ 93.00 \\ 90.20 \\ 94.40 \\ 94.60 \\ 95.60 \\ 91.20 \end{array}$	$\frac{\Delta CI_{90\%}}{1.159}$ 0.795 2.186 1.500 1.400 1.545 2.198	$\begin{array}{c} \Delta C1_{95\%} \\ \hline 1.380 \\ 0.943 \\ 2.532 \\ 1.791 \\ 1.672 \\ 1.858 \\ 2.564 \end{array}$
Scenario 11 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 12 $(n = 100)$	Bias -0.007 -0.020 0.233 0.036 -0.032 -0.060 -0.184 Bias	ESE 0.350 0.247 0.615 0.431 0.403 0.447 0.600 ESE	RMSE 0.350 0.247 0.657 0.432 0.404 0.451 0.627 RMSE	CP _{90%} 89.20 87.20 85.60 90.40 90.20 89.60 88.40 CP _{90%}	$\begin{array}{c} {\rm CP}_{95\%} \\ 94.60 \\ 93.00 \\ 90.20 \\ 94.40 \\ 94.60 \\ 95.60 \\ 91.20 \\ {\rm CP}_{95\%} \end{array}$	$\begin{array}{c} \Delta \text{CI}_{90\%} \\ \hline 1.159 \\ 0.795 \\ 2.186 \\ \hline 1.500 \\ 1.400 \\ \hline 1.545 \\ 2.198 \\ \hline \Delta \text{CI}_{90\%} \end{array}$	$\begin{array}{c} \Delta \text{CI}_{95\%} \\ \hline 1.380 \\ 0.943 \\ 2.532 \\ 1.791 \\ 1.672 \\ 1.858 \\ 2.564 \\ \hline \Delta \text{CI}_{95\%} \end{array}$
Scenario 11 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 12 $(n = 100)$ Mean	Bias -0.007 -0.020 0.233 0.036 -0.032 -0.060 -0.184 Bias 0.011	ESE 0.350 0.247 0.615 0.431 0.403 0.403 0.447 0.600 ESE 0.257	RMSE 0.350 0.247 0.657 0.432 0.404 0.451 0.627 RMSE 0.257	CP _{90%} 89.20 87.20 85.60 90.40 90.20 89.60 88.40 CP _{90%} 88.20	$\begin{array}{c} CP_{95\%} \\ 94.60 \\ 93.00 \\ 90.20 \\ 94.40 \\ 94.60 \\ 95.60 \\ 91.20 \\ CP_{95\%} \\ 94.00 \end{array}$	$\begin{array}{c} \Delta \text{CI}_{90\%} \\ \hline 1.159 \\ 0.795 \\ \hline 2.186 \\ \hline 1.500 \\ 1.400 \\ \hline 1.545 \\ \hline 2.198 \\ \hline \Delta \text{CI}_{90\%} \\ \hline 0.825 \end{array}$	$\begin{array}{r} \Delta CI_{95\%} \\ \hline 1.380 \\ 0.943 \\ 2.532 \\ 1.791 \\ 1.672 \\ 1.858 \\ 2.564 \\ \hline \Delta CI_{95\%} \\ 0.981 \end{array}$
Scenario 11 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 12 $(n = 100)$ Mean SD	Bias -0.007 -0.020 0.233 0.036 -0.032 -0.060 -0.184 Bias 0.011 0.009	ESE 0.350 0.247 0.615 0.431 0.403 0.447 0.600 ESE 0.257 0.171	RMSE 0.350 0.247 0.657 0.432 0.404 0.451 0.627 RMSE 0.257 0.171	$\begin{array}{c} CP_{90\%} \\ 89.20 \\ 87.20 \\ 85.60 \\ 90.40 \\ 90.20 \\ 89.60 \\ 88.40 \\ \hline CP_{90\%} \\ 88.20 \\ 91.60 \\ \end{array}$	$\begin{array}{c} {\rm CP}_{95\%} \\ 94.60 \\ 93.00 \\ 90.20 \\ 94.40 \\ 94.60 \\ 95.60 \\ 91.20 \\ {\rm CP}_{95\%} \\ 94.00 \\ 95.60 \end{array}$	$\begin{array}{c} \Delta \text{CI}_{90\%} \\ \hline 1.159 \\ 0.795 \\ 2.186 \\ 1.500 \\ 1.400 \\ 1.545 \\ 2.198 \\ \hline \Delta \text{CI}_{90\%} \\ 0.825 \\ 0.571 \end{array}$	$\begin{array}{r} \Delta CI_{95\%} \\ \hline 1.380 \\ 0.943 \\ 2.532 \\ 1.791 \\ 1.672 \\ 1.858 \\ 2.564 \\ \hline \Delta CI_{95\%} \\ 0.981 \\ 0.679 \end{array}$
Scenario 11 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 12 $(n = 100)$ Mean SD $q0.05$	Bias -0.007 -0.020 0.233 0.036 -0.032 -0.060 -0.184 Bias 0.011 0.009 0.097	ESE 0.350 0.247 0.615 0.431 0.403 0.403 0.447 0.600 ESE 0.257 0.171 0.441	RMSE 0.350 0.247 0.657 0.432 0.404 0.451 0.627 RMSE 0.257 0.171 0.451	CP90% 89.20 87.20 85.60 90.40 90.20 89.60 88.40 CP90% 88.20 91.60 88.80	$\begin{array}{c} CP_{95\%} \\ 94.60 \\ 93.00 \\ 90.20 \\ 94.40 \\ 94.60 \\ 95.60 \\ 91.20 \\ \hline CP_{95\%} \\ 94.00 \\ 95.60 \\ 93.40 \\ \end{array}$	$\frac{\Delta CI_{90\%}}{1.159}$ 1.159 0.795 2.186 1.500 1.400 1.545 2.198 $\Delta CI_{90\%}$ 0.825 0.571 1.593	$\begin{array}{c} \Delta \text{CI}_{95\%} \\ \hline 1.380 \\ 0.943 \\ 2.532 \\ 1.791 \\ 1.672 \\ 1.858 \\ 2.564 \\ \hline \Delta \text{CI}_{95\%} \\ 0.981 \\ 0.679 \\ 1.909 \end{array}$
Scenario 11 $(n = 50)$ Mean SD q0.05 q0.25 q0.50 q0.75 q0.95 Scenario 12 $(n = 100)$ Mean g0.05 q0.05 q0.25	Bias -0.007 0.233 0.036 -0.032 -0.060 -0.184 Bias 0.011 0.009 0.097 0.013	ESE 0.350 0.247 0.615 0.431 0.403 0.447 0.600 ESE 0.257 0.171 0.441 0.323	RMSE 0.350 0.247 0.657 0.432 0.404 0.451 0.627 RMSE 0.257 0.171 0.451 0.323	CP90% 89.20 87.20 85.60 90.40 90.20 89.60 88.40 CP90% 88.20 91.60 88.80 90.80	$\begin{array}{c} CP_{95\%} \\ 94.60 \\ 93.00 \\ 90.20 \\ 94.40 \\ 94.60 \\ 95.60 \\ 91.20 \\ \hline CP_{95\%} \\ 94.00 \\ 95.60 \\ 93.40 \\ 96.00 \\ \end{array}$	$\frac{\Delta CI_{90\%}}{1.159}$ 1.159 0.795 2.186 1.500 1.400 1.545 2.198 $\Delta CI_{90\%}$ 0.825 0.571 1.593 1.109	$\frac{\Delta CI_{95\%}}{1.380}$ 1.380 0.943 2.532 1.791 1.672 1.858 2.564 $\Delta CI_{95\%}$ 0.981 0.679 1.909 1.332
Scenario 11 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.75$ $q0.95$ Scenario 12 $(n = 100)$ Mean $q0.05$ $q0.25$ $q0.95$ Scenario 12 $(n = 100)$ Mean $q0.05$ $q0.25$ $q0.25$ $q0.50$	Bias -0.007 0.233 0.036 -0.032 -0.060 -0.184 Bias 0.011 0.009 0.097 0.013 0.024	ESE 0.350 0.247 0.615 0.431 0.403 0.403 0.447 0.600 ESE 0.257 0.171 0.441 0.323 0.297	RMSE 0.350 0.247 0.657 0.432 0.404 0.451 0.627 RMSE 0.257 0.171 0.451 0.323 0.298	CP90% 89.20 87.20 85.60 90.40 90.20 89.60 88.40 CP90% 88.20 91.60 88.80 90.80 91.40	$\begin{array}{c} CP_{95\%} \\ 94.60 \\ 93.00 \\ 90.20 \\ 94.40 \\ 94.60 \\ 95.60 \\ 91.20 \\ CP_{95\%} \\ 94.00 \\ 94.00 \\ 95.60 \\ 93.40 \\ 96.00 \\ 95.60 \end{array}$	$\frac{\Delta CI_{90\%}}{1.159}$ 1.159 0.795 2.186 1.500 1.400 1.545 2.198 $\Delta CI_{90\%}$ 0.825 0.571 1.593 1.109 1.017	$\frac{\Delta CI_{95\%}}{1.380}$ 1.380 0.943 2.532 1.791 1.672 1.672 1.858 2.564 $\Delta CI_{95\%}$ 0.981 0.679 1.909 1.332 1.218
Scenario 11 $(n = 50)$ Mean SD q0.05 q0.25 q0.25 q0.75 q0.95 Scenario 12 $(n = 100)$ Mean q0.05 q0.25 q0.50 q0.50 q0.50 q0.50 q0.50 q0.50 q0.50 q0.50 q0.50 q0.50 q0.50 q0.50 q0.75	Bias -0.007 0.233 0.036 -0.032 -0.060 -0.184 Bias 0.011 0.009 0.097 0.013 0.024 0.002	ESE 0.350 0.247 0.615 0.431 0.403 0.403 0.447 0.600 ESE 0.257 0.171 0.441 0.323 0.297 0.322	RMSE 0.350 0.247 0.657 0.432 0.404 0.404 0.451 0.627 RMSE 0.257 0.171 0.451 0.323 0.298 0.322	CP90% 89.20 87.20 85.60 90.40 90.20 89.60 88.40 CP90% 88.20 91.60 88.80 90.80 91.40	$\begin{array}{c} \mathrm{CP}_{95\%} \\ 94.60 \\ 93.00 \\ 90.20 \\ 94.40 \\ 94.60 \\ 95.60 \\ 91.20 \\ \mathrm{CP}_{95\%} \\ 94.00 \\ 95.60 \\ 93.40 \\ 96.00 \\ 95.60 \\ 95.60 \\ 95.80 \\ \end{array}$	$\frac{\Delta CI_{90\%}}{1.159}$ 1.159 0.795 2.186 1.500 1.400 1.545 2.198 $\Delta CI_{90\%}$ 0.825 0.571 1.593 1.109 1.017 1.017 1.076	$\frac{\Delta CI_{95\%}}{1.380}$ 1.380 0.943 2.532 1.791 1.672 1.858 2.564 $\Delta CI_{95\%}$ 0.981 0.679 1.909 1.332 1.218 1.218

Table 4: Simulation results for Scenarios 9-12 with a Gaussian target SI distribution $\mathcal{N}(2.8, 2.5^2)$ and exactly observed data. The first column contains the selected features of \mathcal{S} , namely the mean, standard deviation, 5th, 25th, 50th, 75th and 95th percentiles. Bias, ESE, RMSE, coverage probability (CP) and median confidence interval width Δ CI are used to assess the performance of the nonparametric approach.

Scenario 13 $(n = 10)$	Bias	ESE	RMSE	$CP_{90\%}$	$CP_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
Mean	-0.007	0.425	0.425	86.60	93.20	1.378	1.648
SD	0.049	0.250	0.254	94.40	97.40	0.930	1.099
q0.05	0.232	0.426	0.485	85.00	89.40	1.613	1.900
q0.25	0.088	0.427	0.436	93.60	97.60	1.642	1.958
q0.50	0.033	0.448	0.448	91.80	96.00	1.667	2.002
q0.75	-0.041	0.504	0.505	90.80	96.20	1.895	2.226
q0.95	-0.453	0.640	0.784	68.60	74.00	1.947	2.267
Scenario 14 $(n = 20)$	Bias	ESE	RMSE	$\mathrm{CP}_{90\%}$	$\mathrm{CP}_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
Mean	-0.014	0.286	0.286	91.40	94.60	1.024	1.217
SD	0.112	0.178	0.210	94.20	97.80	0.673	0.797
q0.05	-0.010	0.298	0.298	96.60	99.20	1.422	1.690
q0.25	-0.014	0.294	0.294	96.00	98.20	1.244	1.488
q0.50	0.017	0.313	0.313	95.00	98.60	1.280	1.528
q0.75	0.032	0.361	0.362	94.40	97.60	1.422	1.696
q0.95	-0.166	0.473	0.501	87.60	92.20	1.786	2.123
		-	DICOD	AD	CD	A OT	A CIT
Scenario 15 $(n = 50)$	Bias	ESE	RMSE	$CP_{90\%}$	$CP_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
$\frac{\text{Scenario 15} (n = 50)}{\text{Mean}}$	Bias -0.001	ESE 0.184	RMSE 0.184	$CP_{90\%}$ 92.40	$CP_{95\%}$ 95.80	$\frac{\Delta \text{Cl}_{90\%}}{0.657}$	$\frac{\Delta \text{Cl}_{95\%}}{0.784}$
$\begin{array}{c} \text{Scenario 15} (n = 50) \\ \hline \text{Mean} \\ \text{SD} \end{array}$	Bias -0.001 0.136	ESE 0.184 0.115	RMSE 0.184 0.178	CP _{90%} 92.40 83.80	$ \begin{array}{c} CP_{95\%} \\ 95.80 \\ 92.80 \\ \end{array} $	$\frac{\Delta CI_{90\%}}{0.657}$ 0.443	$\frac{\Delta CI_{95\%}}{0.784}$ 0.528
$\begin{tabular}{ c c c c } \hline Scenario 15 & (n = 50) \\ \hline Mean \\ SD \\ \hline q0.05 \\ \hline \end{tabular}$	Bias -0.001 0.136 -0.165	ESE 0.184 0.115 0.204	RMSE 0.184 0.178 0.262	CP _{90%} 92.40 83.80 93.60	$\begin{array}{c} CP_{95\%} \\ 95.80 \\ 92.80 \\ 98.40 \end{array}$	$\begin{array}{c} \Delta \text{Cl}_{90\%} \\ 0.657 \\ 0.443 \\ 0.975 \end{array}$	$\begin{array}{c} \Delta \text{CI}_{95\%} \\ 0.784 \\ 0.528 \\ 1.160 \end{array}$
Scenario 15 $(n = 50)$ Mean SD $q0.05$ $q0.25$	Bias -0.001 0.136 -0.165 -0.044	ESE 0.184 0.115 0.204 0.195	RMSE 0.184 0.178 0.262 0.200	CP _{90%} 92.40 83.80 93.60 95.60	CP _{95%} 95.80 92.80 98.40 98.40	$\begin{array}{c} \Delta \text{C1}_{90\%} \\ \hline 0.657 \\ \hline 0.443 \\ \hline 0.975 \\ \hline 0.822 \end{array}$	$ \begin{array}{r} \Delta CI_{95\%} \\ \hline 0.784 \\ 0.528 \\ 1.160 \\ 0.975 \\ \end{array} $
Scenario 15 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$	Bias -0.001 0.136 -0.165 -0.044 0.024	ESE 0.184 0.115 0.204 0.195 0.203	RMSE 0.184 0.178 0.262 0.200 0.205	CP _{90%} 92.40 83.80 93.60 95.60 94.80	CP _{95%} 95.80 92.80 98.40 98.40 97.40	$\begin{array}{c} \Delta \text{C1}_{90\%} \\ \hline 0.657 \\ 0.443 \\ 0.975 \\ 0.822 \\ 0.833 \end{array}$	$\begin{array}{c} \Delta \text{Cl}_{95\%} \\ \hline 0.784 \\ 0.528 \\ \hline 1.160 \\ 0.975 \\ \hline 0.992 \end{array}$
Scenario 15 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$	Bias -0.001 0.136 -0.165 -0.044 0.024 0.073	ESE 0.184 0.115 0.204 0.195 0.203 0.229	RMSE 0.184 0.178 0.262 0.200 0.205 0.240	CP _{90%} 92.40 83.80 93.60 95.60 94.80	CP _{95%} 95.80 92.80 98.40 98.40 97.40 98.60	$\begin{array}{r} \Delta \text{C1}_{90\%} \\ \hline 0.657 \\ \hline 0.443 \\ \hline 0.975 \\ \hline 0.822 \\ \hline 0.833 \\ \hline 0.934 \end{array}$	$\begin{array}{c} \Delta \text{Cl}_{95\%} \\ \hline 0.784 \\ \hline 0.528 \\ \hline 1.160 \\ \hline 0.975 \\ \hline 0.992 \\ \hline 1.120 \end{array}$
Scenario 15 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$	Bias -0.001 0.136 -0.165 -0.044 0.024 0.024 0.073 0.067	ESE 0.184 0.115 0.204 0.195 0.203 0.229 0.332	RMSE 0.184 0.178 0.262 0.200 0.205 0.240 0.339	CP _{90%} 92.40 83.80 93.60 95.60 94.80 94.80 94.60	$\begin{array}{c} CP_{95\%} \\ 95.80 \\ 92.80 \\ 98.40 \\ 98.40 \\ 97.40 \\ 98.60 \\ 96.60 \end{array}$	$\begin{array}{c} \Delta \text{Cl}_{90\%} \\ \hline 0.657 \\ 0.443 \\ 0.975 \\ 0.822 \\ 0.833 \\ 0.934 \\ 1.327 \end{array}$	$\begin{array}{c} \Delta \text{CI}_{95\%} \\ \hline 0.784 \\ \hline 0.528 \\ \hline 1.160 \\ \hline 0.975 \\ \hline 0.992 \\ \hline 1.120 \\ \hline 1.581 \end{array}$
Scenario 15 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 16 $(n = 100)$	Bias -0.001 0.136 -0.165 -0.044 0.024 0.073 0.067 Bias	ESE 0.184 0.115 0.204 0.195 0.203 0.229 0.332 ESE	RMSE 0.184 0.178 0.262 0.200 0.205 0.240 0.339 RMSE	$\begin{array}{c} CP_{90\%} \\ 92.40 \\ 83.80 \\ 93.60 \\ 95.60 \\ 94.80 \\ 94.80 \\ 94.60 \\ CP_{90\%} \end{array}$	$\begin{array}{c} {\rm CP}_{95\%} \\ 95.80 \\ 92.80 \\ 98.40 \\ 98.40 \\ 97.40 \\ 98.60 \\ 98.60 \\ 96.60 \\ {\rm CP}_{95\%} \end{array}$	$\begin{array}{r} \Delta \text{CI}_{90\%} \\ \hline 0.657 \\ \hline 0.443 \\ \hline 0.975 \\ \hline 0.822 \\ \hline 0.833 \\ \hline 0.934 \\ \hline 1.327 \\ \hline \Delta \text{CI}_{90\%} \end{array}$	$\begin{array}{r} \Delta \text{CI}_{95\%} \\ \hline 0.784 \\ \hline 0.528 \\ \hline 1.160 \\ \hline 0.975 \\ \hline 0.992 \\ \hline 1.120 \\ \hline 1.581 \\ \hline \Delta \text{CI}_{95\%} \end{array}$
Scenario 15 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 16 $(n = 100)$ Mean	Bias -0.001 0.136 -0.165 -0.044 0.024 0.073 0.067 Bias -0.001	ESE 0.184 0.115 0.204 0.195 0.203 0.229 0.332 ESE 0.128	RMSE 0.184 0.178 0.262 0.200 0.205 0.240 0.339 RMSE 0.128	$\begin{array}{c} CP_{90\%} \\ 92.40 \\ 83.80 \\ 93.60 \\ 95.60 \\ 94.80 \\ 94.80 \\ 94.60 \\ CP_{90\%} \\ 94.00 \end{array}$	$\begin{array}{c} {\rm CP}_{95\%} \\ 95.80 \\ 92.80 \\ 98.40 \\ 98.40 \\ 97.40 \\ 98.60 \\ 96.60 \\ {\rm CP}_{95\%} \\ 97.40 \end{array}$	$\begin{array}{r} \Delta \text{CI}_{90\%} \\ \hline 0.657 \\ \hline 0.443 \\ \hline 0.975 \\ \hline 0.822 \\ \hline 0.833 \\ \hline 0.934 \\ \hline 1.327 \\ \hline \Delta \text{CI}_{90\%} \\ \hline 0.470 \end{array}$	$\begin{array}{r} \Delta \text{CI}_{95\%} \\ 0.784 \\ 0.528 \\ 1.160 \\ 0.975 \\ 0.992 \\ 1.120 \\ 1.581 \\ \Delta \text{CI}_{95\%} \\ 0.561 \end{array}$
Scenario 15 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 16 $(n = 100)$ Mean SD	Bias -0.001 0.136 -0.165 -0.044 0.024 0.024 0.073 0.067 Bias -0.001 0.154	ESE 0.184 0.115 0.204 0.195 0.203 0.229 0.332 ESE 0.128 0.081	RMSE 0.184 0.178 0.262 0.200 0.205 0.240 0.339 RMSE 0.128 0.174	$\begin{array}{c} CP_{90\%} \\ 92.40 \\ 83.80 \\ 93.60 \\ 95.60 \\ 94.80 \\ 94.80 \\ 94.60 \\ CP_{90\%} \\ 94.00 \\ 54.40 \end{array}$	$\begin{array}{c} {\rm CP}_{95\%} \\ 95.80 \\ 92.80 \\ 98.40 \\ 98.40 \\ 97.40 \\ 98.60 \\ 96.60 \\ {\rm CP}_{95\%} \\ 97.40 \\ 68.40 \end{array}$	$\begin{array}{r} \Delta \text{CI}_{90\%} \\ 0.657 \\ 0.443 \\ 0.975 \\ 0.822 \\ 0.833 \\ 0.934 \\ 1.327 \\ \Delta \text{CI}_{90\%} \\ 0.470 \\ 0.323 \end{array}$	$\begin{array}{r} \Delta \text{CI}_{95\%} \\ 0.784 \\ 0.528 \\ 1.160 \\ 0.975 \\ 0.992 \\ 1.120 \\ 1.581 \\ \Delta \text{CI}_{95\%} \\ 0.561 \\ 0.385 \end{array}$
Scenario 15 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 16 $(n = 100)$ Mean SD $q0.05$	Bias -0.001 0.136 -0.165 -0.044 0.024 0.073 0.067 Bias -0.001 0.154 -0.234	ESE 0.184 0.115 0.204 0.195 0.203 0.229 0.332 ESE 0.128 0.081 0.145	RMSE 0.184 0.178 0.262 0.200 0.205 0.240 0.339 RMSE 0.128 0.174 0.275	$\begin{array}{c} CP_{90\%} \\ 92.40 \\ 83.80 \\ 93.60 \\ 95.60 \\ 94.80 \\ 94.80 \\ 94.60 \\ CP_{90\%} \\ 94.00 \\ 54.40 \\ 84.60 \\ \end{array}$	$\begin{array}{c} CP_{95\%} \\ 95.80 \\ 92.80 \\ 98.40 \\ 98.40 \\ 97.40 \\ 98.60 \\ 96.60 \\ \hline CP_{95\%} \\ 97.40 \\ 68.40 \\ 93.20 \\ \end{array}$	$\begin{array}{r} \Delta \text{CI}_{90\%} \\ 0.657 \\ 0.443 \\ 0.975 \\ 0.822 \\ 0.833 \\ 0.934 \\ 1.327 \\ \Delta \text{CI}_{90\%} \\ 0.470 \\ 0.323 \\ 0.737 \\ \end{array}$	$\frac{\Delta CI_{95\%}}{0.784}$ 0.528 1.160 0.975 0.992 1.120 1.581 $\Delta CI_{95\%}$ 0.561 0.385 0.876
Scenario 15 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.75$ $q0.95$ Scenario 16 $(n = 100)$ Mean SD $q0.05$ $q0.25$	Bias -0.001 0.136 -0.165 -0.044 0.024 0.024 0.073 0.067 Bias -0.001 0.154 -0.234 -0.234	ESE 0.184 0.115 0.204 0.195 0.203 0.229 0.332 ESE 0.128 0.081 0.145 0.137	RMSE 0.184 0.178 0.262 0.200 0.205 0.205 0.240 0.339 RMSE 0.128 0.174 0.275 0.152	$\begin{array}{c} CP_{90\%} \\ 92.40 \\ 83.80 \\ 93.60 \\ 95.60 \\ 94.80 \\ 94.80 \\ 94.80 \\ 94.60 \\ \hline CP_{90\%} \\ 94.00 \\ 54.40 \\ 84.60 \\ 94.60 \\ \hline \end{array}$	$\begin{array}{c} {\rm CP}_{95\%} \\ 95.80 \\ 92.80 \\ 98.40 \\ 98.40 \\ 97.40 \\ 98.60 \\ 96.60 \\ \hline {\rm CP}_{95\%} \\ 97.40 \\ 68.40 \\ 93.20 \\ 97.80 \\ \end{array}$	$\begin{array}{r} \Delta \text{CI}_{90\%} \\ 0.657 \\ 0.443 \\ 0.975 \\ 0.822 \\ 0.833 \\ 0.934 \\ 1.327 \\ \hline \Delta \text{CI}_{90\%} \\ 0.470 \\ 0.323 \\ 0.737 \\ 0.586 \\ \end{array}$	$\frac{\Delta CI_{95\%}}{0.784}$ 0.528 1.160 0.975 0.992 1.120 1.581 $\Delta CI_{95\%}$ 0.561 0.385 0.876 0.701
Scenario 15 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.75$ $q0.95$ Scenario 16 $(n = 100)$ Mean $q0.05$ $q0.05$ $q0.05$ $q0.05$ $q0.25$ $q0.05$ $q0.25$ $q0.25$ $q0.50$	Bias -0.001 0.136 -0.165 -0.044 0.024 0.073 0.067 Bias -0.001 0.154 -0.234 -0.234 -0.065 0.017	ESE 0.184 0.115 0.204 0.195 0.203 0.229 0.332 ESE 0.128 0.128 0.145 0.143	RMSE 0.184 0.178 0.262 0.200 0.205 0.240 0.339 RMSE 0.128 0.174 0.275 0.152 0.144	$\begin{array}{c} CP_{90\%} \\ 92.40 \\ 83.80 \\ 93.60 \\ 95.60 \\ 94.80 \\ 94.80 \\ 94.80 \\ 94.60 \\ 61.00 \\ 54.40 \\ 84.60 \\ 94.60 \\ 94.60 \\ 97.20 \\ \end{array}$	$\begin{array}{c} {\rm CP}_{95\%} \\ 95.80 \\ 92.80 \\ 98.40 \\ 98.40 \\ 97.40 \\ 98.60 \\ 96.60 \\ \hline {\rm CP}_{95\%} \\ 97.40 \\ 68.40 \\ 93.20 \\ 93.20 \\ 97.80 \\ 98.80 \\ \end{array}$	$\begin{array}{r} \Delta \text{CI}_{90\%} \\ 0.657 \\ 0.443 \\ 0.975 \\ 0.822 \\ 0.833 \\ 0.934 \\ 1.327 \\ \Delta \text{CI}_{90\%} \\ 0.470 \\ 0.323 \\ 0.737 \\ 0.586 \\ 0.591 \\ \end{array}$	$\frac{\Delta CI_{95\%}}{0.784}$ 0.528 1.160 0.975 0.992 1.120 1.581 $\Delta CI_{95\%}$ 0.561 0.385 0.876 0.701 0.706
Scenario 15 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.95$ Scenario 16 $(n = 100)$ Mean SD $q0.05$ $q0.95$ Scenario 16 $(n = 100)$ Mean $q0.05$ $q0.25$ $q0.25$ $q0.50$ $q0.50$ $q0.75$	Bias -0.001 0.136 -0.165 -0.044 0.024 0.024 0.073 0.067 Bias -0.001 0.154 -0.234 -0.234 -0.065 0.017 0.091	ESE 0.184 0.115 0.204 0.195 0.203 0.229 0.332 ESE 0.128 0.128 0.081 0.145 0.143 0.143 0.162	RMSE 0.184 0.178 0.262 0.200 0.205 0.205 0.240 0.339 RMSE 0.128 0.174 0.275 0.152 0.144 0.186	$CP_{90\%}$ 92.40 83.80 93.60 95.60 94.80 94.80 94.60 CP _{90%} 94.00 54.40 84.60 94.60 94.60 97.20 93.80	$CP_{95\%}$ 95.80 92.80 98.40 97.40 98.60 96.60 $CP_{95\%}$ 97.40 68.40 93.20 97.80 98.80 97.20	$\frac{\Delta CI_{90\%}}{0.657}$ 0.443 0.975 0.822 0.833 0.934 1.327 $\Delta CI_{90\%}$ 0.470 0.323 0.737 0.586 0.591 0.684	$\frac{\Delta CI_{95\%}}{0.784}$ 0.784 0.528 1.160 0.975 0.992 1.120 1.581 $\Delta CI_{95\%}$ 0.561 0.385 0.876 0.876 0.701 0.706 0.817

Table 5: Simulation results for Scenarios 13-16 with a Weibull target SI distribution $\mathcal{W}(2.36, 3.18)$ and doubly interval-censored data. The first column contains the selected features of \mathcal{S} , namely the mean, standard deviation, 5th, 25th, 50th, 75th and 95th percentiles. Bias, ESE, RMSE, coverage probability (CP) and median confidence interval width Δ CI are used to assess the performance of the nonparametric approach.

Scenario 17 $(n = 10)$	Bias	ESE	RMSE	$CP_{90\%}$	$CP_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
Mean	-0.005	0.415	0.415	87.00	93.00	1.289	1.533
SD	-0.050	0.279	0.283	83.60	87.60	0.824	0.973
q0.05	0.402	0.411	0.575	66.20	70.00	1.283	1.499
q0.25	0.132	0.412	0.432	89.00	93.20	1.502	1.792
q0.50	0.022	0.452	0.452	89.80	94.60	1.572	1.902
q0.75	-0.099	0.530	0.539	88.60	92.60	1.873	2.169
q0.95	-0.583	0.668	0.886	55.80	59.60	1.669	1.946
Scenario 18 $(n = 20)$	Bias	ESE	RMSE	$CP_{90\%}$	$CP_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
Mean	0.007	0.281	0.281	88.60	93.40	0.921	1.099
SD	-0.016	0.202	0.202	84.60	90.20	0.602	0.715
q0.05	0.205	0.322	0.381	82.40	86.40	1.166	1.387
q0.25	0.085	0.316	0.327	89.40	94.60	1.146	1.359
q0.50	0.035	0.327	0.328	90.20	95.20	1.135	1.363
q0.75	-0.036	0.359	0.361	90.80	94.60	1.303	1.554
q0.95	-0.316	0.499	0.591	73.80	77.60	1.604	1.851
Scenario 19 $(n-50)$	Bias	ESE	RMSE	CP00%	CP05%	$\Delta CI_{00\%}$	$\Delta CI_{05\%}$
been and 10 10 (n = 50)	Diab		101101	° - 9070	- 9570	$= -907_{0}$	- 9370
Mean	-0.012	0.166	0.166	92.40	97.20	0.608	0.723
1000000000000000000000000000000000000	-0.012 0.029	0.166 0.118	0.166	92.40 91.60	97.20 95.20	0.608 0.401	
$\frac{\text{Mean}}{\text{SD}}$ $q0.05$	-0.012 0.029 0.010	0.166 0.118 0.190	0.166 0.121 0.190	92.40 91.60 95.80	97.20 95.20 98.00	$\begin{array}{c} -2.390\% \\ 0.608 \\ 0.401 \\ 0.794 \end{array}$	$ \begin{array}{r} 0.723 \\ 0.476 \\ 0.947 \end{array} $
$\begin{array}{r} \hline \text{Mean} \\ \hline \text{SD} \\ \hline q0.05 \\ \hline q0.25 \end{array}$	-0.012 0.029 0.010 -0.005	0.166 0.118 0.190 0.176	0.166 0.121 0.190 0.176	92.40 91.60 95.80 95.40	97.20 95.20 98.00 97.60	$\begin{array}{c} 0.608 \\ 0.401 \\ 0.794 \\ 0.743 \end{array}$	$\begin{array}{c} 0.723 \\ 0.476 \\ 0.947 \\ 0.887 \end{array}$
	-0.012 0.029 0.010 -0.005 0.007	$\begin{array}{c} 1.012 \\ 0.166 \\ 0.118 \\ 0.190 \\ 0.176 \\ 0.193 \end{array}$	$\begin{array}{c} 0.166\\ 0.121\\ 0.190\\ 0.176\\ 0.193\\ \end{array}$	92.40 91.60 95.80 95.40 95.00	97.20 95.20 98.00 97.60 98.80	$\begin{array}{c} 0.608 \\ 0.401 \\ 0.794 \\ 0.743 \\ 0.769 \end{array}$	$\begin{array}{c} 0.723 \\ 0.723 \\ 0.476 \\ 0.947 \\ 0.887 \\ 0.924 \end{array}$
$\begin{array}{r} \hline \text{Mean} \\ \hline \text{SD} \\ q0.05 \\ q0.25 \\ q0.50 \\ q0.75 \\ \end{array}$	-0.012 0.029 0.010 -0.005 0.007 0.002	0.166 0.118 0.190 0.176 0.193 0.232	0.166 0.121 0.190 0.176 0.193 0.231	92.40 91.60 95.80 95.40 95.00 94.80	97.20 95.20 98.00 97.60 98.80 97.60	$\begin{array}{c} 0.608\\ 0.401\\ 0.794\\ 0.743\\ 0.769\\ 0.873\\ \end{array}$	$\begin{array}{c} 0.723 \\ 0.723 \\ 0.476 \\ 0.947 \\ 0.887 \\ 0.924 \\ 1.046 \end{array}$
$\begin{array}{c} \text{Mean} \\ & \text{SD} \\ & q0.05 \\ & q0.25 \\ & q0.50 \\ & q0.75 \\ & q0.95 \end{array}$	-0.012 0.029 0.010 -0.005 0.007 0.002 -0.102	0.166 0.118 0.190 0.176 0.193 0.232 0.347	0.166 0.121 0.190 0.176 0.193 0.231 0.361	92.40 91.60 95.80 95.40 95.00 94.80 86.40	97.20 95.20 98.00 97.60 98.80 97.60 91.00	$\begin{array}{c} 0.608 \\ 0.401 \\ 0.794 \\ 0.743 \\ 0.769 \\ 0.873 \\ 1.254 \end{array}$	$\begin{array}{c} 0.723 \\ 0.723 \\ 0.476 \\ 0.947 \\ 0.887 \\ 0.924 \\ 1.046 \\ 1.511 \end{array}$
Mean SD $q0.05$ $q0.25$ $q0.75$ $q0.95$ Scenario 20 (n = 100)	-0.012 0.029 0.010 -0.005 0.007 0.002 -0.102 Bias	0.166 0.118 0.190 0.176 0.193 0.232 0.347 ESE	0.166 0.121 0.190 0.176 0.193 0.231 0.361 RMSE	$\begin{array}{c} 92.40\\ 92.40\\ 91.60\\ 95.80\\ 95.40\\ 95.00\\ 94.80\\ 86.40\\ CP_{90\%}\\ \end{array}$	$\begin{array}{c} 97.20\\ 97.20\\ 95.20\\ 98.00\\ 97.60\\ 98.80\\ 97.60\\ 91.00\\ CP_{95\%}\\ \end{array}$	$\begin{array}{c} -0.390\% \\ \hline 0.608 \\ \hline 0.401 \\ \hline 0.794 \\ \hline 0.743 \\ \hline 0.769 \\ \hline 0.873 \\ \hline 1.254 \\ \hline \Delta \text{CI}_{90\%} \end{array}$	$\begin{array}{c} 0.723 \\ 0.723 \\ 0.947 \\ 0.947 \\ 0.887 \\ 0.924 \\ 1.046 \\ 1.511 \\ \Delta CI_{95\%} \end{array}$
Mean SD $q0.05$ $q0.25$ $q0.75$ $q0.95$ Scenario 20 (n = 100) Mean	-0.012 0.029 0.010 -0.005 0.007 0.002 -0.102 Bias 0.002	D.166 0.118 0.190 0.176 0.193 0.232 0.347 ESE 0.127	0.166 0.121 0.190 0.176 0.193 0.231 0.361 RMSE 0.127	$\begin{array}{c} 92.40\\ 92.40\\ 91.60\\ 95.80\\ 95.40\\ 95.00\\ 94.80\\ 86.40\\ \hline CP_{90\%}\\ 91.00\\ \end{array}$	$\begin{array}{c} 97.20\\ 97.20\\ 95.20\\ 98.00\\ 97.60\\ 98.80\\ 97.60\\ 91.00\\ \hline CP_{95\%}\\ 95.40\\ \end{array}$	$\begin{array}{c} 0.608\\ 0.401\\ 0.794\\ 0.743\\ 0.769\\ 0.873\\ 1.254\\ \Delta \text{CI}_{90\%}\\ 0.432 \end{array}$	$\begin{array}{c} 0.723 \\ 0.723 \\ 0.476 \\ 0.947 \\ 0.887 \\ 0.924 \\ 1.046 \\ 1.511 \\ \Delta CI_{95\%} \\ 0.514 \end{array}$
Mean SD $q0.05$ $q0.25$ $q0.75$ $q0.95$ Scenario 20 (n = 100) Mean SD	-0.012 0.029 0.010 -0.005 0.007 0.002 -0.102 Bias 0.002 0.040	0.166 0.118 0.190 0.176 0.193 0.232 0.347 ESE 0.127 0.088	0.166 0.121 0.190 0.176 0.193 0.231 0.361 RMSE 0.127 0.097	$\begin{array}{c} 92.40\\ 92.40\\ 91.60\\ 95.80\\ 95.40\\ 95.00\\ 94.80\\ 86.40\\ \hline CP_{90\%}\\ 91.00\\ 89.00\\ \end{array}$	$\begin{array}{c} 97.20\\ 97.20\\ 95.20\\ 98.00\\ 97.60\\ 98.80\\ 97.60\\ 91.00\\ \hline CP_{95\%}\\ 95.40\\ 94.20\\ \end{array}$	$\begin{array}{c} 0.608\\ 0.401\\ 0.794\\ 0.743\\ 0.769\\ 0.873\\ 1.254\\ \hline \Delta \text{CI}_{90\%}\\ 0.432\\ 0.291\\ \end{array}$	$\begin{array}{c} 0.723 \\ 0.723 \\ 0.476 \\ 0.947 \\ 0.887 \\ 0.924 \\ 1.046 \\ 1.511 \\ \Delta CI_{95\%} \\ 0.514 \\ 0.345 \end{array}$
$\begin{array}{c} \text{Mean} \\ & \text{SD} \\ & q0.05 \\ & q0.25 \\ & q0.25 \\ & q0.50 \\ & q0.75 \\ & q0.95 \\ \hline \textbf{Scenario 20} (n = 100) \\ & \text{Mean} \\ & \text{SD} \\ & q0.05 \\ \end{array}$	-0.012 0.029 0.010 -0.005 0.007 0.002 -0.102 Bias 0.002 0.040 -0.023	D.166 0.118 0.190 0.176 0.193 0.232 0.347 ESE 0.127 0.088 0.146	0.166 0.121 0.190 0.176 0.193 0.231 0.361 RMSE 0.127 0.097 0.147	$\begin{array}{c} 92.40\\ 92.40\\ 91.60\\ 95.80\\ 95.40\\ 95.00\\ 94.80\\ 86.40\\ \hline CP_{90\%}\\ 91.00\\ 89.00\\ 95.20\\ \end{array}$	$\begin{array}{c} 97.20\\ 97.20\\ 95.20\\ 98.00\\ 97.60\\ 98.80\\ 97.60\\ 91.00\\ \hline CP_{95\%}\\ 95.40\\ 94.20\\ 98.60\\ \end{array}$	$\begin{array}{c} 0.608\\ 0.401\\ 0.794\\ 0.743\\ 0.769\\ 0.873\\ 1.254\\ \hline \Delta CI_{90\%}\\ 0.432\\ 0.291\\ 0.603\\ \end{array}$	$\begin{array}{c} 0.723 \\ 0.723 \\ 0.476 \\ 0.947 \\ 0.887 \\ 0.924 \\ 1.046 \\ 1.511 \\ \hline \Delta CI_{95\%} \\ 0.514 \\ 0.345 \\ 0.715 \end{array}$
$\begin{array}{c} \text{Mean} \\ & \text{SD} \\ & q0.05 \\ & q0.25 \\ & q0.50 \\ & q0.75 \\ & q0.95 \\ \hline \textbf{Scenario 20} (n = 100) \\ & \text{Mean} \\ & \text{SD} \\ & q0.05 \\ & q0.25 \\ \end{array}$	-0.012 0.029 0.010 -0.005 0.007 0.002 -0.102 Bias 0.002 0.040 -0.023 -0.006	D.166 0.118 0.190 0.176 0.193 0.232 0.347 ESE 0.127 0.088 0.146 0.143	0.166 0.121 0.190 0.176 0.193 0.231 0.361 RMSE 0.127 0.097 0.147 0.143	$\begin{array}{c} 92.40\\ 92.40\\ 91.60\\ 95.80\\ 95.40\\ 95.00\\ 94.80\\ 86.40\\ \hline CP_{90\%}\\ 91.00\\ 89.00\\ 95.20\\ 92.80\\ \end{array}$	$\begin{array}{c} 97.20\\ 97.20\\ 95.20\\ 98.00\\ 97.60\\ 98.80\\ 97.60\\ 91.00\\ \hline CP_{95\%}\\ 95.40\\ 94.20\\ 98.60\\ 95.80\\ \end{array}$	$\begin{array}{c} 0.608\\ 0.401\\ 0.794\\ 0.743\\ 0.769\\ 0.873\\ 1.254\\ \hline \Delta CI_{90\%}\\ 0.432\\ 0.291\\ 0.603\\ 0.533\\ \end{array}$	$\begin{array}{c} 0.723 \\ 0.723 \\ 0.476 \\ 0.947 \\ 0.887 \\ 0.924 \\ 1.046 \\ 1.511 \\ \hline \Delta CI_{95\%} \\ 0.514 \\ 0.345 \\ 0.715 \\ 0.639 \\ \end{array}$
$\begin{array}{c} \text{Mean} \\ & \text{SD} \\ & q0.05 \\ & q0.25 \\ & q0.25 \\ & q0.75 \\ & q0.95 \\ \hline \textbf{Scenario 20} (n = 100) \\ & \text{Mean} \\ & \text{SD} \\ & q0.05 \\ & q0.25 \\ & q0.50 \\ \end{array}$	-0.012 0.029 0.010 -0.005 0.007 0.002 -0.102 Bias 0.002 0.040 -0.023 -0.006 0.011	D.166 0.118 0.190 0.176 0.193 0.232 0.347 ESE 0.127 0.088 0.146 0.143 0.152	0.166 0.121 0.190 0.176 0.193 0.231 0.361 RMSE 0.127 0.097 0.147 0.143 0.152	$\begin{array}{c} 92.40\\ 92.40\\ 91.60\\ 95.80\\ 95.40\\ 95.00\\ 94.80\\ 86.40\\ \hline CP_{90\%}\\ 91.00\\ 89.00\\ 95.20\\ 92.80\\ 93.40\\ \end{array}$	$\begin{array}{c} 97.20\\ 97.20\\ 95.20\\ 98.00\\ 97.60\\ 98.80\\ 97.60\\ 91.00\\ \hline \\ 91.00\\ \hline \\ 91.00\\ 91.00\\ \hline \\ 95.40\\ 95.40\\ 95.40\\ 95.80\\ 95.80\\ 96.80\\ \end{array}$	$\begin{array}{c} 0.608\\ 0.401\\ 0.794\\ 0.743\\ 0.769\\ 0.873\\ 1.254\\ \hline \Delta CI_{90\%}\\ 0.432\\ 0.291\\ 0.603\\ 0.533\\ 0.548\\ \end{array}$	$\begin{array}{c} 0.723 \\ 0.723 \\ 0.476 \\ 0.947 \\ 0.887 \\ 0.924 \\ 1.046 \\ 1.511 \\ \Delta CI_{95\%} \\ 0.514 \\ 0.345 \\ 0.715 \\ 0.639 \\ 0.657 \\ \end{array}$
$\begin{array}{c} \text{Mean} \\ & \text{SD} \\ & q0.05 \\ & q0.25 \\ & q0.25 \\ & q0.75 \\ & q0.95 \\ \hline \textbf{Scenario 20} (n = 100) \\ \hline \text{Mean} \\ & \text{SD} \\ & q0.05 \\ & q0.25 \\ & q0.50 \\ & q0.75 \\ \hline \end{array}$	-0.012 0.029 0.010 -0.005 0.007 0.002 -0.102 Bias 0.002 0.040 -0.023 -0.006 0.011 0.019	D.166 0.118 0.190 0.176 0.193 0.232 0.347 ESE 0.127 0.088 0.146 0.143 0.152 0.176	0.166 0.121 0.190 0.176 0.193 0.231 0.361 RMSE 0.127 0.097 0.147 0.143 0.152 0.177	$\begin{array}{c} 92.40\\ 92.40\\ 91.60\\ 95.80\\ 95.40\\ 95.00\\ 94.80\\ 86.40\\ \hline CP_{90\%}\\ 91.00\\ 89.00\\ 95.20\\ 92.80\\ 93.40\\ 91.60\\ \end{array}$	$\begin{array}{c} 97.20\\ 97.20\\ 95.20\\ 98.00\\ 97.60\\ 98.80\\ 97.60\\ 91.00\\ \hline CP_{95\%}\\ 95.40\\ 94.20\\ 94.20\\ 98.60\\ 95.80\\ 95.80\\ 96.80\\ 96.00\\ \end{array}$	$\begin{array}{c} 0.608\\ 0.401\\ 0.794\\ 0.743\\ 0.769\\ 0.873\\ 1.254\\ \hline \Delta CI_{90\%}\\ 0.432\\ 0.291\\ 0.603\\ 0.533\\ 0.548\\ 0.630\\ \end{array}$	$\begin{array}{c} 0.723\\ 0.723\\ 0.476\\ 0.947\\ 0.887\\ 0.924\\ 1.046\\ 1.511\\ \Delta CI_{95\%}\\ 0.514\\ 0.345\\ 0.715\\ 0.639\\ 0.657\\ 0.756\\ \end{array}$

Table 6: Simulation results for Scenarios 17-20 with a Weibull target SI distribution $\mathcal{W}(2.36, 3.18)$ and single interval-censored data. The first column contains the selected features of \mathcal{S} , namely the mean, standard deviation, 5th, 25th, 50th, 75th and 95th percentiles. Bias, ESE, RMSE, coverage probability (CP) and median confidence interval width Δ CI are used to assess the performance of the nonparametric approach.

Scenario 21 $(n = 10)$	Bias	ESE	RMSE	$CP_{90\%}$	$CP_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
Mean	-0.035	0.391	0.392	84.60	89.60	1.222	1.457
SD	-0.111	0.239	0.263	79.40	85.20	0.767	0.911
q0.05	0.431	0.413	0.597	64.00	69.00	1.208	1.435
q0.25	0.140	0.419	0.442	87.60	91.80	1.474	1.737
q0.50	0.007	0.435	0.435	90.00	94.80	1.521	1.822
q0.75	-0.151	0.461	0.485	89.00	92.00	1.706	2.016
q0.95	-0.710	0.571	0.910	47.20	52.00	1.534	1.791
Scenario 22 $(n = 20)$	Bias	ESE	RMSE	$\mathrm{CP}_{90\%}$	$CP_{95\%}$	$\Delta CI_{90\%}$	$\Delta CI_{95\%}$
Mean	-0.014	0.272	0.272	90.80	94.80	0.919	1.094
SD	-0.033	0.182	0.184	85.20	89.80	0.579	0.684
q0.05	0.221	0.279	0.355	83.60	88.20	1.096	1.305
q0.25	0.062	0.301	0.307	92.00	96.40	1.099	1.310
q0.50	0.003	0.312	0.312	92.60	97.00	1.147	1.377
q0.75	-0.057	0.349	0.353	90.40	94.60	1.317	1.583
q0.95	-0.358	0.481	0.599	72.40	75.60	1.529	1.788
\mathbf{C} : \mathbf{O} (\mathbf{F} \mathbf{O})	D.	DOD	DMCE	CD	CD	ACT	ACI
Scenario 23 $(n = 50)$	Bias	ESE	RMSE	$OP_{90\%}$	$Cr_{95\%}$	$\Delta O_{190\%}$	$\Delta O1_{95\%}$
$\frac{\text{Scenario 23} (n = 50)}{\text{Mean}}$	0.000	0.174	0.174	92.80	96.40	$\frac{\Delta C I_{90\%}}{0.600}$	$\frac{\Delta CI_{95\%}}{0.714}$
$\frac{\text{Scenario 23} (n = 50)}{\text{Mean}}$	0.000 0.019	0.174 0.125	0.174 0.127	92.80 89.00	96.40 95.60	$ \begin{array}{r} \Delta C I_{90\%} \\ \hline 0.600 \\ 0.392 \\ \end{array} $	$ \begin{array}{r} \Delta C I_{95\%} \\ \hline 0.714 \\ 0.466 \\ \end{array} $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Bias 0.000 0.019 0.049	0.174 0.125 0.184	RMSE 0.174 0.127 0.191	92.80 93.20	96.40 95.60 96.20	$ \begin{array}{r} \Delta C1_{90\%} \\ \hline 0.600 \\ 0.392 \\ 0.753 \\ \end{array} $	$ \begin{array}{r} \Delta C1_{95\%} \\ \hline \\ 0.714 \\ 0.466 \\ 0.901 \\ \end{array} $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Bias 0.000 0.019 0.049 0.013	ESE 0.174 0.125 0.184 0.187	RMSE 0.174 0.127 0.191 0.187	92.80 92.80 93.20 94.80	96.40 95.60 96.20 97.80	$ \begin{array}{r} \Delta C1_{90\%} \\ \hline 0.600 \\ 0.392 \\ 0.753 \\ 0.727 \\ \end{array} $	$ \begin{array}{r} \Delta C 1_{95\%} \\ \hline 0.714 \\ 0.466 \\ 0.901 \\ 0.871 \\ \end{array} $
Scenario 23 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$	Blas 0.000 0.019 0.049 0.013 0.008	ESE 0.174 0.125 0.184 0.187 0.200	RMSE 0.174 0.127 0.191 0.187 0.200	92.80 92.80 93.20 94.80 94.20	96.40 95.60 96.20 97.80 97.00	$\begin{array}{c} \Delta C1_{90\%} \\ \hline 0.600 \\ 0.392 \\ 0.753 \\ 0.727 \\ 0.763 \end{array}$	$\begin{array}{c} \Delta C1_{95\%} \\ \hline 0.714 \\ 0.466 \\ 0.901 \\ 0.871 \\ 0.917 \end{array}$
Scenario 23 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$	Blas 0.000 0.019 0.049 0.013 0.008 0.000	ESE 0.174 0.125 0.184 0.187 0.200 0.239	RMSE 0.174 0.127 0.191 0.187 0.200 0.239	92.80 92.80 93.20 94.80 94.20 94.00	96.40 95.60 96.20 97.80 97.00 97.40	$\begin{array}{c} \Delta C1_{90\%} \\ \hline 0.600 \\ 0.392 \\ 0.753 \\ 0.727 \\ 0.763 \\ 0.876 \end{array}$	$\begin{array}{c} \Delta C1_{95\%} \\ \hline 0.714 \\ 0.466 \\ 0.901 \\ 0.871 \\ 0.917 \\ 1.047 \end{array}$
Scenario 23 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$	Bias 0.000 0.019 0.049 0.013 0.008 0.000 -0.092	ESE 0.174 0.125 0.184 0.187 0.200 0.239 0.366	RMSE 0.174 0.127 0.191 0.187 0.200 0.239 0.377	92.80 92.80 93.20 94.80 94.20 94.00 87.60	96.40 95.60 96.20 97.80 97.00 97.40 92.40	$\begin{array}{c} \Delta C1_{90\%} \\ \hline 0.600 \\ \hline 0.392 \\ \hline 0.753 \\ \hline 0.727 \\ \hline 0.763 \\ \hline 0.876 \\ \hline 1.265 \end{array}$	$\frac{\Delta C1_{95\%}}{0.714}$ 0.466 0.901 0.871 0.917 1.047 1.490
Scenario 23 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 24 $(n = 100)$	Bias 0.000 0.019 0.049 0.013 0.008 0.000 -0.092 Bias	ESE 0.174 0.125 0.184 0.187 0.200 0.239 0.366 ESE	RMSE 0.174 0.127 0.191 0.187 0.200 0.239 0.377 RMSE	92.80 92.80 93.20 94.80 94.20 94.00 87.60 CP _{90%}	$\begin{array}{c} CP_{95\%} \\ 96.40 \\ 95.60 \\ 96.20 \\ 97.80 \\ 97.00 \\ 97.40 \\ 92.40 \\ CP_{95\%} \end{array}$	$\begin{array}{c} \Delta CI_{90\%} \\ \hline 0.600 \\ \hline 0.392 \\ \hline 0.753 \\ \hline 0.727 \\ \hline 0.763 \\ \hline 0.876 \\ \hline 1.265 \\ \hline \Delta CI_{90\%} \end{array}$	$\begin{array}{r} \Delta C1_{95\%} \\ \hline 0.714 \\ \hline 0.466 \\ \hline 0.901 \\ \hline 0.871 \\ \hline 0.917 \\ \hline 1.047 \\ \hline 1.490 \\ \hline \Delta CI_{95\%} \end{array}$
Scenario 23 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 24 $(n = 100)$ Mean	Bias 0.000 0.019 0.049 0.013 0.008 0.000 -0.092 Bias -0.003	ESE 0.174 0.125 0.184 0.187 0.200 0.239 0.366 ESE 0.131	RMSE 0.174 0.127 0.191 0.187 0.200 0.239 0.377 RMSE 0.131	$\begin{array}{c} CP_{90\%} \\ 92.80 \\ 89.00 \\ 93.20 \\ 94.80 \\ 94.20 \\ 94.00 \\ 87.60 \\ CP_{90\%} \\ 88.00 \end{array}$	$\begin{array}{c} CP_{95\%} \\ 96.40 \\ 95.60 \\ 96.20 \\ 97.80 \\ 97.00 \\ 97.40 \\ 92.40 \\ CP_{95\%} \\ 94.20 \end{array}$	$\begin{array}{c} \Delta CI_{90\%} \\ \hline 0.600 \\ \hline 0.392 \\ \hline 0.753 \\ \hline 0.727 \\ \hline 0.763 \\ \hline 0.876 \\ \hline 1.265 \\ \hline \Delta CI_{90\%} \\ \hline 0.426 \end{array}$	$\begin{array}{c} \Delta CI_{95\%} \\ \hline 0.714 \\ \hline 0.466 \\ \hline 0.901 \\ \hline 0.871 \\ \hline 0.917 \\ \hline 1.047 \\ \hline 1.490 \\ \hline \Delta CI_{95\%} \\ \hline 0.506 \end{array}$
Scenario 23 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.50$ $q0.75$ $q0.95$ Scenario 24 $(n = 100)$ Mean SD	Bias 0.000 0.019 0.049 0.013 0.008 0.000 -0.092 Bias -0.003 0.022	ESE 0.174 0.125 0.184 0.187 0.200 0.239 0.366 ESE 0.131 0.089	RMSE 0.174 0.127 0.191 0.187 0.200 0.239 0.377 RMSE 0.131 0.092	$\begin{array}{c} CP_{90\%} \\ 92.80 \\ 89.00 \\ 93.20 \\ 94.80 \\ 94.20 \\ 94.00 \\ 87.60 \\ \hline CP_{90\%} \\ 88.00 \\ 90.20 \\ \end{array}$	$\begin{array}{c} CP_{95\%} \\ 96.40 \\ 95.60 \\ 96.20 \\ 97.80 \\ 97.00 \\ 97.40 \\ 92.40 \\ \hline CP_{95\%} \\ 94.20 \\ 94.40 \end{array}$	$\frac{\Delta CI_{90\%}}{0.600}$ 0.600 0.392 0.753 0.727 0.763 0.876 1.265 $\Delta CI_{90\%}$ 0.426 0.285	$\frac{\Delta CI_{95\%}}{0.714}$ 0.466 0.901 0.871 0.917 1.047 1.490 $\Delta CI_{95\%}$ 0.506 0.340
Scenario 23 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.75$ $q0.95$ Scenario 24 $(n = 100)$ Mean SD $q0.05$	Bias 0.000 0.019 0.049 0.013 0.008 0.000 -0.092 Bias -0.003 0.022 0.002	ESE 0.174 0.125 0.184 0.187 0.200 0.239 0.366 ESE 0.131 0.089 0.139	RMSE 0.174 0.127 0.191 0.187 0.200 0.239 0.377 RMSE 0.131 0.092 0.139	$\begin{array}{c} CP_{90\%} \\ 92.80 \\ 89.00 \\ 93.20 \\ 94.80 \\ 94.20 \\ 94.00 \\ 87.60 \\ \hline CP_{90\%} \\ 88.00 \\ 90.20 \\ 95.80 \\ \end{array}$	$\begin{array}{c} 8P_{95\%} \\ 96.40 \\ 95.60 \\ 96.20 \\ 97.80 \\ 97.00 \\ 97.40 \\ 92.40 \\ \hline CP_{95\%} \\ 94.20 \\ 94.20 \\ 98.20 \\ \end{array}$	$\frac{\Delta CI_{90\%}}{0.600}$ 0.392 0.753 0.727 0.763 0.876 1.265 $\Delta CI_{90\%}$ 0.426 0.285 0.580	$\frac{\Delta CI_{95\%}}{0.714}$ 0.466 0.901 0.871 0.917 1.047 1.490 $\Delta CI_{95\%}$ 0.506 0.340 0.692
Scenario 23 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.75$ $q0.95$ Scenario 24 $(n = 100)$ Mean SD $q0.05$ $q0.95$	Bias 0.000 0.019 0.049 0.013 0.008 0.000 -0.092 Bias -0.003 0.022 0.002 -0.005	ESE 0.174 0.125 0.184 0.200 0.239 0.366 ESE 0.131 0.089 0.139 0.143	RMSE 0.174 0.127 0.191 0.187 0.200 0.239 0.377 RMSE 0.131 0.092 0.139 0.143	$\begin{array}{c} CP_{90\%} \\ 92.80 \\ 89.00 \\ 93.20 \\ 94.80 \\ 94.20 \\ 94.00 \\ 87.60 \\ \hline CP_{90\%} \\ 88.00 \\ 90.20 \\ 95.80 \\ 93.60 \\ \end{array}$	$\begin{array}{c} CP_{95\%} \\ 96.40 \\ 95.60 \\ 96.20 \\ 97.80 \\ 97.00 \\ 97.40 \\ 92.40 \\ \hline CP_{95\%} \\ 94.20 \\ 94.20 \\ 94.20 \\ 98.20 \\ 97.60 \\ \end{array}$	$\frac{\Delta CI_{90\%}}{0.600}$ 0.600 0.392 0.753 0.727 0.763 0.876 1.265 $\Delta CI_{90\%}$ 0.426 0.285 0.580 0.528	$\frac{\Delta CI_{95\%}}{0.714}$ 0.466 0.901 0.871 0.917 1.047 1.490 $\Delta CI_{95\%}$ 0.506 0.340 0.692 0.631
Scenario 23 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.75$ $q0.95$ Scenario 24 $(n = 100)$ Mean SD $q0.05$ $q0.05$ $q0.95$	Bias 0.000 0.019 0.049 0.013 0.008 0.000 -0.092 Bias -0.003 0.022 0.002 0.002 0.002 0.005 0.004	ESE 0.174 0.125 0.184 0.187 0.200 0.239 0.366 ESE 0.131 0.089 0.139 0.143 0.156	RMSE 0.174 0.127 0.191 0.187 0.200 0.239 0.377 RMSE 0.131 0.092 0.139 0.143 0.156	$\begin{array}{c} CP_{90\%} \\ 92.80 \\ 89.00 \\ 93.20 \\ 94.80 \\ 94.20 \\ 94.00 \\ 87.60 \\ \hline CP_{90\%} \\ 88.00 \\ 90.20 \\ 95.80 \\ 93.60 \\ 92.40 \\ \end{array}$	$\begin{array}{c} \mathrm{CP}_{95\%} \\ 96.40 \\ 95.60 \\ 96.20 \\ 97.80 \\ 97.00 \\ 97.40 \\ 92.40 \\ \hline \mathrm{CP}_{95\%} \\ 94.20 \\ 94.20 \\ 94.20 \\ 98.20 \\ 97.60 \\ 97.20 \\ \end{array}$	$\frac{\Delta CI_{90\%}}{0.600}$ 0.600 0.392 0.753 0.727 0.763 0.876 1.265 $\Delta CI_{90\%}$ 0.426 0.285 0.580 0.528 0.528 0.549	$\frac{\Delta CI_{95\%}}{0.714}$ 0.466 0.901 0.871 0.917 1.047 1.490 $\Delta CI_{95\%}$ 0.506 0.340 0.692 0.631 0.655
Scenario 23 $(n = 50)$ Mean SD $q0.05$ $q0.25$ $q0.75$ $q0.95$ Scenario 24 $(n = 100)$ Mean SD $q0.05$ $q0.95$ Scenario 24 $(n = 100)$ Mean $q0.05$ $q0.25$ $q0.25$ $q0.75$	Bias 0.000 0.019 0.049 0.013 0.008 0.000 -0.092 Bias -0.003 0.022 0.002 0.002 0.002 0.002 0.002 0.004 0.004 0.007	ESE 0.174 0.125 0.184 0.200 0.239 0.366 ESE 0.131 0.089 0.139 0.143 0.156 0.179	RMSE 0.174 0.127 0.191 0.187 0.200 0.239 0.377 RMSE 0.131 0.092 0.139 0.143 0.156 0.179	CP90% 92.80 89.00 93.20 94.80 94.20 94.00 87.60 CP90% 88.00 90.20 95.80 93.60 92.40 91.60	$\begin{array}{c} 8.1 \\ 8.2 \\ 8.3 \\ 8.4 \\ 9.5 \\ 8.4 \\ 9.5 \\$	$\frac{\Delta CI_{90\%}}{0.600}$ 0.600 0.392 0.753 0.727 0.763 0.876 1.265 0.876 0.426 0.426 0.285 0.580 0.528 0.528 0.549 0.625	$\frac{\Delta CI_{95\%}}{0.714}$ 0.466 0.901 0.871 0.917 1.047 1.490 $\Delta CI_{95\%}$ 0.506 0.340 0.692 0.631 0.655 0.747

Table 7: Simulation results for Scenarios 21-24 with a Weibull target SI distribution $\mathcal{W}(2.36, 3.18)$ and exactly observed data. The first column contains the selected features of \mathcal{S} , namely the mean, standard deviation, 5th, 25th, 50th, 75th and 95th percentiles. Bias, ESE, RMSE, coverage probability (CP) and median confidence interval width Δ CI are used to assess the performance of the nonparametric approach.

4 Applications to real serial interval data

We illustrate our nonparametric approach on five real serial interval datasets that are publicly available. Results can be reproduced with code available on the GitHub repository based on the EpiLPS package (https://github.com/oswaldogressani/Serial_interval).

4.1 Influenza A (2009 H1N1 influenza) at a New York City school

We start by analyzing a dataset based on illness onset dates of n = 16 infector-infectee pairs obtained from the supplementary appendix of Lessler et al. (2009). After fitting a Weibull distribution to the data, the authors obtain a median serial interval of 2.7 days (CI95% 2.0-3.5) and a 95th percentile of 5.1 days (CI95% 3.6-6.5). Our nonparametric method estimates that the median SI is 2.8 days (CI95% 1.6-4.0) and the 95th percentile estimate is 4.9 days (CI95% 4.1-5.8). Figure 1 summarizes the observed serial interval windows and the point and interval estimates of selected features of the serial interval S. The light blue curves represent smoothed estimates of the cdf of S for B = 5000 bootstrap samples, where smoothing is implemented with the Laplacian-P-splines methodology (Gressani and Lambert, 2018, 2021).

4.2 Influenza A (2009 H1N1 influenza) in San Antonio, Texas, USA

Another dataset on influenza is downloaded from the EpiEstim package (Cori et al., 2013) and contains doubly interval-censored serial interval data from the 2009 influenza A outbreak in San Antonio, Texas, USA (Morgan et al., 2010). Based on our nonparametric methodology, EpiLPS estimates a mean serial interval of 4.0 days (CI95% 3.1-5.0). The standard deviation of the serial interval is estimated at 1.9 days (CI95% 1.2-2.6) and the 95th percentile is at 7.0 days (CI95% 5.0-8.7). Serial interval windows and estimates of different features of S are shown in Figure 2.

4.3 Illness onset data for 2019-nCoV in Wuhan, China

Li et al. (2020) share data on illness onset dates of n = 6 infector-infectee pairs and estimate that the serial interval has a mean of 7.5 days (CI95% 5.3-19) based on a parametric model involving a Gamma distribution. EpiLPS obtains a mean serial interval estimate of 6.3 days (CI95% 4.7-7.8) and a median SI of 6.5 days (CI95% 4.1-8.0).

Figure 1: (A) Serial interval windows of influenza A for n = 16 infector-infectee pairs at a New York City school (Lessler et al., 2009). (B) Nonparametric estimate $\hat{F}_{\mathcal{S}}(\cdot)$ (dark blue); smoothed estimates of the cdf of \mathcal{S} for B = 5000 bootstrap samples (light blue) and 95% CIs for selected percentiles with associated point estimate (dark blue dot).

Figure 2: (A) Serial interval windows of influenza A for n = 16 infector-infectee pairs in San Antonio, Texas, USA (Cori et al., 2013). (B) Nonparametric estimate $\hat{F}_{\mathcal{S}}(\cdot)$ (dark green); smoothed estimates of the cdf of \mathcal{S} for B = 5000 bootstrap samples (light green) and 95% CIs for selected percentiles with associated point estimate (dark green dot).

4.4 Illness onset data for 2019-nCoV with n = 28 infector-infectee pairs

A richer serial interval dataset on 2019-nCoV is provided by Nishiura et al. (2020). They obtained doubly interval-censored data on n = 28 infector-infectee pairs and estimated features of the serial interval based on a Bayesian parametric approach. The authors estimate the median serial interval to be 4.0 days (CrI95% 3.1-4.9), where CrI denotes the credible interval. The mean and standard deviation of the serial interval are estimated at 4.7 days (CrI95% 3.7-6.0) and 2.9 days (CrI95% 1.9-4.9), respectively. Our nonparametric method estimates the median serial interval at 3.8 days

(CI95% 3.1-4.9). Also, EpiLPS estimates the mean and standard deviation of the serial interval at 4.6 days (CI95% 3.7-5.6) and 2.6 days (CI95% 1.9-3.2), respectively. A graphical output of the EpiLPS results is shown in Figure 3.

Figure 3: (A) Serial interval windows of 2019-nCoV for n = 28 infector-infectee pairs (Nishiura et al., 2020). (B) Nonparametric estimate $\hat{F}_{\mathcal{S}}(\cdot)$ (red); smoothed estimates of the cdf of \mathcal{S} for B = 5000 bootstrap samples (orange) and 95% CIs for selected percentiles with associated point estimate (red dot).

4.5 Illness onset data for SARS-CoV-2 in Belgium

Kremer et al. (2022) report data on illness onset dates of n = 2161 transmission pairs for the Omicron variant of SARS-CoV-2 and n = 334 infector-infectee pairs for the Delta variant. Fitting a Gaussian distribution to the data using a Bayesian approach, the authors obtain a median serial interval of 2.75 days (CrI95% 2.65-2.86) and a standard deviation of 2.54 days (CrI95% 2.46-2.61) for Omicron. For Delta, they obtain a median serial interval of 3.00 days (CrI95% 2.73-3.26) and a standard deviation of 2.49 days (CrI95% 2.31-2.69). With our nonparametric approach in EpiLPS, we obtain an estimated median SI at 2.62 days (CI95% 2.50-2.74) and a standard deviation of 2.55 days (CI95% 2.46-2.64) for Omicron. For Delta, EpiLPS estimates the median SI at 3.05 days (CI95% 2.76-3.34) and the estimated standard deviation is 2.49 days (CI95% 2.30-2.69). Results are summarized in Figure 4.

Figure 4: (A) Empirical distribution of serial intervals for SARS-CoV-2 Omicron. (B) Empirical distribution of serial intervals for SARS-CoV-2 Delta. (C) Nonparametric estimate $\hat{F}_{\mathcal{S}}(\cdot)$ for Omicron (dark blue); smoothed estimates of the cdf for B = 5000 bootstrap samples (light blue) and 95% CIs for selected percentiles with associated point estimate (dark blue dot). (D) Nonparametric estimate $\hat{F}_{\mathcal{S}}(\cdot)$ for Delta (dark green); smoothed estimates of the cdf for B = 5000 bootstrap samples (light green) and 95% CIs for selected percentiles with associated point estimate (dark blue dot). (dark green) bootstrap samples (light green) and 95% CIs for selected percentiles with associated point estimate (dark green dot).

5 Conclusion

We propose a nonparametric approach to estimate the serial interval distribution of an infectious disease from illness onset data. The bootstrap technique is used to sample the nonparametric estimate of the cumulative distribution function and the generated samples can be used to compute point and interval estimates of any desired features of the serial interval. The proposed methodology has the following strengths and limitations.

Strengths. Our method is entirely data-driven and does not require to input a parametric distribution for serial interval estimation. As such, we can directly sketch the main characteristics of the SI distribution without having to adjust parametric distributions to the data and compare which model fits best according to a given selection criterion (e.g. AIC, BIC or LOOIC). Also, if the modeler wants to fit a parametric distribution to the data, the nonparametric estimate of

the cdf can be used as a benchmark to visually assess whether the chosen parametric model is in agreement with a data-driven fit, i.e. as an informal lack-of-fit test. Furthermore, our approach naturally deals with negative serial interval values. The bootstrap permits to compute interval estimates of any desired feature of S. Thus, confidence intervals are easily accessible and can be directly reported alongside point estimates following best practices outlined in Charniga et al. (2024). Algorithms underlying our nonparametric methodology are relatively simple and can be implemented at low computational cost. The small footprint of the associated code implies that it can be straightforwardly written in virtually any programming language most preferred by the user. The proposed method is available in the EpiLPS package Gressani (2021) and requires only minimal input by the user. Finally, the simple framework of our method favors reproducibility and facilitates serial interval analyses on past, current or future illness onset data streams.

Limitations. For the moment, the proposed nonparametric method does not adjust for right truncation; a feature that may be encountered when serial interval data are observed in realtime. Another weakness of our approach is that the current bootstrap sampling process can only generate variates that are within the set of order statistics for the observed serial interval data. Methods exist to simulate variates beyond this range (see e.g. Kaczynski et al., 2012) and could be considered as a future improvement of our method.

Funding

This project was supported by the VERDI project (101045989) and the ESCAPE project (101095619), funded by the European Union. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HADEA). Neither the European Union nor the granting authority can be held responsible for them. The research presented in this paper is also supported by the BE-PIN project (contract nr. TD/231/BE-PIN) funded by BELSPO (Belgian Science Policy Office) as part of the POST-COVID programme.

Data availability

Simulation results and real data applications in this paper can be reproduced with the code available on the GitHub repository (https://github.com/oswaldogressani/Serial_interval).

Competing interests

The authors have declared that no competing interests exist.

Appendix

Appendix A1

The bias, ESE and RMSE used in the simulation study of Section 3 to assess the performance of the point estimator of $\theta_i \in \Theta_S$ are given by:

$$\begin{aligned} \operatorname{Bias}(\widehat{\theta_j}) &:= \frac{1}{M} \sum_{m=1}^M \left(\widehat{\theta}_j^{(m)} - \theta_j \right), \\ \operatorname{ESE}(\widehat{\theta_j}) &:= \left(\frac{1}{M-1} \sum_{m=1}^M \left(\widehat{\theta}_j^{(m)} - \overline{\widehat{\theta}_j} \right)^2 \right)^{\frac{1}{2}} \text{ with } \overline{\widehat{\theta}_j} = M^{-1} \sum_{m=1}^M \widehat{\theta}_j^{(m)}, \\ \operatorname{RMSE}(\widehat{\theta_j}) &:= \left(\frac{1}{M} \sum_{m=1}^M \left(\widehat{\theta}_j^{(m)} - \theta_j \right)^2 \right)^{\frac{1}{2}}. \end{aligned}$$

Performance of the interval estimator is measured through the coverage probability:

$$CP_{90\%}(\theta_j) := \frac{1}{M} \sum_{m=1}^{M} \mathbb{I}\left(\theta_j \in CI_{90\%,\theta_j}^{(m)}\right),$$
$$CP_{95\%}(\theta_j) := \frac{1}{M} \sum_{m=1}^{M} \mathbb{I}\left(\theta_j \in CI_{95\%,\theta_j}^{(m)}\right),$$

where $CI_{90\%,\theta_i}$ and $CI_{95\%,\theta_i}$ denote the 90% and 95% confidence interval, respectively, of θ_j .

References

- Batra, Neale, et al. (2021). The Epidemiologist R Handbook. [Accessed October 16th, 2024]. https://epirhandbook.com/en/.
- Boëlle, P.-Y., Ansart, S., Cori, A., and Valleron, A.-J. (2011). Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review. *Influenza and other respiratory viruses*, 5(5):306–316.

Bratley, P., Fox, B. L., and Schrage, L. E. (1987). A guide to simulation. Springer New York.

- Charniga, K., Park, S. W., Akhmetzhanov, A. R., Cori, A., Dushoff, J., Funk, S., Gostic, K. M., Linton, N. M., Lison, A., Overton, C. E., et al. (2024). Best practices for estimating and reporting epidemiological delay distributions of infectious diseases using public health surveillance and healthcare data. ArXiv preprint arXiv:2405.08841.
- Chen, D., Lau, Y.-C., Xu, X.-K., Wang, L., Du, Z., Tsang, T. K., Wu, P., Lau, E. H., Wallinga, J., Cowling, B. J., et al. (2022). Inferring time-varying generation time, serial interval, and incubation period distributions for COVID-19. *Nature communications*, 13(1):7727.
- Collins, A. and Alexander, R. (2022). Reproducibility of COVID-19 pre-prints. *Scientometrics*, 127(8):4655–4673.
- Cori, A., Ferguson, N. M., Fraser, C., and Cauchemez, S. (2013). A new framework and software to estimate time-varying reproduction numbers during epidemics. *American Journal of Epidemiology*, 178(9):1505–1512.
- Cowling, B. J., Chan, K. H., Fang, V. J., Lau, L. L., So, H. C., Fung, R. O., Ma, E. S., Kwong, A. S., Chan, C.-W., Tsui, W. W., et al. (2010). Comparative epidemiology of pandemic and seasonal influenza A in households. *New England Journal of Medicine*, 362(23):2175–2184.
- Cowling, B. J., Fang, V. J., Riley, S., Peiris, J. S. M., and Leung, G. M. (2009). Estimation of the serial interval of influenza. *Epidemiology*, 20(3):344–347.
- Gandrud, C. (2018). Reproducible research with R and R studio. Chapman and Hall/CRC.
- Gressani, O. (2021). EpiLPS: A Fast and Flexible Bayesian Tool for Estimating Epidemiological Parameters. [Computer Software].
- Gressani, O. and Lambert, P. (2018). Fast Bayesian inference using Laplace approximations in a flexible promotion time cure model based on P-splines. *Computational Statistics & Data Analysis*, 124:151–167.
- Gressani, O. and Lambert, P. (2021). Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines. *Computational Statistics & Data Analysis*, 154:107088.
- Gressani, O., Torneri, A., Hens, N., and Faes, C. (2024). Flexible Bayesian estimation of incubation times. American Journal of Epidemiology. kwae192; https://doi.org/10.1093/aje/kwae192.

- Gressani, O., Wallinga, J., Althaus, C. L., Hens, N., and Faes, C. (2022). EpiLPS: A fast and flexible Bayesian tool for estimation of the time-varying reproduction number. *PLoS Computational Biology*, 18(10):e1010618.
- Griffin, J., Casey, M., Collins, Á., Hunt, K., McEvoy, D., Byrne, A., McAloon, C., Barber, A., Lane, E. A., and More, S. (2020). Rapid review of available evidence on the serial interval and generation time of COVID-19. *BMJ Open*, 10(11):e040263.
- Henderson, A. S., Hickson, R. I., Furlong, M., McBryde, E. S., and Meehan, M. T. (2024). Reproducibility of COVID-era infectious disease models. *Epidemics*, 46:100743.
- Kaczynski, W., Leemis, L., Loehr, N., and McQueston, J. (2012). Nonparametric random variate generation using a piecewise-linear cumulative distribution function. *Communications in Statistics-Simulation and Computation*, 41(4):449–468.
- Kremer, C., Braeye, T., Proesmans, K., André, E., Torneri, A., and Hens, N. (2022). Serial intervals for SARS-CoV-2 Omicron and Delta variants, Belgium, November 19–December 31, 2021. Emerging infectious diseases, 28(8):1699–1702.
- Lehtinen, S., Ashcroft, P., and Bonhoeffer, S. (2021). On the relationship between serial interval, infectiousness profile and generation time. *Journal of the Royal Society Interface*, 18(174):20200756.
- Lessler, J., Reich, N. G., Cummings, D. A., of Health, N. Y. C. D., and Team, M. H. S. I. I. (2009). Outbreak of 2009 pandemic influenza a (H1N1) at a New York City school. New England Journal of Medicine, 361(27):2628–2636.
- Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S., Lau, E. H., Wong, J. Y., et al. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of Medicine, 382(13):1199–1207.
- Ma, Y., Jenkins, H. E., Sebastiani, P., Ellner, J. J., Jones-López, E. C., Dietze, R., Horsburgh, Jr,
 C. R., and White, L. F. (2020). Using cure models to estimate the serial interval of tuberculosis with limited follow-up. *American Journal of Epidemiology*, 189(11):1421–1426.
- Mettler, S. K., Kim, J., and Maathuis, M. H. (2020). Diagnostic serial interval as a novel indica-

tor for contact tracing effectiveness exemplified with the SARS-CoV-2/COVID-19 outbreak in South Korea. International Journal of Infectious Diseases, 99:346–351.

- Morgan, O. W., Parks, S., Shim, T., Blevins, P. A., Lucas, P. M., Sanchez, R., Walea, N., Loustalot, F., Duffy, M. R., Shim, M. J., et al. (2010). Household transmission of pandemic (H1N1) 2009, San Antonio, Texas, USA, April–May 2009. *Emerging infectious diseases*, 16(4):631–637.
- Müller, J. and Kretzschmar, M. (2021). Contact tracing–Old models and new challenges. Infectious Disease Modelling, 6:222–231.
- Nishiura, H., Linton, N. M., and Akhmetzhanov, A. R. (2020). Serial interval of novel coronavirus (COVID-19) infections. *International Journal of Infectious Diseases*, 93:284–286.
- Park, S. W., Akhmetzhanov, A. R., Charniga, K., Cori, A., Davies, N. G., Dushoff, J., Funk, S., Gostic, K., Grenfell, B., Linton, N. M., et al. (2024). Estimating epidemiological delay distributions for infectious diseases. *MedRxiv*. https://doi.org/10.1101/2024.01.12.24301247.
- Park, S. W., Sun, K., Champredon, D., Li, M., Bolker, B. M., Earn, D. J., Weitz, J. S., Grenfell,
 B. T., and Dushoff, J. (2021). Forward-looking serial intervals correctly link epidemic growth to
 reproduction numbers. *Proceedings of the National Academy of Sciences*, 118(2):e2011548118.
- Reich, N. G., Lessler, J., and Azman, A. S. (2021). coarseDataTools: A collection of functions to help with analysis of coarsely observed data. R package version 0.6-6.
- Reich, N. G., Lessler, J., Cummings, D. A., and Brookmeyer, R. (2009). Estimating incubation period distributions with coarse data. *Statistics in Medicine*, 28(22):2769–2784.
- Simpson, R. H. (1948). The period of transmission in certain epidemic diseases. An observational method for its discovery. *The Lancet*, pages 755–760.
- Sumalinab, B., Gressani, O., Hens, N., and Faes, C. (2024). Bayesian nowcasting with Laplacian-P-Splines. Journal of Computational and Graphical Statistics. https://doi.org/10.1080/10618600.2024.2395414.
- Svensson, Å. (2007). A note on generation times in epidemic models. Mathematical Biosciences, 208(1):300–311.

- Te Beest, D. E., Henderson, D., Van Der Maas, N. A., De Greeff, S. C., Wallinga, J., Mooi, F. R., and Van Boven, M. (2014). Estimation of the serial interval of pertussis in Dutch households. *Epidemics*, 7:1–6.
- Thompson, R. N., Stockwin, J. E., van Gaalen, R. D., Polonsky, J. A., Kamvar, Z. N., Demarsh, P. A., Dahlqwist, E., Li, S., Miguel, E., Jombart, T., et al. (2019). Improved inference of time-varying reproduction numbers during infectious disease outbreaks. *Epidemics*, 29:100356.
- Torneri, A., Libin, P., Scalia Tomba, G., Faes, C., Wood, J. G., and Hens, N. (2021). On realized serial and generation intervals given control measures: The COVID-19 pandemic case. *PLoS Computational Biology*, 17(3):e1008892.
- Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society: Series B (Methodological), 38(3):290– 295.
- Vink, M. A., Bootsma, M. C. J., and Wallinga, J. (2014). Serial intervals of respiratory infectious diseases: a systematic review and analysis. *American Journal of Epidemiology*, 180(9):865–875.
- Wallinga, J. and Lipsitch, M. (2007). How generation intervals shape the relationship between growth rates and reproductive numbers. *Proceedings of the Royal Society B: Biological Sciences*, 274(1609):599–604.
- World Health Organization. Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern. [Cited September 26th, 2024]. https://www.who.int/news/item/26-11-2021-classificationof-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern.
- Yang, L., Dai, J., Zhao, J., Wang, Y., Deng, P., and Wang, J. (2020). Estimation of incubation period and serial interval of COVID-19: analysis of 178 cases and 131 transmission chains in Hubei province, China. *Epidemiology & Infection*, 148:e117.
- Zavalis, E. A. and Ioannidis, J. P. (2022). A meta-epidemiological assessment of transparency indicators of infectious disease models. *PLoS ONE*, 17(10):e0275380.