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Abstract

Antibiotic resistance is a severe danger to human health, and combination therapy with

several antibiotics has emerged as a viable treatment option for multi-resistant strains.

CombiANT is a recently developed agar plate-based assay where three reservoirs on the

bottom of the plate create a diffusion landscape of three antibiotics that allows testing

of the efficiency of antibiotic combinations. This test, however, requires manually

assigning nine reference points to each plate, which can be prone to errors, especially

when plates need to be graded in large batches and by different users. In this study, an

automated deep learning-based image processing method is presented that can

accurately segment bacterial growth and measure more than 150 distances from key

points on the CombiAnt assay at sub-millimeter precision. The software was tested on

100 plates using photos captured by three different users with their mobile phone

cameras, comparing the automated analysis with the human scoring. The result

indicates significant agreement between the users and the software. Moreover, the

automated analysis remains consistent when applied to different photos of the same

assay despite varying photo qualities and lighting conditions. The software can easily be
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integrated into a potential smartphone application. Integrating deep learning-based

smartphone image analysis with simple agar-based tests like CombiANT could unlock

powerful tools for combating antibiotic resistance.

Author Summary

Antibiotic resistance is a significant problem worldwide with increasing prevalence of

multi-resistant bacteria that may require the simultaneous administration of several

different antibiotics. With the right antibiotics and concentration, such combination

therapy may treat a strain that is otherwise resistant to each antibiotic individually.

CombiANT is a novel test that can be used to identify suitable or inappropriate

antibiotic combinations. However, it requires the human evaluator to grade each plate

manually, which is time-consuming, and errors can easily be made, especially if the

human evaluator needs to grade many plates in succession. In this study, an image

processing pipeline is developed using a deep neural network to grade CombiANT test

assays automatically.

1 Introduction 1

Antibiotics are a cornerstone of modern healthcare, allowing treatment of bacterial 2

infections that were once fatal or severely disabling. However, their effectiveness is 3

increasingly threatened by antibiotic resistance, driven by antibiotic overuse or 4

misuse [1]. One way to combat the resistance is by prescribing combination therapies. 5

Some antibiotics can work together in synergy, resulting in a greater efficacy than when 6

each one acts alone. Conversely, some antibiotics may neutralize each other’s effects, a 7

phenomenon referred to as antagonistic effects [2] [3] [4] [5] [6]. This interaction is also 8

dependent on the respective concentration of each antibiotic. Therefore, it is of high 9

importance to carefully evaluate and understand the interactions between different 10

antibiotics before prescribing combination therapies. 11

One novel method to assess antibiotic interactions is CombiANT, an easy-to-use 12

assay that allows for the testing of antibiotic synergies on agar plates 13

(Fatsis-Kavalopoulos et al.) [7]. The CombiANT test involves an agar plate containing 14
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three 3D-printed reservoirs, each accommodating a different antibiotic. Following 15

preparation, a diffusion landscape forms, generating different concentrations of each 16

antibiotic at every location on the plate. The assay is shown in Fig 1 with the inserts 17

containing antibiotics marked with A, B, and C. Opposite of each reservoir, at the outer 18

side of the white circle mark, the antibiotic acts alone as the concentration of the others 19

there is negligible. The inscribed white triangle mark constitutes the interaction area, 20

where antibiotics act in pairs, with the highest combination concentration at the 21

triangle vertices. Due to the distance of the opposite reservoir, the concentration of the 22

third antibiotic is negligible at each triangle vertex. Antibiotics A and B act together in 23

the bottom right, A and C in the bottom left, and B and C in the top of the triangle. 24

The darker areas in the assay exhibit uninhibited bacterial growth. The assay has two 25

growth zones: an ”inner” inside the interaction zone triangle and an ”outer” outside the 26

circle. In the original CombiANT test, a human has to manually annotate key points on 27

the edges of the growth zones and also pinpoint the triangle vertices: ICA, ICB, and 28

ICC are inhibitory concentration points placed at the bacteria boundary opposite the 29

midpoint of the corresponding reservoir on a straight line perpendicular to the circle 30

perimeter. Three combination inhibitory points, CPAB, CPAC, and CPBC, are placed 31

on the rim of the inner growth zone at the closest point to the respective triangle vertex. 32

Finally, the evaluator has to annotate the vertices of the triangle mark interaction zone 33

in the correct order: VAB, VAC, VBC, enabling the original CombiAnt software to 34

align all coordinates on the assay with the pre-calculated diffusion landscape. After this 35

manual point-annotation, the required distances can be obtained, shown as dashed lines 36

in Fig 1. 37
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Fig 1. CombiANT A CombiANT assay with nine annotated key points required to
be manually pinpointed by a human evaluator. Dashed lines outline the obtained
distances. ICA, ICB, and ICC are inhibitory concentration points that indicate the
effects of the corresponding antibiotics acting alone. Due to irregularities of the outer
growth zone boundary, this value can be inconsistent. CPAB, CPAC, and CPBC are
combination inhibitory points, and VAC, VAB, and VABC are triangle vertices. The
three antibiotic inserts (A, B, and C) are filled in black for visibility.

At present no computer vision application for automatically scoring the CombiAnt 38

assay is available, even though some related image processing methods exist, including 39

the automated counting of colony-forming units (CFU) on an agar plate [8]. This task 40

relates to the growth-zone segmentation in the CombiANT assay in the proposed 41

pipeline, as both require identifying and segmenting bacterial content on the agar plate 42

while discarding non-bacterial objects and artifacts. Several image processing methods 43

have been proposed to accomplish this, utilizing both 44
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classical [9] [10] [11] [12] [13] [14] [15] and deep learning-based [16] [17] [18] [19] 45

approaches. Another related image processing task is measuring the inhibition zone in 46

the The Kirby–Bauer disk diffusion test. This zone is typically circular, hence, the 47

Hough Circle transform is commonly used to measure the inhibition [20] [21], although 48

various deep-learning models have been explored [22]. In the CombiANT test, the 49

inhibition zone is not circular; hence, this prior can not be used. 50

To address this lack of automated analysis of antibiotic interactions, a 51

deep-learning [23] based image processing pipeline was developed in this study for this 52

specific task. The pipeline successfully scored all plates similar to the human evaluators, 53

hence the overall aim of this study was achieved. 54

2 Results 55

The proposed CombiANT Reader software method automates the annotation process 56

described in the original CombiANT test. The software finds the growth zones and 57

triangle vertices, and measures the required distances at sub-millimeter precision, 58

visualized in Fig 2. The main advantage of this automated approach compared to the 59

existing CombiAnt methodology is reliability, as currently, the human evaluator has to 60

annotate the points on the plate (shown in Fig 1) in the correct order. 61
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Fig 2. CombiANT Reader The proposed CombiANT Reader software automatically
finds the circle mark with the inscribed triangle, outlined with a black border, and the
edges of the growth zones, outlined in red. The software measures 55 distances from
each reservoir to the outer growth zone (blue lines) and automatically finds the closest
distance to the inner growth zone from every triangle vertex (green lines). The legend
shows the calculated distances in millimeters with two decimals. For the outer distances,
the legend shows the median value for the respective reservoir.

The main component of the developed image processing pipeline is the U-Net [24], a 62

deep fully convolutional neural network used to segment growth regions of bacterial 63

content in the assay. However, the software also utilizes classical image processing 64

methods, such as locating the center triangle using template matching in OpenCV [25] 65

(see Materials and Methods for details). 66

The developed software was evaluated on 100 CombiANT assays, having three 67

different users taking a picture of each plate and then independently evaluating the 68
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plates using the current CombiANT software. As described in the Introduction section, 69

this involved manually annotating CI and CP points on the plate and the triangle mark 70

vertices, seen in Fig 1. Then, the developed image processing software was tested by 71

processing images from all users (300 images in total), one sample shown in Fig 2. The 72

software automatically finds the inner and outer bacteria growth zones, the white 73

triangle-in-circle mark, and the closest distance from each triangle vertex to the inner 74

growth zone (AB, AC, and BC). The software measured a number of distances from the 75

circle perimeter to the outer growth zone. The median of these distances was calculated 76

for each well and used in our analysis (A, B, and C). Software-annotated outputs from 77

six plates from all three users are visualized in S1-S18 Figs. The results show high 78

agreement between the manually scored assays and the users despite different lighting 79

conditions and varying distances from the plate. 80

2.1 Outer distances 81

The outer distances A, B, and C, as annotated by the users, were compared to the 82

software grading. This task was relatively more straightforward than measuring the 83

inside distances since the latter required identifying the point in the inner growth zone 84

closest to the corresponding triangle vertex. As shown in Figs 3-5, the software aligns 85

with the user gradings and is more consistent having a lower standard deviation for each 86

measurement. 87
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Fig 3. Comparison of user and software gradings for Distance A The plates
are arranged on the horizontal axis in ascending order according to the median of the
measured distances (combining software and user distances). Error bars show the
standard deviation of the three user and software measurements, respectively.

Fig 4. Comparison of user and software gradings for Distance B The plates
are arranged on the horizontal axis in ascending order according to the median of the
measured distances (combining software and user distances). Error bars show the
standard deviation of the three user and software measurements, respectively.
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Fig 5. Comparison of user and software gradings for Distance C The plates
are arranged on the horizontal axis in ascending order according to the median of the
measured distances (combining software and user distances). Error bars show the
standard deviation of the three user and software measurements, respectively.

2.2 Inner distances 88

Estimating the inner distances (AB, AC, and BC) was more challenging for the users 89

due to the difficulty in identifying the point closest to the triangle vertex. The three 90

users were therefore labeled as ”Beginner,” ”Intermediate,” and ”Experienced.” The 91

beginner user performed the first-ever grading of plates, while the experienced user had 92

previously performed many gradings. The absolute difference between the software and 93

user grading was calculated for each image and inner distance. As shown in Fig 6, the 94

smallest differences were observed with the experienced user, suggesting that the 95

developed software grading aligns more closely with the experienced user’s evaluations. 96

The rightmost outliers correspond to discarded plates (see Discarding of plates in 97

Materials and Methods), whose distances were still measured. 98
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Fig 6. Comparison of the difference between user and software gradings for

the inner distances For each plate, the absolute difference between the user and
software grading of the inner distances was calculated and then averaged over the three
inner distances. The plates are arranged on the horizontal axis according to the
difference between the evaluation of the experienced user and the software, in ascending
order.

Furthermore, a CombiANT experiment was signaled to be discarded if any of certain 99

criteria were met (see Discarding of plates in Materials and Methods). In the tests, the 100

human evaluators and the software always agreed on whether to discard a plate for all 101

test plates. 102

3 Discussion 103

This paper presents an image processing pipeline for automatically grading CombiAnt 104

assays. The pipeline can process photographs from smartphone cameras, and the 105

software can either be implemented on the client in a smartphone application, or the 106
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analysis can be performed on the server side in the cloud. The pipeline is consistent 107

with human evaluation, robust to different imaging conditions, and fast, taking only a 108

few seconds per plate. 109

The growth zone segmentation does not require any particular imaging setup or 110

illumination, which is required by many of the classical methods [9] [10] [11]. Using 111

augmentation during training, the model performs well even when challenged with 112

imaging conditions not present in the trainset. If the segmentation fails, more data can 113

easily be annotated, followed by retraining the network. In contrast, if the classical 114

segmentation methods were used, a correction would have meant tuning existing 115

parameters or introducing a composition of new filters and operations, which may have 116

successfully managed to segment the failed sample but instead infer an error in another 117

image in the trainset. 118

Several optimizations can be made to the software in future works. Most importantly, 119

the template matching part could preferably be replaced with an end-to-end deep 120

learning model that automatically finds key points, is robust to rotations shear and (if 121

the agar plates were photographed at a tilted angle), and compensates for perspective 122

effects. Such models could also read the marked reservoir letters on the assay (A, B, 123

and C) and not require the CB vertex to be pointed upwards, a disadvantage of the 124

current solution. Plenty of architectural improvements have been made since the 125

inception of U-Net in 2014, with the development of more data- and parameter-efficient 126

models. Most importantly, the transformer architecture [26] has also been adapted for 127

image segmentation [27]. The model size, architecture, and subsampling step (image 128

size where the experiment images are processed) could also be further optimized. 129

We hope the developed software can inspire future work developing image analysis 130

software that processes smartphone photos of easy-to-use agar tests such as CombiANT. 131

Such innovations will both reduce the workload and increase the robustness of the assay 132

when assessing interactions between antibiotics, thereby facilitating work in clinical 133

microbiology laboratories as well as in research settings. 134
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4 Materials and methods 135

Here, the main components of the developed pipeline are described. However, for full 136

implementation details, refer to the released software package [28], which contains 137

documentation, a pre-trained U-Net segmentation model, annotated training data, and 138

the test images to re-run the evaluation. The software was developed using Python 139

3.9.19, apart from the libraries mentioned below, the software also utilized the 140

NumPy [29] and Pandas [30] libraries. 141

All images were captured using standard smartphone cameras, positioning the 142

CombiANT assay on a flat surface and taking the photo from directly above. The raw 143

images had a size of around 3000x3000 pixels. The image processing pipeline was 144

written using the OpenCV [25] image processing library and Pytorch [31] and 145

Albumentations [32] for deep neural network training. Initially, using bicubic 146

interpolation, the software made a square center crop and downscaled the plate images 147

to 1024x1024 pixels. 148

4.1 Segmentation of bacterial growth zones using U-Net 149

The pipeline employed U-Net [24], a fully convolutional artificial neural network, for 150

segmenting the bacterial growth zones. The network was trained on segmentation masks 151

from 1000 separate CombiANT plates not present among the plates in the evaluation. 152

The masks were constructed by manually highlighting the bacteria boundaries using 153

standard image processing software and then converting these images to segmentation 154

masks. Initially, a subset of the training set was annotated, this data was then used to 155

train a network to annotate the remaining unannotated images. The instances where 156

the network made errors were then corrected. This strategy enabled the quick 157

annotation of all images in the training set. 158

The network was trained for 1000 epochs using batch size 20, learning rate 0.0001, 159

Cosine learning rate scheduler, and the ADAM [33] optimizer. The training time was 8 160

hours using the Nvidia A100 GPU. Upon receiving images from the test users to 161

perform the evaluation, it was observed that the test images significantly differed from 162

the training images, showing variances in background, illumination, and contrast. This 163

caused errors in the segmentation, so the networks were retrained, adding additional 164
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augmentations, after which the model successfully segmented most of the test images. 165

However, the contrast was manually increased using histogram equalization on a few of 166

the evaluation images for the segmentation network to function (see Manual 167

preprocessing). 168

The output segmentation mask was then inverted, and only one connected 169

component with the largest area was filtered out, resembling the empty space without 170

bacterial content in the center of the agar plate (the inhibition zone). The mask was 171

then inverted again, effectively removing all holes in the segmentation mask. This 172

process was followed by discarding connected components with a minimum area, only 173

allowing two bacterial growth zones, ” ”outer” and ”inner”. 174

The segmentation was performed by first subsampling the raw images to 512x512 175

pixels using the ”inter area” method in OpenCV, followed by U-Net inference and 176

thresholding, and then subsequently upsampling the output mask back to 1024x1024 177

pixels. 178

4.2 Alignment using template matching and grid search 179

Each assay was marked with a white equilateral triangle inscribed into a circle, as seen 180

in Figs 1 and 2. This is referred to as the “triangle-in-circle”-mark or just “mark.” The 181

corners of the triangle and the position and radius of the center circle of the mark were 182

retrieved using a procedure utilizing template matching from the OpenCV library. First, 183

a square center crop was extracted from the plate containing the mark, followed by 184

applying a circular binary mask at the center, effectively zeroing out pixels outside the 185

circle-mark perimeter. Next, the colored image was converted to a grayscale image and 186

thresholded at the 98th percentile, obtaining a binary image revealing the bright pixels 187

of the image, which coincided with the mark. A function was constructed, returning a 188

binary template image of an equilateral triangle inscribed into a circle, resembling the 189

mark, with parameters adjusting the scale (size), rotation, and line thickness. A number 190

of these templates were generated and matched to the thresholded image utilizing an 191

adaptive grid search outlined below. 192
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4.3 Adaptive grid search 193

An adaptive grid search was used to obtain the optimal parameters of the template that 194

best match the thresholded image containing the mark. The procedure first performed a 195

search using scale, then rotation. The reason for starting with scale is that the correct 196

scale, the circle part of the mark, overlaps with the template regardless of orientation. 197

The procedure searched for a number of values above and below a start value with a 198

predetermined step size (0.01 and 1 for rotation and scale, respectively), obtaining the 199

best fit, location, and value (scale or rotation). The fit and location were obtained from 200

the OpenCV template matching algorithm. The grid search algorithm used is outlined 201

in Algorithm 1. 202

Algorithm 1 Adaptive Grid Search for Optimal Template Matching Parameters

Require: I Tresholded image containing the triangle in circle mark
Require: F Function to compute the template matching score for a given scale or

rotation of the binary template image.
Require: step size The step size for the grid search
Require: start value The start value for the grid search
Require: n steps The number of steps to search in each direction
Require: n levels The number refining search levels
Require: min fit Expand the search if fit below this value
Require: max tries Maximum tries to expand the search
Output: best value The best scale or rotation of the template

1: best score �1
2: best value �1
3: for lvl 1 to n levels do . Iterate over refinement levels
4: for try  1 to max tries do . Expand the search in the first level if nessecary
5: for step �n steps to n steps do . Grid search
6: value start value+ step⇥ step size
7: score F (value, I)
8: if score > best score then

9: best score score
10: best value value
11: end if

12: end for

13: if best score > min fit or
14: abs(best value) 6= n steps⇥ step size or

15: lvl 6= 1 then

16: start value best value . Update start value for the next level
17: step size step size/n steps . Refine the step size
18: break

19: end if

20: end for

21: end for
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4.3.1 Expanding search 203

If the value with the best fit was the minimum or maximum value in the grid search, the 204

search was retried with the number of search values doubled, using the identical step 205

size. The search was also expanded if the best fit was below a predetermined threshold. 206

4.3.2 Refining Search 207

Once the approximate best-fit value was identified, a finer search was performed around 208

that optimal value with a smaller step size. This refining search was executed once by 209

default but could be expanded with more levels. The step size was adjusted to search 210

around the best-fit value, extending from the previous value to the next value (relative 211

to the best-fit on the previous level). 212

Following this grid search, the triangle-in-circle mark was outlined on each test 213

sample with a black border, as seen in Fig 2 and S1-S18 Figs. 214

4.4 Measurement of distances 215

After the triangle vertices and position of the circle-mark perimeter were found using 216

the template matching step, distances were measured on the assay. First, the binary 217

mask from the U-Net processing, where connected components resembled bacteria 218

content, was converted to contours using the OpenCV ”drawContours”-function. The 219

measurements were performed by drawing straight lines on the binary mask containing 220

the contours from key points of interest until the line encountered a contour. The end 221

point of the line, and thus the distances, was obtained by finding the point where the 222

contour and line intersected. 223

4.4.1 Inner growth zone 224

The minimum distance along a straight line from each triangle vertex to the inner 225

growth zone was measured and visualized as green lines in Fig 2 and S1-S18 Figs. The 226

distances are shown as AB, AC and BC in the legend, corresponding to the respective 227

triangle vertex. The measurement was obtained by drawing a number of test lines from 228

the corresponding triangle vertex to the inner growth zone. The line with the shortest 229

distance was retained as the minimum distance. 230
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4.4.2 Outer growth zone 231

A total of 55 distances were measured per well, drawing lines perpendicular to the 232

circle-mark perimeter to the rim of the outer growth zone. A 20-degree padding was 233

added on each side of every triangle-mark vertex since the combination concentration is 234

larger there (two antibiotic wells intersect). The outer distances are supposed to 235

measure susceptibility to one antibiotic only. The median of the distances per well was 236

calculated and shown as A, B and, C in the figure legend in Fig 2 and S1-S18 Figs. 237

4.4.3 Millimeter conversion 238

All distance measurements were initially obtained in pixels. Then, the resolution R(i) 239

was calculated for image i 2 test images using the radius of the circle-mark known 240

from the fabrication (rmm = 20.5mm), and the radius of the current image r(i)px in 241

pixels, obtained from the template matching step. 242

R(i) = r(i)px/rmm

The resolution for the images was at 10.069 +- 1.604 px/mm (mean, standard 243

deviation). Using this information, all pixel distances dpx were converted to millimeters 244

dmm for all images i, dmm = dpx/R(i). If the plates were photographed from a far 245

distance, there could be a precision issue, but this was not a problem in practice. 246

4.5 Manual preprocessing 247

One of the users (User 3) did not align the plates before photographing, pointing the CB 248

vertex up. We manually cropped and rotated these images. U-net segmentation failed 249

on five images from User 1 and 16 images from User 3. We manually increased the 250

contrast of these images, converting to YCrCb color space, and increased the contrast in 251

the Y-channel (which corresponds to the brightness) using histogram equalization. 252

4.6 Discarding of plates 253

A plate was discarded when any of three criteria were met: 254

• The inner growth zone grew outside of the triangle-mark interaction zone. 255
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• The outer growth zone crossed the circle mark perimeter at a point where outer 256

distances were measured (not considering points within the 20-degree padding 257

from each triangle vertex). 258

• There was no center growth zone, it has disappeared due to the high synergetic 259

effect of the antibiotics. 260

These conditions were detected in the pipeline with added discard warnings, shown 261

as ”inner”, ”outer”, and ”no island” on the legend. These plates were still processed 262

and distances measured, but with the warning attached, see S18-S20 Figs. 263

4.7 Inference time 264

Processing one sample took around 7 seconds, with U-net inference taking 265

0.0376+-0.0283 seconds (1.039+-0.446. seconds when running on the CPU) and 266

template matching and grid search taking 7.240+-1.660 seconds. 267

4.8 Use of artificial intelligence tools and technologies 268

The tools Grammarly and ChatGPT were used for grammar checking, as a synonym 269

book, and as rephrasing tools when writing this article. No original content was 270

generated by the models. Furthermore, the coding assistant GitHub Copilot was used to 271

generate type annotations and docstrings for the software in the released replication 272

package. 273
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5 Supporting information

5.1 Output images

Six plates from the study are shown below, photographed by each of the three users and

annotated with an overlay created by our CombiANT reader. Our developed software

finds the circle mark with the inscribed triangle using template matching, outlined with

a black border, and the edges of the bacterial growth zones, outlined in red. The

software measures 55 distances from each reservoir to the outer growth zone (blue lines)

and automatically finds the closest distance to the inner growth zone from every

triangle vertex (green lines). The legend shows the calculated distances in millimeters

with two decimals. For the outer distances, the legend shows the median value for the

respective reservoir.

S1 Fig. Plate 1 photographed by User 1.
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S2 Fig. Plate 1 photographed by User 2.

S3 Fig. Plate 1 photographed by User 3.
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S4 Fig. Plate 2 photographed by User 1.

S5 Fig. Plate 2 photographed by User 2.
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S6 Fig. Plate 2 photographed by User 3.

S7 Fig. Plate 3 photographed by User 1.
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S8 Fig. Plate 3 photographed by User 2.

S9 Fig. Plate 3 photographed by User 3.
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S10 Fig. Plate 4 photographed by User 1.

S11 Fig. Plate 4 photographed by User 2.
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S12 Fig. Plate 4 photographed by User 3.

S13 Fig. Plate 5 photographed by User 1.
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S14 Fig. Plate 5 photographed by User 2.

S15 Fig. Plate 5 photographed by User 3.
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S16 Fig. Plate 6 photographed by User 1.

S17 Fig. Plate 6 photographed by User 2.
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S18 Fig. Plate 6 photographed by User 3.

5.2 Examples of discarded plates

S19 Fig. Inner discard Discarded plate due to inner growth zone intersecting with

the triangle-mark.
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S20 Fig. Outer discard Discarded plate due to the outer growth zone growing past

the circle mark.
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