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Abstract 
BACKGROUND: 
Analyzing and visualizing disparities in environmental risks can help in assessing place-based 
vulnerabilities and provide civic leaders and community members with essential data about 
promoting health equity and inform public health strategies. However, there is a lack of effective 
and integrative tools for evaluating census tract vulnerabilities. 
OBJECTIVE:  
We investigated the adaption of a previously developed environmental vulnerability index to 
evaluate cumulative impacts of diverse stressors in Louisville Metro-Jefferson County, KY, with 
the goal of supporting multi-faceted targeted public health interventions at the census tract-level.  
METHODS: 
We assessed countywide variability in vulnerability using Toxicological Prioritization Index 
interface across five domains with 32 indicators and modeled the effects of theoretical public 
health interventions.  
RESULTS: 
Our findings suggest similarly vulnerable areas are not always geographically clustered. Higher 
vulnerability scores are observed along the western and central areas of the county with lower 
vulnerability scores in the central urban core and eastern regions. The index enabled the selection 
of the most at-risk census tracts for modeling targeted public health interventions to reduce 
cumulative environmental vulnerability.  
SIGNIFICANCE: 
Environmental vulnerabilities are not invariant features of urban environments, rather the 
knowledge of these risks can guide the development and implementation of targeted solutions.  
IMPACT STATEMENT: 
Targeted interventions to modify environmental conditions that are supportive of health can be 
developed and implemented locally with greater precision at the census tract level, yielding 
impactful outcomes. 
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Introduction 

Given the importance of the role that environmental factors play in health outcomes, assessing 

and mapping population health and environmental hazards together could better estimate place-

based vulnerabilities and furnish civic leaders and community members with vital data on health 

equity and environmental risks. This knowledge can facilitate informed decisions regarding the 

implementation of public health interventions tailored to address specific vulnerabilities within 

communities. However, addressing the unequal distribution of environmental hazards and 

vulnerabilities across geographic areas presents multifaceted challenges.1–4 Health risk and 

environmental hazards are well described at the state and county levels, but the characteristics 

that comprise vulnerability are often localized at the census tract or neighborhood level.5 For 

instance, infectious disease tracking by the National Notifiable Diseases Surveillance System6 

happens at the state level despite the fact that individual disease occurrence is shaped by 

geographical proximity at a city or a neighborhood scale.7 Similarly, some determinants of 

health, such as access to healthy foods, or proximity to only fast food and convenience outlets, 

are well established to be most impactful at a neighborhood scale.8 Further, risk and vulnerability 

do not recognize political boundaries; pollution can cross census tract, neighborhood, and even 

state boundaries.9 However, there is paucity of integrative, census tract, vulnerability screening 

tools to inform targeted public health interventions. 

 

Existing vulnerability indices at smaller scales typically focus on a relatively narrow set of issues 

such as environmental pollution, extreme heat, flooding, disease, or lead exposure and depend on 

specific data sources which may limit appropriate use and effectiveness.10–14 The World Health 

Organization (WHO) provides a framework for global application to evaluate the cost-
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effectiveness of environmental health interventions for air pollution, water supply, sanitation, 

climate change, food safety, water management, and vector control;15 while lacking place-based 

intervention framework customization. Moreover, literature regarding public health interventions 

to address climate-related environmental vulnerabilities and extreme weather events is lacking.16 

Many of these evaluations focus on modifying individual stressors or exposures to individuals, 

rather than using a place-based framework that integrates cumulative impacts, community 

exposure, and the natural and built environments.  

 

As health inequities continue to grow nationally and new vulnerabilities arise from a changing 

climate, frameworks that integrate environmental hazard and risk data to understand 

vulnerability will become increasingly important. There are some efforts to integrate national 

and local health data in a spatial context to address localized concerns across several 

environmental domains.1 For instance, the Houston–Galveston–Brazoria (HGB) EnviroScreen’s 

Environmental Vulnerability Index (EVI)1 pinpoints which communities need the most support 

by analyzing health and environmental data geographically. This index preceded the U.S. 

Climate Vulnerability Index, which integrates indictors nationwide to inform a broad range of 

policy interventions ranging from health and environment to infrastructure and socio-economic 

factors.2,17 A potential benefit of environmental vulnerability assessments includes the 

prioritization and implementation of layered interventions to reduce cumulative burdens across 

communities. By employing comprehensive screening tools that merge publicly accessible health 

data with location-specific environmental indicators, vulnerabilities can be pinpointed. This 

approach forms a strong foundation for implementing precise public health intervention 

strategies. The goal of this study was to demonstrate the development of an integrative screening 
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tool to inform targeted public health interventions at a metro-area scale. Specifically, we adapted 

the HGBEnviroScreen framework into a bespoke index for Louisville Metro-Jefferson County. 

We used the framework to model and evaluate interventions to reduce environmental risk and 

vulnerabilities, focusing on solutions for communities most burdened by multiple stressors.  
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Materials and Methods 

Study Area 

The Louisville Metro-Jefferson County area in Kentucky, USA, is a mid-sized, metropolitan area 

with a population of 780,000.18 Employment is largely in trade, transportation, and utilities.19 

Manufacturing activities are dispersed throughout the county, including a chemical and rubber 

manufacturing corridor along the western edge of the city. The county features mixed-income 

housing in the north and west, high-income areas in the east, and middle-to-low-income zones in 

the south. Many census tracts in the northwestern part of the county are identified by the Climate 

and Economic Justice Screening Tool20 as facing significant burdens. The people, environment, 

and infrastructure covering 190 census tracts are additionally affected by the presence of federal 

and state Superfund sites, an international airport with a commercial air-transport hub, two large 

interstate highways, and the Ohio River abutting the northern and western boundaries of the 

county (Figure 1).  
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Figure 1. Study area, Louisville Metro-Jefferson County area in Kentucky, USA. The 
Climate and Economic Justice Screening Tool (CEJST) designation by census tract as well as 
federal and state Superfund sites, the international airport with a commercial air-transport hub, 
two large interstate highways, and the Ohio River on the north are represented. 
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Data Sources 

Our methodological approach was based on the HGB region tool1 (Table S1) with customization 

to reflect Louisville Metro-Jefferson County-relevant indicators. The index includes 32 

indicators organized into five domains (Table 1; Table S2). Transportation noise exposure 

(vehicle, railways, aviation), heat wave exposure, and tornado indicators were added. Some 

indicators included in the original HGB index were removed for the Jefferson County index as 

being either not applicable or with no local source data (Table S3). Indicators were derived from 

source datasets that were publicly available, with source data from 2015 through 2023. For 

proximity analysis including number of hospitals, Superfund sites, and point sources of 

pollution, a sum of sites within a 5 km radius buffer from the census tract centroid was used. In 

most cases, low indicator values reflect low vulnerability. This relationship was inverted for 

three indicators (life expectancy, number of hospitals, and tree canopy).  

 

The baseline health domain contains six indicators pertaining to disease, longevity, and 

healthcare access to show where residents themselves are most vulnerable to adverse 

environmental impacts. The environmental exposures and risks domain encompasses nine 

indicators related to ambient pollution and general environmental hazards. The environmental 

sources domain features seven indicators, six reflect point sources of environmental exposures 

and the seventh is tree canopy. The social vulnerability domain includes nine indicators related 

to the resilience capacity of communities to recover from natural disasters and other crises. The 

extreme weather domain includes three indicators: flood, heat exposure, and tornados.
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Table 1. Domains and vulnerability Indicators in the Environmental Vulnerability Index model for Louisville Metro- Jefferson 
County, Kentucky (USA), data variance, source dataset publication year, and assessment of if modification is possible by public health 
intervention or policy. 
 
Domain Indicator Original data variance  Source data 

year 
Modifiable? 
(yes/no) 

Reference 

Baseline 
Health  

Adult asthma (>18 years old) 8.7 – 18.4 2020 No 21 

Chronic obstructive pulmonary disease 4.2 – 17.3 2020 No 21 

Coronary heart disease 2.2 – 14.0 2020 No 21 

Hospitals within 5km radius  0.0 – 6.0 2020 No 22 

Life expectancy 63.7 – 86.8 2015 No 23 

Stroke 1.3 – 8.7 2020 No 21 

Environment
al Exposures 
and Risks 

Environmental Hazard Index 1 – 62 2023 No 24 

National Air Toxics Assessment cancer risk 20 – 80 2019 Yes 25 

National Air Toxics Assessment 
reproductive risk  

0.02 – 0.07 2019 Yes 25 

National Air Toxics Assessment respiratory 
risk 

0.3 – 0.6 2019 Yes 25 

Noise exposure  46.8189 – 60.1937 2020 Yes 26 

PM2.5 Community Multiscale Air Quality  5.3892 – 12.949 2016 Yes 27 

Risk-screening environmental indicators 
(RSEI) 

0 – 11,311,551 2021 Yes 28 

Environment
al Sources  

Cement batch plants within 5km radius 0 – 7  2023 No 29 

Metal recyclers within 5km radius 0 – 3  2023 No 29 

Petrochemical and oil refineries within 5km 
radius 

0 – 1 2023 No 29 

Power plants within 5km radius 0 – 1  2023 No 29 

Superfund sites within 5km radius 0 – 1  2023 No 30 

Traffic proximity and volume 16.4009 – 8243.5887  2020 No 31 

Tree canopy coverage  1.6807 – 68.0316 2021 Yes 32 

Social 
Vulnerability  

% Income for housing 0 – 0.5498 2023 Yes 33 

% Renters 2.6892 – 96.711 2023 Yes 33 

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted O
ctober 17, 2024. 

; 
https://doi.org/10.1101/2024.10.16.24315575

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2024.10.16.24315575
http://creativecommons.org/licenses/by/4.0/


10 
 

Domain Indicator Original data variance  Source data 
year 

Modifiable? 
(yes/no) 

Reference 

% Without health insurance 0.2 – 28.3 2020 Yes 34 

Food desert low access 0 – 2 2019 Yes 35 

Household composition and disability 0.0072 – 0.9892 2020 No 34 

Housing and transportation 0.0018 – 1 2020 No 34 

Median renter income vs. median area 
income 

0.3108 – 0.5789 2023 Yes 33 

Minority status and language 0.1182 – 1 2020 No 34 

Socioeconomic status 0.001 – 1 2020 No 34 

Weather 1% Annual probability flood hazarda 0 – 40.3884 2020 Yes 36 

Warm season average maximum 
temperature 

86.13766667-
88.39227273 

2018 Yes 37 

Tornado 
 

0.000912796 – 
0.019012543 

2023 Yes 38 

a24 census tracts have missing data; the Louisville Metro-Jefferson County average was used in these cases.  
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Data Analysis 

The Toxicological Prioritization Index (ToxPi) version 1.2.1 (Durham, North Carolina) was used 

to produce EVI scores by census tract (n=190).3,4,39 Indicators were converted to percentiles to 

put them on the same scale before being combined within domains. Equal weights were applied 

to each indicator within a domain, and each domain was weighted equally as one-fifth. Scores 

are relative rankings; a composite score of 0 indicates that an area has no vulnerabilities while 

higher scores indicate more vulnerability. The Louisville International Airport comprises an 

entire census tract and was excluded. Maps, geocoding, and Local Moran’s I analysis were 

performed using ArcGIS Pro version 2.9.5 (Redlands, CA). 

 

Environmental Vulnerability Intervention Simulation 

To evaluate potential public health interventions for reducing environmental vulnerabilities, 

modifiable indicators were identified, and three intervention scenarios were developed (Figure 

2). Indicators were determined to be modifiable if they were changeable by policy or other 

intervention activity within five years, for instance – tree planting efforts can increase the 

percentage of tree canopy and air toxics can be reduced through policy or power plant retirement, 

retrofit, and conversion to natural gas.7,40 To define modifiable factors, particular emphasis was 

placed on their potential for theoretically feasible implementation in real-world settings,41 within 

the context of census tract-level influence. Non-modifiable indicators included factors such as 

interstate highways, industrial corridors, rivers, and other natural landscape features.  

 

The five most vulnerable census tracts, those with the highest ToxPi composite scores, were 

selected as intervention sites with three illustrative case studies for each (A, B, C). To model 
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interventions, we substituted selected indicator score(s) with the lowest (least vulnerable) score 

observed in Louisville Metro-Jefferson County. This change represents a theoretical intervention 

aimed at improving the tract’s overall vulnerability. Intervention A modeled the potential 

impacts improving singular indicators such as tree canopy, noise pollution exposure, or 

respiratory risk from air toxics. Intervention B modeled the potential impacts of improving an 

entire domain such as environmental exposures and risks, environmental sources, or weather; for 

example, an intervention that included removing a group of point sources of pollution, 

decreasing traffic and increasing tree canopy coverage through joint economic and policy 

investment. Intervention C modeled the potential impacts of improving a thematic cluster of 

indicators, such as air pollution, environmental infrastructure, or point sources of pollution 

(Table S4).  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.16.24315575doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.16.24315575
http://creativecommons.org/licenses/by/4.0/


13 
 

  
Figure 2. Framework for Environmental Vulnerability Index supporting simulation of 
targeted public health interventions at the census tracts level. Using the Toxicological 
Prioritization Index composite scores, the five most vulnerable census tracts were identified and 
modifiable indicators were selected under three intervention scenarios as theoretical action for 
solutions.  
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Ethics 

Data used in the analysis are available in online public records, sources are provided in Table S2. 
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Results 

Composite ToxPi Scores 

Composite ToxPi scores were not uniformly distributed across Louisville Metro-Jefferson 

County (Figure 3); they ranged from 0.19 to 0.71. Geographically, high vulnerability scores were 

observed along the western and central areas of the county with lower vulnerability scores in the 

central urban core and eastern regions. The most at-risk census tract (21111005900) is in the 

downtown urban core. The least at-risk census tract (21111013100) is a mainly residential area 

in the urban core that abuts a park and a local airfield. However, there are pockets of 

vulnerability and census tracts that span geographic locations. The five least vulnerable census 

tracts are spread across an area east of Interstate 65. In contrast, the five most vulnerable census 

tracts are spread across the central and western areas of the county. This pattern matches the 

distribution of CEJST-designation of disadvantaged.20 Of the 72 disadvantaged census tracts in 

Jefferson County 83% (70) are in the western and south-central regions. Of the 21 most 

vulnerable census tracts, 80% (17) are considered disadvantaged. All five of the most vulnerable 

census tracts from our model are also considered CEJST disadvantaged.  

 

Local Moran’s I analysis was used to identify statistically significant clusters and outliers. 

Clusters are areas where tracts with high or low ToxPi scores are adjacent to other tracts with 

similarly high or low scores. Outliers are areas where tracts with high values are adjacent to low 

values and vice-versa (Figure 3). Results show significant clustering of higher ToxiPi scores in 

the west, with low ToxiPi scores cluster in the eastern county areas. There are five outlier tracts 

with relatively higher ToxPi scores than their neighboring tracts in the eastern county areas. 
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  A        B 
Figure 3. Toxicological Prioritization Composite Score Index by census tract, Louisville 
Metro-Jefferson County, Kentucky (USA). Panel A: Composite scores by census tract 
whereby a higher score corresponds to a more vulnerable census tract. Census tracts were sorted 
into quartiles by overall score, the quartiles were scored as: 1st quartile as lowest vulnerable 
census tracts <0.32 (n=48); 2nd quartile 0.33 to 0.41 (n=48); 3rd quartile 0.42 to 0.51 (n=47); and 
4th quartile as most vulnerable census tracts >0.52 (n=47). Panel B: Modeled clusters of 
composite scores by census tract. The Local Moran’s I analysis indicates statistically significant 
clusters of high or low values, as well as outliers where high values are adjacent to low values, 
and vice-versa.  
 
 
Domain-specific Scores 

Some census tracts with low composite ToxPi scores have high domain-specific scores (Figure 

4). The five most vulnerable census tracts especially score low in the domains of environmental 

exposures and risks and environmental exposures. The least vulnerable census tract 

(21111013100) has the best score across the county for both for social vulnerability and severe 

weather domains.  
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 Top

Bottom 

Figure 4. Toxicological Prioritization Domain Score Index by census tract, Louisville 
Metro-Jefferson County, Kentucky (USA). Top: Domain scores by census tract whereby a 
higher score corresponds to a more vulnerable census tract. Panels present the domain scores for: 
A.) Baseline Health; B.) Environmental Exposures and Risks; C.) Environmental Sources; D.) 
Social Vulnerability; and E.) Extreme Weather. Bottom: Modeled clusters of domain scores by 
census tract. The Local Moran’s I analysis indicates statistically significant clusters of high or 
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low values, as well as outliers where high values are adjacent to low values, and vice-versa. 
Panels present the domain scores for: A.) Baseline Health; B.) Environmental Exposures and 
Risks; C.) Environmental Sources; D.) Social Vulnerability; and E.) Extreme Weather. 

 

Heterogeneity 

Heterogeneity analysis (Figure S1) was performed for each for each of the 32 indicators to 

ensure only factors that offer significant variance were included in the index. Indicators that have 

limited variation thus may have minimal influence on the model's predictive accuracy. Heat 

exposure and noise are two examples with a good, but narrow, data range across census tracts. 

As well, for NATA cancer, most (186/190) census tracts have the same raw value, but there is 

some variation. And, again for renter/owner income most (185/190) census tracts have the same 

raw value. If the framework indicated an indicator raw score that had no-variation it would have 

been appropriate to remove; no changes were made following heterogeneity analysis.  

 

Modelling the Impact of Interventions on Vulnerability Scores  

Across the Intervention A case studies, modifications to a single indicator led to enhancements in 

the ToxPi composite score ranging from 1 to 4% (Table 2). Improving single indicators does not 

universally reduce vulnerability, even in the most vulnerable tracts. Improving the best possible 

indicator score reflected in the county for tree canopy alone resulted in an average 3% 

improvement to the composite ToxPi score, while improving noise pollution or NATA 

respiratory risk were an average 2% improvement. Currently tree canopy coverage is as low as 

5% and adjusting tree canopy in these five census tracts uniformly to 10% only improved 

composite ToxPi scores marginally, an average of 1% improvement. Increasing tree canopy to 

the countywide goal of 45%42 improved average composite ToxPi scores by 3%. One of the most 
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vulnerable census tracts (21111011901) already had a 31% tree canopy coverage, which is good 

for an urban area and better than the average tree canopy coverage across the county.  
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Table 2. Toxicological Prioritization Index (ToxPi) composite scores for the lowest five ranking census tracts and modeled case 
study result following intervention to the best possible indicator score reflected in the county. Higher composite scores 
correspond to higher vulnerability. Intervention A modeled the potential impacts of improving one indicator while keeping all other 
indicators static. Intervention B modeled the potential impacts of improving entire domains. Intervention C modeled the potential 
impacts of improving clusters of indicators with related interventions. Each model intervention was conducted three times as an 
illustrative case studt. 
 ToxPi Score after Intervention A ToxPi Score after Intervention B ToxPi Score after Intervention C 
Census Tract Original 

ToxPi 
Composit
e Score 

A1 – Tree 
canopy 

A2 – Noise A3 – 
NATA 
respiratory 
risk 

B1 – 
Environmen
tal exposure 
& risks 

B2 – 
Environme
ntal 
Sources 

B3 – 
Weather 

C1 – Air 
quality 

C2 – 
Environme
ntal 
infrastruct
ure 

C3 – 
Potential 
health 
hazards 

21111005900 0.7077 0.68 0.6862 0.6941 0.6199 0.5695 0.6029 0.6397 0.6533 0.6254 
21111009103 0.6831 0.6559 0.6618 0.6695 0.6025 0.5699 0.5194 0.6272 0.6509 0.5986 
21111011002 0.6497 0.6233 0.6416 0.6361 0.574 0.5641 0.5217 0.5928 0.6058 0.5973 
21111011901 0.6594 0.6548 0.6325 0.6458 0.5955 0.5948 0.4958 0.6127 0.6532 0.6105 
21111012701 0.7 0.676 0.6929 0.6864 0.6498 0.546 0.5734 0.6657 0.6477 0.5894 
Logistically 
feasible public 
health 
intervention 

 Tree 
planting 
efforts 
inclusive of 
site selection 
and 
preparation, 
long term 
maintenance 
and 
community 
engagement, 
and 
protective 
policy. 

Noise 
pollution 
reduction 
achieved 
through 
noise 
reduction 
features 
(sound 
walls, 
vegetative 
buffers, etc.) 
and policy 
(elevation 
standards 
for aircraft 
and 
residential 
noise 
regulations.) 

Air quality 
improveme
nts through 
local clean 
air 
standards, 
pollution 
control 
requirement
s, best 
available 
technologie
s, and 
compliance 
monitoring 
and 
reporting 
 

A 
combination 
of air 
monitoring 
and noise 
exposure 
interventions
. 
 

Economic 
and policy 
investment 
to remove or 
reduce the 
number of 
environment
al sources of 
pollution 
from 
residential 
areas; and 
increasing 
tree 
coverage. 
 

Wetland 
restoration 
and green 
infrastructur
e; upgrading 
drainage 
systems and 
critical 
infrastructur
e; integration 
of flood 
management 
into broader 
environment
al planning. 
 

A 
combinatio
n of 
suggested 
intervention
s from each 
of the other 
categories. 
 

A 
combination 
of suggested 
intervention
s from each 
of the other 
categories. 
 

A 
combination 
of suggested 
interventions 
from each of 
the other 
categories. 
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For Intervention B, entire domains with several indicators were adjusted: environmental 

exposures and risks, environmental sources, or weather. Across the case studies, domain 

modifications led to enhancements in the ToxPi composite scores ranging from 7% to 25%. 

When indicator scores within a domain were adjusted to the best scores observed in the county, 

the census tract’s composite ToxPi scores were reduced by an average of 11% for environmental 

exposures and risks, 16% for environmental sources, and 20% for extreme weather.  

 

For Intervention C, thematically related intervention clusters of indicators were adjusted: air 

pollution, environmental infrastructure, or potential health hazards. Across the case studies, 

modifications to these clusters led to enhancements in the ToxPi composite scores ranging from 

1 to 16%. When indicator scores for each cluster were reduced to the best scores observed in the 

county, the census tract’s composite ToxPi scores were reduced on average for air quality at 8%, 

for environmental infrastructure at 6%, and for potential health hazards at 11%.  
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Discussion 

In this study, we used a modified version of community based EVI framework1 to assess 

vulnerabilities in a new geographic region. We extended the tool to model interventions and to 

assess potential impact on hyperlocal risks. Our approach provides a data-driven guide for 

Louisville Metro-Jefferson County as examples of census tract scale solutions as opposed to 

more general public health programming. The index is customized to the particular concerns of 

our area, including the addition of indicators such as noise pollution exposure, heatwave 

exposure, and tornados. While Messer et al.43 developed neighborhood socioeconomic context 

for 19 cities, it excluded flood, growing urban heat island effect, and tornados which are locally 

important vulnerabilities in the Louisville Metro-Jefferson County area. The presence of a 

commercial air-hub led to the addition of the noise pollution indicator. These risks are real for 

many cities and the expanded evaluation demonstrates the benefits of adaptation to local 

conditions, risks, and vulnerabilities. The Louisville Metro-Jefferson County has unique 

vulnerabilities when compared with most other counties across of the nation, although the area 

does resemble several towns in the United States Midwest. For example, all 190 census tracts in 

Louisville Metro-Jefferson County have higher average PM 2.5 concentrations than the 

nationwide average of 3.79 µg/m3. Identification and incorporation of such local vulnerabilities 

may be key to developing local and well-targeted interventions. 

 

Previous work suggests that single-indicator interventions to improve health are theoretically 

feasible. Wang et al.40 reported on the effectiveness of an urban green and blue space 

intervention in improving wellbeing. Brown et al.44 and Hammer et al.45 discovered that direct 

regulation on lowering noise at its source, expanding and increasing access to noise maps, and 
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altering the built environment can be effective. Further, Casey et al.7 documented improved 

health outcomes resulting from the removal of an environmental point source of pollution when 

the retirement of a coal-fired power plant led to improved asthma outcomes. 

 

Our index integrates several related indicators into a single domain and it incorporates social, 

clinical, and environmental data to provide a more comprehensive evaluation of area 

vulnerability. In previous work, other environmental health vulnerability studies conducted at 

census tract level have focused on only clinical data or only a few public data sources,40,46 

despite the probability that a wide range of structural environmental variables can impact health. 

For instance, social vulnerability combines data on socioeconomic status, housing and 

transportation, and health insurance coverage. When assessing access to healthcare, this 

combined view of indicators may be more explanatory of lack of healthcare access than a simple 

hospital proximity indicator. 

 

Our findings suggest that environmental vulnerability could be feasibly estimated at census tract 

scale, rather than county level, consistent with the Glassman et al.5 report. In addition, our work 

demonstrates that county-level data could be too broad to support intervention evaluation. 

Census tract level data offers balanced spatial granularity useful to discern hyperlocal variations 

within urban areas whereby environmental risks can be viewed within the context of the entire 

spectrum of risks.  

 

The index enabled the selection of the most at-risk census tracts for modeling targeted public 

health interventions to reduce cumulative environmental vulnerability within specific 
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communities. Our work also suggests that while some census tracts may require plans tailored to 

those specific areas, it may be possible to develop interventions effective in addressing common 

problems that span boundaries across multiple tracts. Moreover, our work across the three case 

studies also suggests that improving any single indicator may not be highly beneficial in 

addressing the overall area vulnerability and that it may be necessary to address multiple 

indicators collectively. Interesting, a high composite vulnerability scores can mask low indicator-

level vulnerabilities (e.g., good tree coverage). Overall, our index and our method for computing 

aggregate vulnerabilities maybe helpful in identifying focal points for resource allocation. 

However, additional work will be required to assess the efficacy of any intervention. For 

instance, Louisville’s 14 hospitals are clustered in one geographic area thus limiting access, as 

measured by geographical proximity, for many census tracts. Although this proximity indicator 

reflects an equal impact geographically, it may result in a stronger impact on individuals at the 

low end of the socioeconomic spectrum compared to those at the highest; affluent individuals 

have significant resources, personal transportation, and insurance to access healthcare, regardless 

of distance to the nearest hospital. Thus, a healthcare access intervention may be warranted for 

low-income census tracts to offset this inequity. Moreover, in our area of interest seven census 

tracts are within a 5-kilometer radius of Superfund sites, and all of these are west of a structural 

environment variable, Interstate 65, mirroring larger vulnerability patterns in the county. This 

suggests purposively modifying some indicators may have a disproportionately positive impact 

on the county’s most vulnerable census tracts. Therefore, as indicated by these two examples, 

several indicators are highly correlated and therefore changes in one could have far reaching 

effect on the other or may benefit only related aspects of those vulnerabilities. 
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Threshold values across both the composite score and indicators can be used to manage 

expectations related to interventions. More affluent census tracts in Jefferson County have ToxPi 

composite scores of less than 0.3. These areas are often characterized by high life expectancy, 

low social vulnerability, and limited pollution exposure. As well per a single indicator, while 40-

45% is a goal set by Louisville’s Urban Tree Canopy Assessment42 the lowest tree canopy score 

in our study area is 2%, and any short-term aim to increase the canopy indicator to 40% may be a 

highly unrealistic goal. When we modeled the 45% canopy coverage, it only improved the ToxPi 

composite score to be 3% better. These results put in perspective the expected indicator gains 

that could be accrued by specific interventions and should help in prioritizing interventions. 

Moreover, some indicator scores may not change without a modification in direct policy and/or 

financial intervention, such as the presence of industrial facilities. Finally, when selecting areas 

for an intervention, it may be important to consider ethical questions around withholding 

environmental health interventions known to be effective.47 

 

The main purport of the framework developed by our work may be to guide actions to mitigate 

vulnerability and risk. For example, local governance could use this framework to create action 

plans for increasing neighborhood resilience and preparedness following major events. Local 

public health agencies could use also digital platforms and targeted advertising campaigns to 

raise awareness and promote health actions in specific places.48 Qualitative researchers could use 

the vulnerability index to gather community input to validate proposed solutions. Finally, 

grassroots community organizations could use an assessment of environmental vulnerability to 

identify problems, construct potential solutions, and advocate for policy change. Establishing a 

data-driven index to inform interventions tailored to specific needs, rather than generic 
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approaches would also ensure accountability by verifying that the interventions are directed 

towards areas where they are most needed and address the area’s most significant vulnerabilities.  

 

Overall, we believe our study advances the integrated vulnerability index approach for selecting 

census tracts for health interventions in several key ways: 

1. Consideration of multiple domains and indicators. Consideration of health parameters 

beyond traditional clinical and environmental data can inform more effective, data-driven, public 

health communications, and interventions. 

2. Data anchored to census tract boundaries. Focus on census tract level vulnerability 

rather than countywide scale.  

3. Prioritization of intervention and investment by data-driven vulnerability. Our 

approach shows which census tracts are in most need of vulnerability mitigation and 

intervention. In some cases, the same intervention may benefit multiple census tracts even if they 

are not geographically adjacent.  

4. Shift focus away from the single indicator interventions. Modeled results show 

improving a group of related indicators is more impactful than adjusting a single indicator.  

 

Despite its many strengths, the study has some limitations. We relied solely on publicly available 

national, state, and local government data sources, potentially overlooking data requiring Data 

Transfer Agreements or open records requests. Application may be limited for rural census tracts 

due to a lack of local data available. We restricted our analysis to Louisville Metro-Jefferson 

County, neglecting the bordering counties of the metro area. All domains are equally weighted as 

we could not justify indicator-specific weighting. Qualitative research and community input can 
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be used in tools to validate vulnerability frameworks; however, integration of qualitative and 

quantitative data sources can pose additional challenges.49 Our modeled interventions have 

limitations; determining efficacy of intervention requires empirical testing to establish the degree 

to which environmental vulnerabilities are modifiable. One major limitation of our approach is 

that scores are percentile-based which does not distinguish between indicators with low and high 

variance. However, we addressed this limitation by selecting indicators for interventions that 

could feasibly produce a material change, such as percent tree canopy, achievable in real-world 

conditions.   
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Conclusion 

In this study we used census tract boundaries and integrated vulnerability data to develop a 

comprehensive vulnerability index which could be used to assess the potential impact of targeted 

public health interventions. While the original framework was designed to assign relative ranks 

based on environmental vulnerability, the aggregation of vulnerability and intervention allows 

the index to develop into a more comprehensive tool for public health, community planning, and 

environmental justice advocates. Chief among our insights is that places are not defined by their 

environmental vulnerabilities and that such vulnerabilities are not invariant features of living 

communities. Rather, knowledge of these risks can spur action for towards local and bespoke 

solutions. Targeted census tract interventions may be more effective than broad-scale campaigns 

at state or national levels and may lead to health-supportive environmental conditions with 

greater geographic precision.  
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Figure Legends 
 
Figure 1. Study area, Louisville Metro-Jefferson County area in Kentucky, USA. The 
Climate and Economic Justice Screening Tool (CEJST) designation by census tract as well as 
federal and state Superfund sites, the international airport with a commercial air-transport hub, 
two large interstate highways, and the Ohio River on the north are represented. 
 
Figure 2. Framework for Environmental Vulnerability Index supporting simulation of 
targeted public health interventions at the census tracts level. Using the Toxicological 
Prioritization Index composite scores, the five most vulnerable census tracts were identified and 
modifiable indicators were selected under three intervention scenarios as theoretical action for 
solutions.  
 
Figure 3. Toxicological Prioritization Composite Score Index by census tract, Louisville 
Metro-Jefferson County, Kentucky (USA). Panel A: Composite scores by census tract 
whereby a higher score corresponds to a more vulnerable census tract. Census tracts were sorted 
into quartiles by overall score, the quartiles were scored as: 1st quartile as lowest vulnerable 
census tracts <0.32 (n=48); 2nd quartile 0.33 to 0.41 (n=48); 3rd quartile 0.42 to 0.51 (n=47); and 
4th quartile as most vulnerable census tracts >0.52 (n=47). Panel B: Modeled clusters of 
composite scores by census tract. The Local Moran’s I analysis indicates statistically significant 
clusters of high or low values, as well as outliers where high values are adjacent to low values, 
and vice-versa.  
 

Figure 4. Toxicological Prioritization Domain Score Index by census tract, Louisville 
Metro-Jefferson County, Kentucky (USA). Top: Domain scores by census tract whereby a 
higher score corresponds to a more vulnerable census tract. Panels present the domain scores for: 
A.) Baseline Health; B.) Environmental Exposures and Risks; C.) Environmental Sources; D.) 
Social Vulnerability; and E.) Extreme Weather. Bottom: Modeled clusters of domain scores by 
census tract. The Local Moran’s I analysis indicates statistically significant clusters of high or 
low values, as well as outliers where high values are adjacent to low values, and vice-versa. 
Panels present the domain scores for: A.) Baseline Health; B.) Environmental Exposures and 
Risks; C.) Environmental Sources; D.) Social Vulnerability; and E.) Extreme Weather. 
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Table S1. Vulnerabilities of Houston–Galveston–Brazoria region, Texas, and Louisville Metro- 
Jefferson County, Kentucky.  

Vulnerability Houston–
Galveston–
Brazoria region, 
Texas 

Louisville Metro- 
Jefferson County, 
Kentucky 

Data Source 

COVID-19 impact 1,547,659 cases 
13586 deaths 

289,020 cases 
2263 deaths 

https://www.nytimes.com/ 

Population 5,453,858 773,399 https://data.census.gov/ 
Area 3,446.2 square 

miles 
380.6 square miles https://data.census.gov/ 

Large industrial 
complexes 

Yes Yes  

Poverty rate 7.6%-16.4% 14.0%  https://data.census.gov/ 
Natural environment Along the Gulf of 

Mexico 
Ohio River  

Research focused 
higher-education 
institution  

Rice University 
Baylor College of 
Medicine 

University of 
Louisville 
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Table S2. Data sources of indicators incorporated into Environmental Vulnerability Index for Louisville Metro- Jefferson County, 
Kentucky (USA). 

 
Domain Indicator Reference Data Description (File names and filter applied as 

applicable) 
Access 
Date 
(MM-DD-
YEAR) 

Baseline Healtha Adult asthma (>18 years 
old) 

21 PLACES: Census Tract Data: Column C, "Current asthma 
among adults aged >=18 years" 

11-01-2023  

 Chronic obstructive 
pulmonary disease 

21 PLACES: Census Tract Data: Column C, "Chronic 
obstructive pulmonary disease among adults aged >=18 
years" 

11-01-2023 

 Coronary heart disease 21 PLACES: Census Tract Data: Column C, "Coronary heart 
disease among adults aged >=18 years" 

11-01-2023 

 Hospitals within 5km 
radius  

22 Hospital Directory By County: Columns C/D/E entered 
into ArcGIS Pro to calculate 5km radius 

11-02-2023 

 Life expectancy 23 Kentucky Life Expectancy: Column E, "Life Expectancy in 
years" 

11-01-2023 

 Stroke 21 PLACES: Census Tract Data: Column C, "Stroke among 
adults aged >=18 years" 

11-01-2023 

Environmental 
Exposures and 
Risksb 

Environmental Hazard 
Index 

24 Hazard Index: Column D, “Haz_IDX” 11-09-2023 

 National Air Toxics 
Assessment cancer risk 

25 NATA 2019 National: Sheet 2, Column G, “Total Cancer 
Risk (Per million)” 

11-09-2023 

 National Air Toxics 
Assessment 
reproductive risk  

25 NATA 2019 National: Column G, “Reproductive Health” 11-09-2023 

 National Air Toxics 
Assessment respiratory 
risk 

25 NATA 2019 National: Column C, “Respiratory Health” 11-09-2023 
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Domain Indicator Reference Data Description (File names and filter applied as 
applicable) 

Access 
Date 
(MM-DD-
YEAR) 

 Noise exposure  26 NoiseToCensus_JeffCo: Column B, “MEAN_Noise_dB” 11-02-2023 
 PM2.5 Community 

Multiscale Air Quality  

27 Daily Census Tract Level PM2.5 Concentration: Column 
H, “DS_PM_pred” 

11-08-2023  

 Risk-screening 
environmental 
indicators (RSEI) 

28 EPA Easy RSEI Dashboard: Column F, “RSEI Score” 11-02-2023 

Environmental 
Sourcesc  

Cement batch plants 
within 5km radius 

29 EPA FRS Facilities State Single File: SIC codes 
3273,3272,3271,2951. Entered into ArcGIS Pro to locate 5 
km radius of census tract. 

11-16-2023 

 Metal recyclers within 
5km radius 

29 EPA FRS Facilities State Single File: SIC code 5093. 
Entered into ArcGIS Pro to locate 5 km radius of census 
tract. 

11-16-2023  

 Petrochemical and oil 
refineries within 5km 
radius 

29 EPA FRS Facilities State Single File: SIC code 2911. 
Entered into ArcGIS Pro to locate 5 km radius of census 
tract. 

11-16-2023 

 Power plants within 
5km radius 

29 EPA FRS Facilities State Single File: SIC code 4911,3612. 
Entered into ArcGIS Pro to locate 5 km radius of census 
tract. 

11-16-2023  

 Superfund sites within 
5km radius 

30 EPA Superfund Sites: Column B,C,D,E. Entered into 
ArcGIS Pro to locate 5 km radius of census tract. 

11-14-2023  

 Traffic proximity and 
volume 

31 EPA EJScreen: PTRAF calculated by Annual Average 
Daily Traffic divided by distance in meters 

11-16-2023  

 Tree canopy coverage  32 NLCD 2021 USFS Tree Canopy: Entered into ArcGIS Pro 
to locate 5 km radius of census tract. 

11-11-2023 

Social 
Vulnerabilityd 

% Income for housing 33 Location Affordability Index v.3: column 
R"avg_h_cost"X12/column AC "median_hh_income" 

11-17-2023 

 % Renters 33 Location Affordability Index v.3: column K, “pct_renters” 11-17-2023  
 % Without health 

insurance 

34 CDC/ATSDR SVI Data: Column DR, “EP_UNINSUR” 11-17-2023  

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

T
he copyright holder for this preprint 

this version posted O
ctober 17, 2024. 

; 
https://doi.org/10.1101/2024.10.16.24315575

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2024.10.16.24315575
http://creativecommons.org/licenses/by/4.0/


40 
 

Domain Indicator Reference Data Description (File names and filter applied as 
applicable) 

Access 
Date 
(MM-DD-
YEAR) 

 Food desert low access 35 FoodDesert, FoodAccessResearchAtlasData:A sum of 
Column O “LowIncomeTracts” and Column U 
“LATracts_half” 

11-17-2023  

 Household composition 
and disability 

34 CDC/ATSDR SVI Data: Column CH, “RPL_THEME2” 11-17-2023  

 Housing and 
transportation 

34 CDC/ATSDR SVI Data: Column CS, “RPL_THEME4” 11-17-2023  

 Median renter income 
vs. median area income 

33 Location Affordability Index v.3: column AB, 
“area_income_renter_frac” 

11-17-2023  

 Minority status and 
language 

34 CDC/ATSDR SVI Data: Column CL, “RPL_THEME3” 11-17-2023  

 Socioeconomic status 34 CDC/ATSDR SVI Data: Column CB, “RPL_THEME1” 11-17-2023  
Weathere 1% Annual probability 

flood hazard 

36 ESRI Living Atlas USA Flood Hazard Reduced Set: 
Column B, “1% Flood Hazard Percent Area Coverage” 

11-20-2023  

 Warm season average 
maximum temperature 

37 Jeff Co KY Urban Heat Management Study: Column I, 
“WS_B_APMAX ” 

05-08-2024 

 Tornado 
 

38 National Risk Index: Column MH, “Tornado Annualized 
Frequency” 

04-23-2024 

a The Baseline Health domain contains six indicators related to disease, longevity, and health care access to show where residents 
themselves are more vulnerable to environmental impacts. CDC Places data for Jefferson County was isolated and downloaded by 
census tract. Disease prevalence estimates for asthma, chronic obstructive pulmonary disease (COPD), stroke, and coronary heart 
disease (CHD) were assessed. CDC Small Area Life Expectancy Estimates for Jefferson County were isolated and downloaded by 
census tract. Acute and psychiatric hospital addresses were downloaded from Kentucky’s Cabinet for Health and Family Services, 
geocoded, and summary statistics were calculated for distance between facilities and each census tract centroid.  
b The Environmental Exposures and Risks domain contains nine indicators related to ambient pollution and general environmental 
hazards. Estimates for air pollution emissions impacting reproductive health, respiratory health, and total cancer risks were 
downloaded from the National Air Toxics Assessment (NATA). PM2.5 data was downloaded from the CDC’s community 
multiscale air quality (CMAQ) program. The U.S. Department of Transportation’s National Transportation Noise Map raster file 
was downloaded and geocoded to census tracts to calculate mean 24-hour noise exposure. Environmental Hazard Index scores and 
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Domain Indicator Reference Data Description (File names and filter applied as 
applicable) 

Access 
Date 
(MM-DD-
YEAR) 

Risk-Screening Environmental Indicator (RSEI) scores were downloaded from the U.S. Department of Housing and Urban 
Development (HUD) and the U.S. EPA, respectively. 
c The Environmental Sources domain contains seven indicators, six are related to sources of environmental exposures and the 
seventh is tree canopy. The U.S. EPA’s Facility Registry Service provided addresses for cement batch plants, metal recyclers, 
petrochemical and oil refineries, and power plants which were geocoded to census tracts to calculate distance between sites and 
census tract boundaries. The U.S. EPA’s Superfund program provided addresses for superfund sites which were geocoded to census 
tracts to calculate distance between sites and census tract boundaries. The U.S. Department of Transportation (DOT) provided 
traffic proximity and volume which was calculated according to the U.S. EPA’s EJScreen methodology (U.S. EPA 2022). The 
Multi-Resolution Land Characteristics Consortium provided tree canopy cover data as a raster which was spatially joined with 
census tract polygons to calculate summary statistics. 
d The Social Vulnerability domain contains nine indicators related to the resilience capacity of communities to recover from natural 
disasters and other crises. Three indicators related to housing affordability were provided by the U.S. Department of Housing and 
Urban Development (HUD) through their Location Affordability Index: percent income used for housing, percent renters, and 
median renter income vs. median area income. To calculate percent income used for housing the average housing cost was divided 
by median household income. Five indicators from the CDC and Agency for Toxic Substances and Disease Registry’s (ATSDR) 
Social Vulnerability Index were included: housing and transportation, household composition, minority status, socioeconomic 
status, and health insurance coverage. The U.S. Department of Agriculture’s Food Access Research Atlas provided food access. To 
calculate scores for food access, LowIncomeTracts and LATracts_half were summed. 
e The Weather domain contains three indicators related to severe weather. Flooding hazard was provided by ESRI’s Living Atlas 
USA Flood Hazard geodatabase that categorizes FEMA Flood zones by census tract. Warm season average maximum temperature 
value represents the mean average, minimum and maximum temperatures over the 2012 warm season (May – September), the 
number of deaths attributable to urban heat over the 2012 warm season provided by the Jefferson County Urban Heat Management 
Study. Tornado annualized frequency value represents the average number of recorded Tornado occurrences (event-days) per year 
provided by FEMA’s National Risk Index. 
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Table S3. Indicators included in the Houston–Galveston–Brazoria (HGB) EnviroScreen’s 
Environmental Vulnerability Index (EVI) (Bhandari et al., 2020) which were removed for the 
Louisville Metro-Jefferson County index. 

 
Domain Indicator 
Social Vulnerability  -Modified food retail environment index  

-Low food security  
Baseline Health  -Childhood asthma 
Environmental Exposures and 
Risks  

-PM2.5 Satellite  

Environmental Sources  -Leaking petroleum storage tanks  
-Facilities with risk management plans  
-Accident events reported in RMP  
-Shelter-in-place events reported in RMP 

Flooding  -100-year flood plain  
-500-year flood plain  
-Harvey damage assessment “Affected”  
-Harvey damage assessment “Minimal”  
-Harvey damage assessment “Major”  
-Harvey damage assessment “Destroyed”  
-Families filing Harvey damage claims 
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Table S4. Indicators subgrouped based upon related impacts across domains for Intervention C 
case studies. 

 
Subgroup Domain Indicator High Scores (Census tract) 

C1 - Air 
quality 

Environmental NATA Cancer 20 (21111011604) 
Environmental NATA 0.3 (21111007501) 
Environmental NATA 0.03 (21111010307) 
Environmental PM 2.5 5.38923766 (21111011403) 

C2 - 
Environmental 
Infrastructure 

Environmental Tree Canopy 68.031571 (21111012003) 
Environmental 
Exposure and 

Risks 

Environmental 
Hazard Index  

62 (21111010307) 
Environmental RSEI 0 
Environmental Traffic Exposure 16.40093089 (21111011604) 

C3 - Potential 
Health 

Hazards 

Environmental Cement Batch 0 
Environmental Metal Recyclers 0 
Environmental Petrochemical and 0 
Environmental Power Plants 0 
Environmental Superfund Sites 0 
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Figure S1. Heterogeneity analysis for the 32 indicators. Analysis was performed for each 
indicator to ensure only factors that offer significant variance were included in the index (32 
panels).   
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