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Abstract

This work focuses on design of experiments for Pharmacokinetic (PK) and Pharmacodynamic (PD) studies. Non-
Linear Mixed effects Models (NLMEM) modeling allows the identification and quantification of covariates that explain
inter-individual variability (IIV). The Fisher Information Matrix (FIM), computed by linearization, has already been used
to predict uncertainty on covariate parameters and the power of a test to detect statistical significance. A covariate
effect on a parameter is deemed statistically significant if it is different from 0 according to a Wald comparison test and
clinically relevant if the ratio of change it causes in the parameter is relevant according to two one-sided tests (TOST)
as in bioequivalence studies. FIM calculation was extended by computing its expectation on the joint distribution of the
covariates, discrete and continuous. Three methods were proposed: using a provided sample of covariate vectors, simulating
covariate vectors, based on provided independent distributions or on estimated copulas. Thereafter, CI of ratios, power of
tests and number of subjects needed to achieve desired confidence were derived. Methods were implemented in a working
version of the R package PFIM. A simulation study was conducted under various scenarios, including different sample
sizes, sampling points, and IIV. Overall, uncertainty on covariate effects and power of tests were accurately predicted.
The method was applied to a population PK model of the drug cabozantinib including 27 covariate relationships. Despite
numerous relationships, limited representation of certain covariates, PFIM correctly predicted uncertainty, and is therefore
suitable for rapidly computing number of subjects needed to achieve given powers.

Keywords: Design; Fisher information matrix; Nonlinear mixed effects models; Covariate effect; Power of relevance;
Pharmacometrics

1 Introduction
One of the main aims of pharmacokinetic (PK) and pharmacodynamic (PD) analysis is to identify and quantify the
covariates that attempt to explain inter-individual variability (IIV). In this context Non-Linear Mixed effects Models
(NLMEM) are an appropriate tool as population modeling allows to quantitatively describe relationships between covariates
and parameters, and consequently to explain some of the IIV. [1] The list of covariates of interest can be represented on a
forest plot where the 90% confidence interval (CI) of the ratio of change in the value of the parameter is expressed for given
values, or categories, of the covariate, and relative to a reference value [2]. These plots are in line with the FDA Guidance
for Industry Population Pharmacokinetics (2022) [3] and are essential to support clinicians’ decisions on drug dosing [4].
Therefore, regarding the pharmaceutical development of a new drug, it is essential to be able to detect covariates that may
explain some of the PKPD variability, and to distinguish between a statistically significant and a clinically relevant effect.
A covariate effect on a parameter is considered statistically significant if it is different from 0 according to a Wald test at
level 95%, clinically relevant if the ratio of change it causes in the parameter is relevant according to a Two One-Sided
Tests Procedure (TOST) at level 95% . The latter is equivalent to showing that the 90% CI of the ratio is outside a
predetermined interval (often [0.80; 1.25]) [5]. The ratio is said irrelevant if this CI is included in the range. In the case
of partial overlap, there is insufficient data to determine clinical relevance.

For a given model and parameters, the Standard Error (SE) of the covariate parameters and the width of CI of the
ratio are influenced by the design of the study and by the covariate characteristics of the included patients in the analysis.
The design refers to the number of subjects and their elementary designs, which means their dosage regimens and the
allocation of their measurement times. Being able to predict the SE of the covariate effect estimates, in order to predict
the ability to conclude on the significance and relevance of an effect is a key issue for the design of a clinical trial. For this
reason, at design step, it is recommended to perform clinical trial simulation (CTS) to determine an adequate sample size
or an adequate dispersion of the covariate to properly estimate covariate effects [6]. Nevertheless, this approach can be
computationally expensive, and one aim of this work was to develop a method avoiding these computationally intense CTS
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for design evaluation through the use of the Fisher Information Matrix (FIM). This type of methodology is described in
the general theory of optimal experimental design, which is applied to traditional non-linear models [7]. Indeed, according
to the inequality of Rao-Cramer the variance of any unbiased estimator is bounded by the inverse of the FIM. Therefore,
expected SE resulting from a design can be computed from it. In NLMEM framework there is no analytical solution for FIM
computation, and the usual approach consist in a first order linearization of the structural model, around a mean of 0 for
the random effects (FO method) or around individual realizations of the random effects (FOCE method) and then the FIM
is computed as the FIM of the obtained Gaussian approximation [8]. This methodology has been shown to be appropriate
for evaluating and optimizing design of experiments [9]. In this computation, the covariates are generally considered as
being known for all the subjects, although accounting for their distributions, especially for continuous covariates is a
priority for pharmaceutical companies in terms of clinical trial design and tools [10]. From the SE predicted by the FIM,
the power of a parametric test to detect whether a covariate effect is statistically significant can be derived. Previous
works have explored this computation for example including one discrete covariate and have shown that the trial design
can be optimized to achieve a desired confidence level [11] [12]. These solutions have been implemented in PFIM, which
was the first software tool proposed in 2001 for evaluating a design without using simulations. Especially, PFIM version
4.0 [13] includes evaluation methods for discrete covariates only while the latest version, the R package PFIM 6.03 [14]
(CRAN release March 2024) does not include covariates. Other software tools relying on this FIM based approach have
been developed and handle both discrete and continuous covariates, such as PopED [15, 16] and NONMEM$DESIGN [17].
In PopED, covariates values are considered as known in FIM computation. Otherwise, to improve the computation, it is
suggested in the user-guide to assume a distribution for the covariates and sample from it for each subject, then repeat the
process and compute the average standard errors across the repetitions. NONMEM$DESIGN handles covariate similarly.
The drawback of this assumption is the need to know the covariate values for each subject.

Furthermore, while the FIM gives asymptotic SE for covariate parameters, the quantity of interest is the ratio of change
in PK parameters when covariate values change relative to a reference value. For classical covariate relationship models,
an analytical solution allows to compute the CI on theses ratios from the value of the covariate parameters and its SE
derived from the FIM, otherwise approximation such as the Delta method can be used. Thereafter, it is possible to predict
the power of relevance test and to predict the CI on a forest plot, and thus evaluate whether the design leads to sufficient
information to conclude to the relevance of covariates.

The goals of this work were thus to extend PFIM6 to include both discrete and continuous covariates, to explore
different approaches to handle continuous covariates and to predict SE of ratio, power of significance and relevance tests.
To that purpose the computation of the linearized FIM was extended to the case with continuous covariates, comparing
three methods to account for covariate distribution based on Monte-Carlo computation as already proposed [18]. The first
one uses covariate vectors data, the second one independent distributions for the covariates, and the third one copulas,
as the benefit of using copulas in pharmacometrics has already been demonstrated [zwep2022virtual]. The power of
a clinical relevance test on covariate effect was computed analytically. These methods were implemented in a working
version of PFIM 6 and are available in the Zenodo repository https://doi.org/10.5281/zenodo.13692989. Based on a
simple PK model, simulations were performed to assess the accuracy of the proposed approaches. CTS and PFIM were
compared in 4 scenarios, varying the sample size, the observation schedule and the IIV. Thereafter, this methodology
was applied to a real example inspired from a population PK analysis of the drug cabozantinib [19] performed from 10
clinical trials, in healthy volunteers and patients with various cancer types The original Population PK model included 27
covariate relationships. The theoretical design was evaluated using the proposed methodology and the power of tests and
the number of subjects that would have been required to achieve 80% power were calculated.

In Section 2, the notations and methods are detailed. In Section 3 we go through the simulation study, while section
4 describes the application to the real example. Finally global results are discussed in section 5

2 Methods
In this section we detail notations and methods on study design as well as NLMEM and on the FIM computation accounting
for covariates. After that, derivation of SE and CI on ratios from the FIM are shown. Then computation for power of
significance and relevance tests, and for number of subjects needed to achieve given levels of power are detailed.

2.1 Design and NLMEM
For one subject indexed by i, the elementary design ξi is defined by its number of observations ni, some designs variables
ξi,1, . . . , ξi,ni as observations time, doses, dosage regimens. The population design Ξ = {N, (ξ1, . . . , ξN )} is composed of
the number of subjects N and their respective elementary designs.

We denote yi the ni-vector of observations for the ith subject. Assuming Gaussian distribution for the observations,
these can be modeled as given in equation (1), where f denotes the structural non-linear model. Thus the structural
response depends on ξi, the elementary design for subject i and on θi = u (µ, β, zi, ηi), the p-vector of individual parameters.
The latter is a function of ν = (µ, β) the vector of fixed effects, with µ the typical values and β the covariate effects, and
of the vector of possibly transformed individual covariates zi and individual random effects ηi, where ηi ∼ N (0,Ω).

yij = f(ξi, θi) + g(ξi, θi, σ)ϵij (1)
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It is commonly assumed that the individual parameter can be transformed by a function h to a normal variable as given
in equation (2).

ϕi = h(θi) = h(µ, β, zi) + ηi ∼ N (h(µ, β, zi),Ω) (2)
Moreover, it is usually assumed that each individual parameter ϕil, l = 1, . . . , p, is a linear function of the possibly

transformed covariates as given in equation (3), where βl is a vector of size C, the number of covariates, and zpop denotes
the typical value of the (transformed) covariates in the population.

ϕil = hl(µl) + βl (zi − zpop) + ηil (3)

In PKPD, most of the parameters are modeled as log-normally distributed with additive covariate relationships on
the log scale, i.e. θil = µle

βl(zi−zpop)+ηil and ϕil = log µl + βl (zi − zpop) + ηil, where zi is the vector of (transformed)
covariates.

The residual error g(ξi, θi, σ)ϵi is normally distributed with ϵi ∼ N (0, Ini). The function g models the residual error,
and also depend on ξi and θi, and on some parameters denoted σ.

The P -vector of population parameters is denoted Ψ = {ν, λ}, where λ contains the variance parameters (elements of
Ω and of the residual error model σ).

2.2 Population Fisher Information Matrix computation with covariates
2.2.1 Fisher Information Matrix
For a given elementary design ξi and a given vector of covariates zi, the expected elementary Fisher information is defined
as the covariance matrix of the Fisher score (equation (4)) where l(yi; Ψ, zi, ξi) is the likelihood of the vector of observations
yi for the population parameters Ψ, given the individual vector of covariates zi and the elementary design ξi (equation (5)).

MF (ξi,Ψ, zi) = EΨ

(
∂ log l(yi; Ψ, zi, ξi)

∂Ψ

∂ log l(yi; Ψ, zi, ξi)

∂ΨT

)
(4)

l(yi; Ψ, zi, ξi) =

∫
p(yi | ηi; Ψ, zi, ξi)p(ηi; Ψ, zi)dηi (5)

If the log-likelihood is twice differentiable, the FIM can be computed as minus the expectation of the Hessian of the
log-likelihood (see equation (6)).

MF (ξi,Ψ, zi) = −EΨ

(
∂2 log l(yi; Ψ, zi, ξi)

∂Ψ2

)
(6)

To calculate the standard error of a vector of population parameters, the standard method in NLMEM is to use the
square root of the diagonal elements of the inverse of the FIM. According to the Rao-Cramer inequality, these values
constitute the lower bound of the standard errors of any unbiased estimator of the parameters. We therefore assume in
what follows that we are in asymptotic conditions and with an unbiased estimator such that: Ψ̂ ∼ N

(
Ψ,MF (ξi,Ψ, zi)

−1
)
.

2.2.2 Calculation by linearization
Due to the non-linearity of the structural model f with respect to θ, there is no analytical expression for l(yi; Ψ, zi, ξi).
The expression for MF (ξi,Ψ, zi) are usually developed using a first-order Taylor expansion of the structural model around
ϕi,0 = h(µ0, β0, zi), a guess value of the fixed effects associated with covariates zi, and a zero-order expansion of g [8] as
given in equation (7), where Jθf and Jϕh

−1 respectively denote the Jacobian matrix of f and h−1.

yi ≈ f(ξi, h
−1(ϕi,0))+Jθf

(
ξi, h

−1(ϕi,0)
)
Jϕh

−1(ϕi,0)(h(µ, β, zi)−ϕi,0)+Jθf
(
ξi, h

−1(ϕi,0)
)
Jϕh

−1(ϕi,0)ηi+diag
(
g(ξi, h

−1(ϕi,0), σ)
)
εi

(7)
Observations are thus approximated to normal variables, with mean Ei (ξi, ϕi,0, ν, zi) and variance-covariance matrix
Vi (ξi, ϕi,0,Ω, σ) given in equation (8). Ei (ξi, ϕi,0, ν, zi) = f(ξi, h

−1(ϕi,0)) + Jθf
(
ξi, h

−1(ϕi,0)
)
Jϕh

−1(ϕi,0)(h(µ, β, zi)− ϕi,0)

Vi (ξi, ϕi,0,Ω, σ) =
(
Jθf

(
ξi, h

−1(ϕi,0)
)
Jϕh

−1(ϕi,0)
)T

Ω
(
Jθf

(
ξi, h

−1(ϕi,0)
)
Jϕh

−1(ϕi,0)
)
+ diag

(
g(ξi, h

−1(ϕi,0), σ)
)2
(8)

From this, the FIM is calculated as the FIM of the Gaussian vector obtained by approximation (see for example [18]).

2.2.3 Calculation with covariates
In previous expressions, MF (ξi,Ψ, zi) is a function of zi. There are two main cases. First, if the covariate vector is known
for each subject, MF (ξi,Ψ, zi) can be computed directly. Otherwise, zi must be considered as a random variable and
MF (ξi,Ψ) is compute as an integral with respect to pz, the distribution of the covariate vector as given in equation (9).

MF (ξi,Ψ) =

∫
MF (ξi,Ψ, zi)pz(zi)dzi (9)
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The population FIM of the design Ξ = {ξ1, . . . , ξN} writes as the sum of the FIM of the elementary designs (see
equation (10)).

MF (Ξ,Ψ) =

N∑
i=1

∫
MF (ξi,Ψ, zi)pz(zi)dzi (10)

To compute MF (Ξ,Ψ), a solution is to approximate it trough a Monte Carlo integration of the covariates as given in
equation (11).

MF (Ξ,Ψ) ≈
N∑
i=1

1

S

S∑
s=1

MF (ξi,Ψ, zi,s) where zi,s is drawn from pz (11)

This method allows to account for the dependence structure between the covariates. However, it raises the question of how
to draw the zi,s used to calculate the integral. In this work, three methods were explored. The first one is non-parametric
and consists in using an available dataset of covariate vectors, directly as a sample from the covariate distribution or as
a discrete distribution and sample from it. This approach allows to account for the correlations between the covariates.
Otherwise, vectors of covariates can be simulated using either a given probability distribution or a copula.

Copulas are cumulative distribution functions that capture the dependence structure between random variables and
are therefore of interest to simulate correlated covariates. The benefits of using copulas for patients simulation in the field
of pharmacometrics have already been demonstrated [20]. However, while the theory of copulas is well established for
continuous variables, the same cannot be said for discrete variables. For a discrete vector, a copula cannot be uniquely
identified and measures of dependence between variables become dependent on marginal laws. Methods for constructing
copulas with discrete variables have been proposed (see for instance Geenens [21] for a review), but are beyond the scope
of this work. In pharmacometrics, discrete covariates being in the vast majority of cases categorical covariates, we will
be able to circumvent this problem by working with a copula by categories/combination of categories in the presence of
several categorical covariates.

2.3 SE and ratio CI derivation from the FIM
Regarding covariate effects, the quantity of interest is often the ratio of change in primary parameters when covariate
values change relative to a reference value zref .

For categorical covariates, the expected ratio is calculated for the non-reference categories in relation to the reference
category. For instance, for a binary covariate zic with reference zic = zpop,c = 0, and non-reference zic = 1, the general
formula for the ratio on the lth parameter is given in equation (12).

rl,c =
h−1
l

(
hl(µl) + βl,c

)
µl

(12)

If hl(µl) = µl, the ratio writes rl,c =
µl + βl,c

µl
and if h(µl) = log µl, it writes rl,c = eβl,c .

For continuous covariates, the expected ratio is usually computed in the forest plot for the 10th and 90th percentiles
of the covariate distribution, respectively denoted P90 and P10, in relation to its median denoted P50, as given in
equation (13);

rl,c(PX) =
h−1
l

(
hl(µl) + βl,c (PX − zpop,c)

)
h−1
l

(
hl(µl) + βl,c (P50− zpop,c)

) where PX = P10 or PX = P90 (13)

For instance, if hl(µl) = µl, the ratio writes rl,c(PX) =
µl + βl,c (PX − zpop,c)

µl + βl,c (P50− zpop,c)
and if h(µl) = log µl, it writes rl,c(PX) =

eβl,c(PX−P50).
The predicted CI at level 1−α on a covariate parameter, assuming unbiased estimator, is β±q1−α/2SEβ , where q1−α/2

denotes the 1 − α/2-quantile of the normal distribution. Therefore, when the ratio is a monotonic transformation of the
covariate parameter only, the CI on the ratio can be easily derived. Otherwise, an approximation by the Delta method
can be considered to also take into account the uncertainty on the typical value µ. For more complex cases, in particular
to calculate the uncertainty of the ratio on secondary parameters such as AUC or Cmax, which depend on several model
parameters, stochastic simulations can be carried out by sampling from a multivariate-normal centered on the parameter
values and with variance-covariance matrix derived from the FIM. Details are for instance provided in Philipp et al. [22]
and Guhl et al. [23].

In case of log-normally distributed parameter with additive covariate relationships on the log-scale, if zi,c is binary:
CI (rl,c) = e

βl,c±q1−α/2SEβl,c , and if zi,c is continuous: CI
(
rl,c(PX)

)
= e

(
βl,c±q1−α/2SEβl,c

)
(PX−P50).

2.4 Power of tests and Number of subjects needed
2.4.1 Significance test
The statistical significance of a covariate parameter is assessed by a Wald test of comparison with null hypothesis H0 :
βl,c = 0 and alternative hypothesis H1 : βl,c ̸= 0. The power of the significance test, Psign, at level 1 − α is given in
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equation (14). The detailed power calculation is presented in the Supplementary A.1.

Psign = 1− Φ(q1−α/2 −
βl,c

SEβl,c
) + Φ(−q1−α/2 −

βl,c
SEβl,c

) (14)

The number of subjects needed, NSN , to achieve a given power Psign in significance test is given in equation (15).

NSN (Psign) = N ×
(

SEβl,c
SENsign (Psign)

)2

where SENsign (Psign)


βl,c

q1−α/2 − Φ−1 (1− Psign)
if βl,c > 0

− βl,c
q1−α/2 +Φ−1 (Psign)

if βl,c < 0
(15)

2.4.2 Relevance test
The relevance of a covariate effect is assessed by a TOST procedure at level α, which is equivalent to the confidence interval
approach with a 1− 2α CI [5].

The null hypothesis is H0: ”the covariate effect is not relevant”, i.e. rl,c(PX) ∈ [Rinf ;Rsup] while the alternative
hypothesis is H1: ”the covariate is relevant”, i.e. rl,c(PX) /∈ [Rinf ;Rsup]. This two sided null hypothesis can be split into
two, respectively H0,inf and H0,sup :{

H0,inf : rl,c(PX) ≥ Rinf and H0,sup : rl,c(PX) ≤ Rsup

H1 : rl,c(PX) < Rinf or rl,c(PX) > Rsup

Thus H0 is not rejected unless neither H0,inf nor H0,sup is rejected.
For log-normally distributed parameter with additive covariate relationships on the log-scale, the ratio writes rl,c(PX) =

eβl,c (z−zref ) , and at level 1−α, the null hypothesis is rejected if β̂l,c+ q1−αSEβl,c < Binf or if β̂l,c− q1−αSEβl,c > Bsup

where depending on the sign of z − zref , Bsup and Binf equal logRsup

z−zref
or logRinf

z−zref
.

The power is the probability under H1 to reject H0, it is given by the equation (16). The detailed calculations are
presented in the Supplementary A.1.

Prelev = Φ

(
−q1−α +

Binf − βl,c
SEβl,c

)
+ 1− Φ

(
q1−α +

Bsup − βl,c
SEβl,c

)
(16)

The number of subjects needed NSN to achieve a given power Prelev in relevance test is given in equation (17).

NSN (Prelev) = N ×
(

SEβ
SENrelev (Prelev)

)2

where SENrelev (Prelev)


Bsup − βl,c

Φ−1 (1− Prelev)− q1−α
if Binf < βl,c

Binf − βl,c
Φ−1 (Prelev) + q1−α

if Bsup > βl,c
(17)

3 Evaluation by simulations
In this section, we implemented the methodology for computing the FIM using a simple PK model. Subsequently, we
compared the predictions derived from this method with results from CTS. This comparison focuses on the uncertainty
associated with covariate effects and their corresponding ratios, as well as the power of tests for both statistical significance
and relevance.

3.1 Settings
3.1.1 Data
The evaluation framework was inspired by a case study from the University of Maryland [24]. The data are from a double
blind, parallel, single dose intravenous (IV) bolus trial, in which N = 100 patients were randomized equally in two arms
receiving respectively 100 mg and 250 mg of drug. Concentration measurements from blood samples were collected at 16
times points (0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 16, 20 and 24 hours post-dose). This design is hereafter
referred as Design 1. Covariates were Age, Weight, creatinine clearance (CLCR) and Sex, with a 0.82 correlation between
Weight and CLCR. Only the covariate data were used in the following.

3.1.2 Model
The PK model was a one compartment model with IV bolus and linear elimination, f(t) = Dose

V
e−

Cl
V
t, with two parameters:

the clearance (Cl) and the volume of distribution (V ). The residual error was modeled as a combined error model:
g = a + bf . Continuous covariates CLCR and Weight were first log-transformed, and effects of logCLCR on Cl and

5

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.16.24314758doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.16.24314758
http://creativecommons.org/licenses/by-nc/4.0/


FIM to predict uncertainty in covariate effects and power to detect their relevance Fayette et al.

Table 1: Evaluation - Population PK parameter values
Parameter µCl (L/h) µV (L) ωCl ωV a (mg/L) b βCl,CLCR βV,Weight βV,Sex

Value 0.43 7.13 0.30 0.24 2.39 0.08 0.87 1.0 -0.35

Ratio rCl,CLCR (P10) rCl,CLCR (P90) rV,Weight (P10) rV,Weight (P90) rV,Sex
Value 0.62 1.66 0.65 1.44 0.70

µ.: refers to the typical value, β.: covariate parameter, ω: standard deviation of the random effect, rl,c: ratio on the parameter l for the covariate c

logWeight and Sex on V were modeled as additive on the log-scale, as shown in equation (18) where ηCl,i ∼ N
(
0, ω2

Cl

)
and ηV,i ∼ N

(
0, ω2

V

)
and with Sexi = 0 if the ith subject is a Male and 1 otherwise.

logCli = log µCl + βCl,CLCR log

(
CLCRi
CLCRpop

)
+ ηCl,i where CLCRpop =

(∏
i CLCRi

) 1
N

log Vi = log µV + βV,Weight log

(
Weighti
Weightpop

)
+ βV,SexSexi + ηV,i where Weightpop =

(∏
iWeighti

) 1
N

(18)

The PK parameter value used were the estimated values for a model without Sex effect on the initial dataset and are
given in Table 1. Sex effect on V was arbitrarily set to βV,Sex = −0.35. The ratio values corresponding to the covariate
parameters are also given in Table 1. It should be noted that all the covariate effects considered were statistically significant
and clinically relevant.

3.1.3 Scenarios
Concentration evolution was studied in the reference scenario and in three other scenarios chosen to be more challenging.
Those 4 different scenarios are obtained combining two design options and two variances options for random effects. Design
1 is the initial design of the study, and is composed of N = 100 subjects, divided equally between the 100 mg and 250
mg arms, with 16 sampling time points from 0.25 to 24h post dose. Design 2 is composed of N = 24 subjects only, also
divided equally between the 100 mg and 250 mg arms, with 3 time points at 1, 4 and 12h post dose. For the variance,
the first option, called True Omega keep the values ωCl and ωV given in Table 1, while the second, called High Omega,
doubled these standard deviations.

3.2 Prediction from FIM
The PFIM6 source code has been extended in a working version to take account of both discrete and continuous covariates.

The FIM was computed by linearization of the structural model with first-order approximation and the three methods
to handle covariates were considered. The first one used the 100 covariate vectors from the data: in the 4 scenarios, the FIM
is computed with S = 100 by computing the elementary FIM for each of the vectors. The other two methods simulated
Z1, . . . , ZS with S = 1000 covariate vectors, using either independent distributions fitted on the data, namely independent
Gaussian distributions for continuous covariates and Bernoulli distribution for discrete covariates, or two copulas fitted on
the covariate table, one for each sex. Vine copula were fitted using the R package rvinecopulib0.6.3.1.1 [25] and the code
made available by other researchers at https://github.com/vanhasseltlab/copula_vps [zwep2022virtual].

The Figure 4 given in appendix shows the fitted joint distribution of log
(

CLCRi
CLCRpop

)
and log

(
Weighti
Weightpop

)
for Males

and Females, with the Independent Gaussian approach and with Copulas. As expected, regarding marginal densities, the
two methods give similar distributions while only Copulas can capture the correlation between the two covariates very
precisely.

The predicted SE were computed as the square root of the diagonal elements of the FIM and used to computed the

predicted NSE=RSE on the parameters: NSEPFIM (ψ0) = 100
SEPFIM

ψ0
. The predicted 90% CI on the ratios were also

derived, as described in 2.3. The predicted power of significance test at level 95% and power of relevance test for the
interval [0.80; 1.25] were calculated, as given in equations (14) and (16).

All other things being identical (i.e., same sampling scheme, same dosing and same covariate distributions), PFIM was
also used to compute the power of comparison and relevance tests, for the simulation value βCl,CLCR = 0.87 (corresponding
to the ratio rCl,CLCR (P10) = 0.62) as a function of N , for a smaller effect βCl,CLCR = 0.66 (rCl,CLCR (P10) = 0.70) and
for a stronger effect βCl,CLCR = 1.3 (rCl,CLCR (P10) = 0.50).

3.3 Simulation
The same scenarios were explored by CTS in order to compare the estimates with the FIM predictions.
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3.3.1 Implementation
S = 200 datasets were simulated with R. For each subject, covariates were kept, and random effects on Cl and V , namely
ηCl,i, ηV,i, and the residual error ϵi were simulated.

3.3.2 Estimations
Estimations were performed using SAEM algorithm implemented in Monolix 2023R1 [26], with default settings regarding
auto-stop criteria, number of iterations, number of chains, and simulated annealing. Starting points were set to the
simulation values for the base parameters and to 0 for the covariate effects. The expected FIM was computed within
Monolix, by linearization around the Empirical Bayes Estimates (EBE) of the individual parameters.

The accuracy of parameter estimates was assessed by computing the relative estimation errors (REE) and by evaluating
the Relative Bias (RB) and the Relative Root Mean Square Error (RRMSE) according to equation (19), where ψ̂ and ψ0

are the estimated and simulated parameters, respectively.

RB =
1

S

S∑
s=1

REEs where REEs =
ψ̂s − ψ0

ψ0
× 100 RRMSE =

√√√√ 1

S

S∑
s=1

(REEs)
2 (19)

For each dataset, estimated SE, SEestims , were calculated using the inverse of the expected FIM obtained by lineariza-

tion. SEestims were normalized with respect to the true value ψ0 used for simulation: NSEestims (ψ0) = 100
SEestims

ψ0
.

The Empirical normalized SE across the datasets, NSE(ψ0)
emp were also computed as the mean of the normalized SE.

Estimated RSE, RSEestims , were computed: RSEestims = 100
SEestims

ψ̂s
and the Empirical RSE RSEempψ across the

datasets were computed as the mean of the estimated RSE.
Ratio and their 90% CI were computed using the point estimates β̂s and the SEestims .
Comparison test and relevance test were performed for each of the covariate effect. For the comparison test, the null

hypothesis was rejected if | β̂

SEestims

| ≥ q1−α/2 with α = 0.05. For the relevance test, the null hypothesis was rejected if
the 90%CI on the ratio was outside [0.80; 1.25].

3.4 Evaluation methods
RSE predicted with PFIM were compared to median and quantiles of estimated NSE and RSE. Predicted CI on ratios
were compared to median and quantiles of estimated bounds of CI on ratio. Predicted Powers were compared to mean
and 95% CI on mean of estimated powers.

3.5 Results
3.5.1 Estimation accuracy
In the 4 scenarios, all covariate parameter estimates were unbiased, see Figure 5 in the Supplementary, where REE
boxplots were centered on 0. With Design 2 (i.e., fewer subjects and sparser observations), variance parameters had small
negative bias (with True Omega, RB(ωCl) = −20.1% and RB(ωV ) = −9.99%; with High Omega, RB(ωCl) = −11.5% and
RB(ωV ) = −9.31%).

3.5.2 Uncertainty evaluation
Uncertainty was well predicted with PFIM, see Figure 6 in the Supplementary. Indeed, the three methods for handling
covariates in the FIM gave similar results, as in all the scenarios and for almost all parameters, PFIM predictions were
very close to empirical NSE and RSE.

With Design 1, for both True Omega and High Omega, SE were very well predicted by PFIM. Of note, with High
Omega the empirical RSE for βV,SEX was slightly larger that PFIM prediction and empirical NSE.

With Design 2, estimated RSE showed a large variability and because of few extreme values, the empirical RSE for
some parameters were quite larger that the median RSE which remained close to the empirical NSE. With Design 2 and
both True Omega and High Omega, SE were overpredicted for the residual error parameters compared to the empirical
NSE but were smaller than the empirical RSE. For covariate parameters, PFIM predictions were in accordance with
empirical NSE for the covariate effects. We can note that PFIM prediction for SE on βV,SEX were slightly higher than
the empirical NSE and the median RSE.

3.5.3 Forest plots
Forest plots are shown on Figure 1, with PFIM predictions according to the three methods for handling covariates in
green. The distributions of the estimated ratios are shown in red boxplots while the estimated bounds of the 90% CI on
the ratios are shown in purple boxplots.
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Design 1 (N = 100 /n = 16) Design 2 (N = 24 / n = 3)

True Omega

High Omega

PFIM predictions:

Data
Independant Distribution
Copula

Simulation results:

Ratio
Bounds on ratio’s 90% CI

Ratio

Figure 1: Evaluation - Forest Plots for the 4 scenarios: PFIM predictions using the three methods for handling covariates
and simulation results across 200 datasets
The red line at 1 corresponds to the reference line i.e., no change from the typical individual; the shaded area in blue represents the reference area of
[0.80, 1.25].
The boxplot displays the median, the 25th and 75th percentiles, while the whiskers are 5th and 95th percentiles.

The confidence intervals for the ratios were overall well predicted for all the ratios, as the bounds of predicted CI were
always very close to the median of the estimated bounds.

With Design 1 and True Omega, all the ratios were predicted relevant. When increasing IIV to High Omega, the CI
of Sex effect on V crossed the [0.80; 1.25] area, so one cannot conclude to relevance.

In accordance with the slightly overprediction of SE on βV,Sex, it can be noted that with Design 2, the predicted CI
on the ratio of Sex effect on V was larger than the CI formed by the respective median of the estimated lower and higher
bounds of the 90%CI. In Design 2, the CI of the effect of the 90th percentile of CLCR and Weight, respectively on Cl
and V were slightly larger than the estimated CI.

With Design 2 and True Omega, only the CI of Sex effect on V crossed the [0.80; 1.25], therefore the effects of CLCR
on Cl and Weight on V were predicted relevant for the two percentiles. When increasing IIV to High Omega, none of the
parameter was predicted relevant.

3.5.4 Power
Significance test For the 4 scenarios, the predicted power for significance test derived from the SE computed from
the FIM and the estimated power computed as the mean of the rejection of the null hypothesis across the datasets are
shown in Table 2.

First, as the SE were very close between the three methods for handling the covariates in the FIM computation, the
powers were also the same for the three approaches.

With Design 1 and True Omega, comparison test on all the β parameters were predicted to 1 and estimated to 1 by
CTS. Thus PFIM predictions were right.

With Design 1 and High Omega, power were very slightly overperdicted for βCl,CLCR and βV,Weight, with estimated
95% CI being respectively [0.90; 0.97] and [0.94; 0.99] and predictions being 0.99 and 1. For βV,Sex, the estimated power
was 0.72 and FIM prediction was 0.69, thus lying in the estimated power’s 95% CI which was [0.65; 0.78].

With Design 2 (i.e., fewer subjects and sparser observations), PFIM prediction were very close to the estimated power
and always within its 95% CI in case of both True Omega and High Omega.

Relevance test For the 4 scenarios, the predicted power for relevance test derived from the SE computed from the
FIM and the estimated power computed as the mean of the rejection of the null hypothesis across the datasets are shown
in Table 3.

As for significance test, with Design 1 and True Omega, power of relevance tests were close to 1 and well predicted
for effects of CLCR on Cl and Weight on V . For Sex effect on V , PFIM prediction 0.66 lied within the 95% CI of the
estimated power [0.61; 0.74].
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Table 2: Evaluation - Power of significance test for the 4 scenarios: estimated power and its 95% CI across 200 datasets and
PFIM prediction with the three methods for handling covariates

Design 1 (N = 100 / n = 16) Design 2 (N = 24 / n = 3)
PFIM PFIM

Parameter Value Estimated Data Distributions Copula Estimated Data Distributions Copula

True Omega
βCl,CLCR 0.87 1.00 [0.98; 1.00] 1.00 1.00 1.00 0.94 [0.90; 0.97] 0.99 0.98 0.99
βV,Weight 1.0 1.00 [0.98; 1.00] 1.00 1.00 1.00 0.98 [0.94; 0.99] 1.00 1.00 1.00
βV,Sex -0.35 1.00 [0.98; 1.00] 1.00 1.00 1.00 0.72 [0.65; 0.78] 0.69 0.69 0.69

βCl,CLCR 0.87 1.00 [0.98; 1.00] 1.00 1.00 1.00 0.74 [0.68; 0.80] 0.80 0.78 0.79
βV,Weight 1.0 1.00 [0.98; 1.00] 1.00 1.00 1.00 0.69 [0.62; 0.75] 0.72 0.74 0.71High Omega
βV,Sex -0.35 0.84 [0.78; 0.89] 0.82 0.82 0.82 0.32 [0.26; 0.39] 0.27 0.28 0.27

Table 3: Evaluation - Power of relevance test for the interval [0.8, 1.25] for the 4 scenarios: estimated power and its 95% CI
across 200 datasets and PFIM prediction with the three methods for handling covariates

Design 1 (N = 100 / n = 16) Design 2 (N = 24 / n = 3)
PFIM PFIM

Parameter Ratio Estimated Data Distributions Copula Estimated Data Distributions Copula

True Omega

Cl, CLCR (P10) 0.62 1.00 [0.98; 1.00] 1.00 1.00 1.00 0.71 [0.64; 0.77] 0.72 0.68 0.72
Cl, CLCR (P90) 1.66 1.00 [0.98; 1.00] 1.00 1.00 1.00 0.74 [0.68; 0.80] 0.76 0.72 0.76
V , Weight (P10) 0.65 1.00 [0.98; 1.00] 1.00 1.00 1.00 0.59 [0.52; 0.66] 0.68 0.69 0.68
V , Weight (P90) 1.44 0.99 [0.96; 1.00] 0.99 0.99 0.99 0.46 [0.39; 0.53] 0.54 0.55 0.54

V , Sex 0.70 0.68 [0.61; 0.74] 0.65 0.66 0.65 0.30 [0.23; 0.36] 0.22 0.23 0.22
Cl, CLCR (P10) 0.62 0.94 [0.90; 0.97] 0.97 0.97 0.97 0.44 [0.37; 0.51] 0.44 0.42 0.43
Cl, CLCR (P90) 1.66 0.98 [0.94; 0.99] 0.98 0.98 0.98 0.46 [0.39; 0.53] 0.47 0.45 0.46
V , Weight (P10) 0.65 0.73 [0.66; 0.79] 0.81 0.82 0.80 0.38 [0.32; 0.46] 0.32 0.33 0.32
V , Weight (P90) 1.44 0.60 [0.52; 0.66] 0.67 0.68 0.66 0.32 [0.26; 0.39] 0.25 0.26 0.25

High Omega

V , Sex 0.70 0.30 [0.24; 0.37] 0.27 0.27 0.27 0.15 [0.10; 0.21] 0.12 0.12 0.12

With Design 1 and High Omega, power of relevance tests were well predicted for effects of CLCR on Cl and slightly
overpredicted for effect of Weight on V (respectively predicted at 0.68 with upper bound of the 95% CI at 0.66 for P10
and predicted at 0.54 with upper bound at 0.53 for P90). For Sex effect on V , PFIM prediction 0.22 was slightly below
the 95% CI of the estimated power [0.23; 0.36].

Similarly, with Design 2 and True Omega, power of relevance tests were well predicted for effects of CLCR on Cl and
Sex effect on V but slightly overpredicted for effect of Weight on V (respectively predicted at 0.81 with upper bound of
the 95% CI at 0.79 for P10 and predicted at 0.67 with upper bound at 0.66 for P90).

With Design 2 and High Omega, power of relevance test were well predicted for all the parameters, just slightly
underpredicted at 0.25 for Weight on V P90 while the lower bound of the observed CI was 0.26.

Overall, we can conclude that the FIM predictions were very satisfactory.

Evolution of power of test Another important result from this methodology is being able to compute the power of
tests depending on covariate effect magnitude, sample size, design or IIV. Thus is given on Figure 2 the power of significance
test on βCl,CLCR and the power of relevance test for effect of CLCR (P10) on Cl, as function of N for different values of
βCl,CLCR, sampling schemes from Design 1 and 2 and IIV setting to True Omega or High Omega.

The first foreseeable result shown by this plot is that the smaller the covariate effect, the smaller the powers of tests,
which led to a higher number of subjects needed to achieve a given level of power. In addition, with sparser design (shown
in red) the power of tests were always smaller than with rich design (shown in blue). The larger the IIV on parameters
(dashed line), the lower the power of tests. We can also note that in this example, the variability had a greater impact
than design, as switching from rich design with True Omega (blue plain line) to rich design with High Omega (blue dashed
line) decreased power of both tests more than switching to sparse design with True Omega (red plain line).
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Figure 2: Evaluation - Predicted Power of significance test on βCl,CLCR and Power of relevance test for effect of CLCR
(P10) on Cl for the interval [0.80; 1.25], as function of N and for different values of βCl,CLCR: PFIM predictions using Data
method.

4 Application to a population PK example of cabozantinib
In this section, the aim was to validate the method to compute the FIM for model with continuous and/or discrete
covariates, in a more complex set up in terms of PK model and covariate structure.

This study was inspired from a real population PK analysis [19] performed on 10 clinical trials in healthy volunteers and
patients with various cancer types receiving cabozantinib daily. The original data included 9510 quantifiable cabozantinib
concentrations from 2023 subjects. The table of covariate vectors from this analysis were used in the present work.

4.1 Settings
4.1.1 Covariate Data
The covariate data are pooled from the 10 clinical studies analysed in the original article. A summary is given in Table 4.
Continuous covariates were Dose, Age, and Weight, while categorical covariates were Sex, Race, Population category and
Formulation. It should be noted that certain categories are under-represented: for Race, only 10% of patients are Asian
and only 3% Black and 2% from other race; and for pathology, only 10% of patients suffer from Metastatic medullary
thyroid cancer (MTC) and 2% from Glioblastoma multiforme (GB). The baselines values from the 2023 subjects were
used.

4.1.2 Design
The studied design, given in Table 8 in the Supplementary, corresponded to the theoretical sampling designs of the 10
clinical trials analysed in the original article, associated with the number of included subjects and their doses. Three trials
were phase I studies, with therefore few subjects (between 40 and 70) but with rich observations (up to 43 sampling points
per subjects). Data also included two phase II studies with more balance between subjects and observations, and finally
five phase III studies, with much more subjects (up to 498) but much sparser design with generally two to three samplings
per subjects. In total, the studied design included 11621 observations from 2023 subjects.

4.1.3 Model
For illustrative purposes and due to the current limitations of the PFIM package, the initial model [19] was simplified
into a two-compartment model, with a first-order absorption discarding the dual absorption process, the presence of a lag
time and a correlation between random effects. The analytical solution for the concentration in the central compartment
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Table 4: Application - Covariates summary, data pooled from the 10 clinical studies analysed in Nguyen et al.[19] combining
2023 subjects

Continuous covariates P50 [P10; P90]
Age 64 [44; 76]

Weight 78 [58; 101]
Dose 60 [44; 140]

Categorical Covariates N (%)
Sex Male 1706 (84%)

Female 317 (16%)
Race White 1712 (85%)

Black 53 (3%)
Asian 211 (10%)

OtherRace 47 (2%)
Pathology Healthy volunteers 140 (7%)

CRPC 823 (41%)
RCC 282 (14%)
MTC 210 (10%)
GB 39 (2%)

HCC 489 (24%)
OtherMalign 40 (2%)

Formulation Tablet 1375 (68%)
CAP 648 (32%)

P50: indicates the median, P10: the 10th percentile, P90: the 90th percentile, N : the number of subjects
CRPC: Castration-resistant prostate cancer, RCC: Renal cell carcinoma, MTC: Metastatic medullary thyroid cancer, GB: Glioblastoma multiforme, HCC:
Hepatocellular carcinoma, OtherMalign: other malignancy, CAP: Capsule formulation

is given in equation (20), where Ka is absorption rate constant, Q/F the apparent flow parameter between compartments,
Vc/F the apparent distribution volume of the central compartment and Vp/F the apparent distribution volume of the
peripheral compartment.

f(t) =
1

α− β

Ka

Vc
F Dose

((Q/Vp − α

Ka− α
+
β −Q/Vp
Ka− β

)
e−Kat − Q/Vp − α

Ka− α
e−αt − β −Q/Vp

Ka− β
e−βt

)
where:

β =
1

2

((
Q+ Cl

Vc
+
Q

Vp

)
−

√(
Q+ Cl

Vc
+
Q

Vp

)2

− 4
ClQ

VpVc

)
α =

QCl

VpVc
β

(20)

The model included log-normally distributed IIV on all the PK parameters; i.e., on Ka, F, Cl, Vc, Q and Vp. The
residual variability is modeled using a proportional error model with variance σ2 i.e.g = σf .

All the covariate relationships of the initial model have been reproduced. It should be noted, however, that the initial
covariate model was built without selection, notably with the same covariates affecting both Cl and Vc, and that as a
result, some covariate parameters values are very small and/or estimated with very wide confidence intervals leading to
non statistically significant covariate effects. This is particularly true for the effects of categorical covariates for which the
non-reference categories are very poorly represented (e.g. MTC patients represent 10% of the total population and GB
only 2%).

Three continuous covariates were included in the model: Dose, Age and Weight. They were normalised by a reference
value and log-transformed, as given in equation (21).

log

(
Dose

40

)
log

(
Age

60

)
log

(
Weight

80

)
(21)

Tow binary covariates were included: Sex and Formulation, with the following definitions: Sex equals 0 if the subject
is a Male (reference) and 1 otherwise and CAP equals 0 if the subject received a tablet formulation (reference), and 1 if
the subject received a capsule formulation.

The categorical covariates included in the model were Race: White, Black, Asian or other race and Pathology: Healthy
volunteers, Castration-resistant prostate cancer (CRPC), Renal cell carcinoma (RCC), Metastatic medullary thyroid
cancer (MTC), Glioblastoma multiforme (GB), Hepatocellular carcinoma (HCC) and other malignancy (OtherMalign).
These categorical covariates were converted into binary covariates by coding each category other than the reference as a
separate binary variable, with 1 coding the corresponding category and 0 all others. Thus, for Race the reference was
White and the categorical covariate was transformed to 3 binary covariates, respectively Black, Asian and OtherRace.
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Table 5: Application - Parameter Values taken from Nguyen et al.[19] and used in the present work
Base parameters

Parameter µKa (h−1) µCl/F (L/h) µQ/F (L/h) µVc/F (L) µVp/F (L) µF ωka ωF ωCL/F ωVc/F ωQ/F ωVp/F σ

Value 1.24 2.48 30 213 178 1.00 1.42 0.840 0.462 0.666 0.141 0.141 0.356

Covariate parameters
βKa,CAP βKa,LDose βF,CAP

-0.911 0.734 -0.166
βCl/F,Sex βCl/F,Black βCl/F,Asian βCl/F,OtherRace βCl/F,CRPC βCl/F,RCC βCl/F,MTC βCl/F,GB βCl/F,HCC βCl/F,OtherMalign

-0.274 0.162 -0.0668 0.0279 -0.0115 -0.139 0.643 0.178 -0.130 0.171
βCl/F,LAge βCl/F,LWeight

-0.157 -0.0393
βVc/F,Sex βVc/F,Black βVc/F,Asian βVc/F,OtherRace βVc/F,CRPC βVc/F,RCC βVc/F,MTC βVc/F,GB βVc/F,HCC βVc/F,OtherMalign

0.0939 0.0441 -0.363 -0.126 -0.297 -0.422 -0.0657 -0.735 -0.166 -0.272
βVc/F,LAge βVc/F,LWeight

0.0644 1.19

Ratios of covariate effects
rKa,CAP rKa,Dose (P10) rKa,Dose (P90) rF,CAP

0.402 0.788 1.84 0.847
rCl/F,Sex rCl/F,Black rCl/F,Asian rCl/F,OtherRace rCl/F,CRPC rCl/F,RCC rCl/F,MTC rCl/F,GB rCl/F,HCC rCl/F,OtherMalign

0.76 1.18 0.935 1.03 0.989 0.870 1.90 1.19 0.878 1.19
rCl/F,Age (P10) rCl/F,Age (P90) rCl/F,Weight (P10) rCl/F,Weight (P90)

1.06 0.973 1.01 0.99
rVc/F,Sex rVc/F,Black rVc/F,Asian rVc/F,OtherRace rVc/F,CRPC rVc/F,RCC rVc/F,MTC rVc/F,GB rVc/F,HCC rVc/F,OtherMalign

1.10 1.05 0.696 0.882 0.743 0.656 0.936 0.480 0.847 0.762
rVc/F,Age (P10) rVc/F,Age (P90) rVc/F,Weight (P10) rVc/F,Weight (P90)

0.976 1.01 0.703 1.37

Base parameters: refers to all model parameters except covariate effects
µ.: refers to the typical value, β.: covariate parameter, ω: standard deviation of the random effect
Ka: indicates absorption rate constant, Cl/F : the apparent clearance, Q/F : the apparent flow parameter between compartments, Vc/F : the apparent
distribution volume of the central compartment, Vp/F : the apparent distribution volume of the peripheral compartment
CRPC: Castration-resistant prostate cancer, RCC: Renal cell carcinoma, MTC: Metastatic medullary thyroid cancer, GB: Glioblastoma multiforme,
HCC: Hepatocellular carcinoma, OtherMalign: other malignancy, CAP : Capsule formulation

In the same way, for the Pathology, the reference was Healthy volunteers and 6 binary covariates were created: CRPC,
RCC, MTC, GB, HCC, OtherMalign.

The reference was a healthy white Male subject with a body Weight of 80 kg, 60 years of Age, receiving a 40-mg tablet
dose once daily.

The effects of the continuous covariates (Dose, Age and Weight) and of the binary covariates (Sex, CAP , Black,
Asian, OtherRace, CRPC, RCC, MTC, GB, HCC and OtherMalign ) were all additive on the logarithmic scale, as
given by equation (22), where βθ,z denotes the effect of covariate z on the parameter θ.

log θi = log µθ +
∑

z∈binary

(βθ,z × zi) +
∑

z∈continuous

(
βθ,z × log

(
zi
zpop

))
+ ηθ,i (22)

The model included effects of Dose and CAP on Ka, CAP on F and Age, Weight, Sex, Black, Asian, OtherRace,
CRPC, RCC, MTC, GB, HCC and OtherMalign on both Cl/F and Vc/F , which corresponded to 27 covariate effect
parameters.

The values used were taken from [19] and are given in Table 5. We can already notice that some of the covariate effects
were very small (e.g. βCl/F,Asian = −0.0668 corresponding to rCl/F,Asian = 0.94; βCl/F,CRPC = −0.0115 corresponding to
rCl/F,Asian = 0.99; βCl/F,Age = −0.157 corresponding to rCl/F,Age (P10) = 1.06 and rCl/F,Age (P90) = 0.97; βCl/F,Weight =
−0.0393 corresponding to rCl/F,Weight (P10) = 1.01 and rCl/F,Weight (P90) = 0.99; βVc/F,Black = 0.0441 corresponding to
rVc/F,Black = 1.05; βVc/F,MTC = −0.0657 corresponding to rVc/F,MTC = 0.94; and βVc/F,Age = 0.0644 corresponding to
rVc/F,Age (P10) = 0.98 and rVc/F,Age (P90) = 1.01). In addition, only a few relationships were relevant, in the sense that
their ratio was outside [0.80; 1.25], those relationships were the effects of CAP on Ka, both Dose (P10) and (P90) on Ka,
Sex on Cl/F , MTC on Cl/F , Asian on Vc/F , CRPC on Vc/F , GB on Vc/F , OtherMalign on Vc/F and both Weight
(P10) and (P90) on Vc/F , i.e. 11 ratios out of 32.

4.2 Prediction from FIM
Because the three methods for handling covariates have shown similar performances in the first simulation study (see
Section 3), only the Data method was kept. Thus, covariate were taken into account in the FIM computation through
the covariate dataset: for each study and each dose (i.e., for each elementary design), the covariate vectors of the subjects
corresponding to this elementary design were used.

As previously, from the predicted SE returned by PFIM, predicted NSE=RSE on the parameters were computed.
Afterwards, predicted 90% CI on the ratios were derived, such as predicted powers of significance and relevance tests for
the range [0.80; 1.25]. The number of subjects required to achieve 80% power, in the comparison test and the relevance
test respectively, was calculated when the current predicted power was greater than 50%. These NSN hold as long as
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all other things remains identical, i.e., with the same observation points, the same dosing schemes and the same covariate
distributions within the trial population.

4.3 Simulation
The same scenarios was explored by CTS in order to compare the estimates with the FIM predictions. S = 200 datasets
were simulated with the R API of Simulix [27] and using the initial covariate dataset.

4.3.1 Estimations
Estimations were performed using SAEM algorithm implemented in Monolix 2023R1 [26], with default settings regarding
auto-stop criteria, number of iterations, and Simulated annealing; and 5 Markov chains. The starting point were set to
the parameter values used for the simulation for the µ, ω and σ, and to 0 for the covariate effects β. µF was fixed to 1,
and IIV on Q and Vp were fixed to ω = 0.141.

The accuracy of parameter estimates was assessed by computing the REE, the RB and the RRMSE.
As detailed in the section 4, for each dataset, estimated NSE and RSE were computed for all the parameters and the

empirical NSE and RSE were secondly derived.
For each covariate parameter, significance test was performed through a Wald test of comparison with α = 0.05. Ratio

and their 90% CI were computed and relevance tests are performed for the interval [0.80; 1.25].

4.3.2 Evaluation methods
RSE predicted with PFIM were compared to median and quantiles of estimated NSE and RSE. Predicted CI on ratios
were compared to median and quantiles of estimated bounds of CI on ratio. Predicted Powers were compared to mean
and 95% CI on mean of estimated powers.

4.4 Results
4.4.1 Estimation accuracy
The distribution of REE for base parameters and ratios on covariate effects are given in the Supplementary, respectively
in Figures 7 and 8 and in Tables 9 and 10 assessing that parameters were overall accurately and precisely estimated.

Of note, some RRMSE were very large for covariate parameters: over 20% and up to more than 800% for very
small β (e.g. βCL,CRPC = −0.0115, RRMSE = 808%) and some biases over 10%, but one again for very small β (e.g.
βCL,CRPC = −0.0115, RB = −54.6%).

4.4.2 Uncertainty evaluation
Uncertainty was well predicted with PFIM, see Figure 9 in the Supplementary for base parameters and 10 for covariate
parameters. For base parameters, once again the Data method for handling covariates in the FIM gave SE predictions
close to empirical NSE and RSE, except for µQ, for which the predicted SE was 13.4% while the empirical NSE and
RSE were 10.3%.

For covariate parameters, we can first notice at first glance that the SE, both predicted and estimated, were on the
whole much larger than in the previous example, particularly for the effects of discrete covariates, some categories of which
were poorly represented in the dataset (e.g. Asian, OtherRace ). Indeed, for 12 covariate parameters out of 27 SE were
above 100 %, even reaching more than 800% for βVc/F,Black and βCl/F,CRCP , recalling that those effects were very small,
βVc/F,Black = 0.0441 and βCl/F,CRCP = −0.0115 and that they were only 53 Black subjects (3%). In addition, there was a
large uncertainty in empirical RSE and for 21 parameters out of 27, the empirical RSE was much larger than the median
of estimated RSE. This is because the covariate parameters can be estimated very close to zero, which leads to a very
high quantity when they are used as the denominator in a calculation. Nonetheless, for all the covariate parameters, PFIM
prediction remained very close to the empirical NSE, and if there were differences, the orders of magnitude were always
the same.

4.4.3 Forest plots
Forest plots are shown on Figure 3, with PFIM predictions according to the Data method for handling covariates in green.
The distributions of the estimated ratios are shown in red boxplots while the estimated bounds of the 90% CI on the ratios
are shown in purple boxplots.

As in the previous example, confidence intervals for the ratios were overall well predicted, even though there was an
overall tendency for the upper bound of the interval to be slightly underpredicted. This can be explained if the covariate
parameter was estimated with a slight bias leading to a slight bias on the ratio (which can be seen on the forest plot) and
if SEβ ≈ ˆSEβ . Then multiplying the ratio with eq1−α/2SEβ > 0 for computing the upper bound of the confidence interval
inflated the bias between the predicted bound and the estimated bound. For instance, for effect of GB on Cl/F , bias on
βCl/F,GB was 7.73% and FIM prediction for the SE was very close to the median RSE which led to a higher estimated
bound for the CI on the ratio.
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On the contrary, for Vc/F , RCC, the predicted upper bound on the CI was higher than the estimated median because of
the difference between the predicted SE 242% higher than the median RSE: 192%. However, for such large uncertainties,
this was still equivalent.

In this example, with the given design, very few covariate effects were relevant for the interval [0.80, 1.25]. According
to PFIM prediction, the effects of CAP on Ka; Dose (P90) on Ka, and MTC on Cl/F were relevant. This also shows
that the covariate may be relevant for certain percentiles only.
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Figure 3: Application - Forest Plot: Ratios and their Confidence intervals: PFIM predictions using Data method for handling
covariate and simulation results across 200 datasets
The red line at 1 corresponds to the reference line i.e., no change from the typical individual; the shaded area in blue represents the reference area of
[0.80, 1.25].
The boxplot displays the median, the 25th and 75th percentiles, while the whiskers are 5th and 95th percentiles.
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4.4.4 Power
Significance test The predicted power for significance test derived from the SE computed from the FIM and the
estimated power are shown in Table 6. PFIM predictions were very good, as lying in the 95% CI of the estimated power
for 22 parameters out of 27. For βCl/F,OtherRace and βVc/F,Sex, the prediction was slightly below the CI; for βVc/F,CRPC

and βVc/F,RCC the prediction was slightly above while for βVc/F,GB it was above: 0.25 against [0; 0.03]. This results comes
from the bias in the ratio visible on the forest plot were the median of the estimated ratio is higher than the true value,
and from the SE that was slightly under predicted: 77.0%, compared to empirical NSE 89.2% and median RSE 82.7%.
However, it should be remembered that only 39 subjects (2%) were GB, which explains the difficulties in estimating this
parameter.

The NSN to achieve a power of 80% was computed for covariate parameters for which the power of significance was
already above 50% with the 2023 subjects. Only 6 covariate parameters matched this criteria: βKa,CAP , βKa,Dose, βF,CAP ,
βCl/F,Sex, βCl,MTC and βVc/F,Weight, with respective powers even above 80%, therefore the NSN to reach a power of
80% were smaller than 2023. All other things being identical (i.e., same sampling scheme, same dosing and same covariate
distributions), for instance only 409 subjects would have been enough to conclude statistical significance for βCl/F,MTC .
As 10% of the initial population were MTC patients, this would roughly correspond to 41 MTC patients and 369 patients
from other categories, respecting their initial proportions.

Relevance test The predicted power for relevance test derived from the SE computed from the FIM and the estimated
power are shown in Table 7. PFIM predictions were overall slightly higher than what was really observed.

The NSN to achieve a power of 80% was computed for the ratios for which the power of relevance was already above
50% with the 2023 subjects, i.e., the effects of CAP on Ka; Dose (P90) on Ka, and MTC on Cl/F .

For the effects of CAP and Dose (P90) on Ka relevance power were respectively 77% and 78% and the NSN to reach
80% were respectively 2 228 and 2 598. Thus, all other things being identical, just over 600 additional subjects would
have been needed to conclude that Ka, CAP and Ka and Dose (P90) were relevant, with a power of 80%. MTC having
a strong effect on Cl/F (rCl/F,MTC = 1.90), the power of relevance was 99% and all other things being identical the level
80% would have been reached for only 756 subjects (including 10% of MTC).
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Table 6: Application - Significance test: estimated power (with 95% CI) across 200 datasets, each including 2023 subjects,
PFIM predicted power and number of subjects needed NSN to achieve a 80% power using the Data method

Parameter Value Estimated PFIM NSN
βKa,CAP -0.911 0.88 [0.83; 0.92] 0.88 1 612
βKa,Dose 0.734 0.94 [0.90; 0.97] 0.93 1 331
βF,CAP -0.166 0.78 [0.72; 0.84] 0.79 2 090
βCl/F,Sex -0.274 0.99 [0.96; 1.00] 0.99 845
βCl/F,Black 0.162 0.23 [0.18; 0.30] 0.23
βCl/F,Asian -0.0668 0.18 [0.13; 0.24] 0.13

βCl/F,OtherRace 0.0279 0.07 [0.04; 0.12] 0.05
βCl/F,CRPC -0.0115 0.03 [0.01; 0.06] 0.05
βCl/F,RCC -0.139 0.20 [0.14; 0.26] 0.22
βCl/F,MTC 0.643 1.00 [0.98; 1.00] 1.00 409
βCl/F,GB 0.178 0.22 [0.17; 0.29] 0.17
βCl/F,HCC -0.13 0.22 [0.16; 0.28] 0.22

βCl/F,OtherMalign 0.171 0.23 [0.18; 0.30] 0.20
βCl/F,Age -0.157 0.30 [0.24; 0.37] 0.32

βCl/F,Weight -0.0393 0.05 [0.02; 0.09] 0.06
βVc/F,Sex 0.0939 0.18 [0.13; 0.25] 0.12
βVc/F,Black 0.0441 0.06 [0.03; 0.10] 0.05
βVc/F,Asian -0.363 0.14 [0.09; 0.19] 0.19

βVc/F,OtherRace -0.126 0.09 [0.05; 0.14] 0.06
βVc/F,CRPC -0.297 0.05 [0.02; 0.09] 0.12
βVc/F,RCC -0.422 0.01 [0.00; 0.04] 0.07
βVc/F,MTC -0.0657 0.06 [0.03; 0.10] 0.07
βVc/F,GB -0.735 0.00 [0.00; 0.03] 0.25
βVc/F,HCC -0.166 0.06 [0.03; 0.10] 0.09

βVc/F,OtherMalign -0.272 0.18 [0.13; 0.24] 0.20
βVc/F,Age 0.0644 0.08 [0.05; 0.13] 0.06

βVc/F,Weight 1.19 1.00 [0.98; 1.00] 0.99 870
CRPC: indicates Castration-resistant prostate cancer, RCC: Renal cell carcinoma, MTC: Metastatic medullary thyroid cancer, GB: Glioblastoma
multiforme, HCC: Hepatocellular carcinoma, OtherMalign: other malignancy, CAP: Capsule formulation

17

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.16.24314758doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.16.24314758
http://creativecommons.org/licenses/by-nc/4.0/


FIM to predict uncertainty in covariate effects and power to detect their relevance Fayette et al.

Table 7: Application - Relevance test: estimated power (with 95% CI) across 200 datasets, each including 2023 subjects,
PFIM predicted power and number of subjects needed NSN to achieve a 80% power using the Data method

Parameter Ratio Estimated PFIM NSN
Ka, CAP 0.40 0.66 [0.58; 0.72] 0.77 2 228

Ka, Dose (P10) 0.79 0.02 [0.01; 0.05] 0.08
Ka, Dose (P90) 1.84 0.62 [0.55; 0.69] 0.71 2 598

F , CAP 0.85 0.00 [0.00; 0.02] 0.00
Cl/F , Sex 0.76 0.09 [0.05; 0.14] 0.20
Cl/F , Black 1.18 0.01 [0.00; 0.04] 0.02
Cl/F , Asian 0.94 0.00 [0.00; 0.02] 0.00

Cl/F , OtherRace 1.03 0.01 [0.00; 0.04] 0.00
Cl/F , CRPC 0.99 0.00 [0.00; 0.02] 0.00
Cl/F , RCC 0.87 0.00 [0.00; 0.02] 0.01
Cl/F , MTC 1.90 1.00 [0.97; 1.00] 0.99 756
Cl/F , GB 1.19 0.01 [0.00; 0.04] 0.03
Cl/F , HCC 0.88 0.00 [0.00; 0.02] 0.01

Cl/F , OtherMalign 1.19 0.01 [0.00; 0.04] 0.02
Cl/F , Age (P10) 1.06 0.00 [0.00; 0.02] 0.00
Cl/F , Age (P90) 0.97 0.00 [0.00; 0.02] 0.00

Cl/F , Weight (P10) 1.01 0.00 [0.00; 0.02] 0.00
Cl/F , Weight (P90) 0.99 0.00 [0.00; 0.02] 0.00

Vc/F , Sex 1.10 0.00 [0.00; 0.03] 0.00
Vc/F , Black 1.05 0.01 [0.00; 0.04] 0.03
Vc/F , Asian 0.70 0.00 [0.00; 0.03] 0.11

Vc/F , OtherRace 0.88 0.04 [0.02; 0.08] 0.03
Vc/F , CRPC 0.74 0.00 [0.00; 0.03] 0.07
Vc/F , RCC 0.66 0.00 [0.00; 0.02] 0.08
Vc/F , MTC 0.94 0.00 [0.00; 0.03] 0.01
Vc/F , GB 0.48 0.00 [0.00; 0.02] 0.23
Vc/F , HCC 0.85 0.01 [0.00; 0.04] 0.03

Vc/F , OtherMalign 0.76 0.03 [0.01; 0.06] 0.07
Vc/F , Age (P10) 0.98 0.00 [0.00; 0.02] 0.00
Vc/F , Age (P90) 1.01 0.00 [0.00; 0.02] 0.00

Vc/F , Weight (P10) 0.70 0.38 [0.31; 0.45] 0.47
Vc/F , Weight (P90) 1.37 0.26 [0.20; 0.32] 0.33

P10: indicates the 10th percentile, P90: the 90th percentile
CRPC: Castration-resistant prostate cancer, RCC: Renal cell carcinoma, MTC: Metastatic medullary thyroid cancer, GB: Glioblastoma multiforme, HCC:
Hepatocellular carcinoma, OtherMalign: other malignancy, CAP: Capsule formulation
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5 Discussion
In this paper, we extended FIM computation accounting for continuous covariates. in the context of NLMEM. To that
purpose, we introduced three methods for taking covariates into account when computing the FIM, and implemented them
in a working version of the R package PFIM. This implementation is available (Zenodo repository https://doi.org/10.
5281/zenodo.13692989) and could be used by others for further exploration. These methods are all based on Monte
Carlo integration, but the first one relies on leveraging a covariate dataset directly, while the second one simulates from
independent distribution and the last one simulates from copulas. For the latter, we used the code developed by other
authors [zwep2022virtual] and made available online: https://github.com/vanhasseltlab/copula_vps. We showed
that overall PFIM accurately predicts uncertainty on covariate effects and consequently the power of both significance
and relevance tests. This method can then be used to display these predictions in the form of a forest plot for visual
communication. We also used this approach to quantitatively describe that the power of both significance and relevance
tests decrease when reducing the number of subjects or reducing the number of observations or increasing the IIV. The
results of the three methods for handling covariates in FIM computation showed very similar performances in our simulation
study, but their respective impact should be further explored in complex cases. Especially, if the covariates are highly
correlated, we can expect the calculation using independent distributions to perform less well. In addition, we have chosen
to propose an approach that fits independent covariates with Gaussian distributions rather than using a multivariate
normal distribution to explore, using copulas, whether correlations play a role in this case. Nevertheless, we can imagine
an intermediate method using a multivariate Gaussian, which are easier to interpret than Copulas.

The method was utilized in a practical example based on a population PK analysis of the drug cabozantinib, conducted
across 10 clinical trials involving healthy volunteers and patients with various types of cancer. With its 27 relationships
and many very low-value covariate parameters, this application represents, unlike the evaluation example, a case where
there is a real challenge in determining the relevant effects. The proposed methodology was used to evaluate the theoretical
design, computing the power of tests and the number of subjects needed to achieve 80% power. We found that despite the
large number of relationships between covariates, some of which were not significant, and with certain covariates poorly
represented in the data, PFIM was able to predict uncertainty very well and was very close to the CTS results. It is
therefore an appropriate approach for rapidly computing the powers and the number of subjects required to achieve given
powers, even in more complex contexts.

A limitation of the proposed methodology is that there is no consensus on how to take uncertainty into account when
building forest plots, and simulations-based procedures often account for uncertainty in based parameters which is not
the case here. Sometimes, the IIV is also considered in the simulations [2], even if some authors suggest not doing so in
order to avoid misunderstanding [28]. Therefore, before using this method to predict forest plot, or comparing it with
simulations, the randomness to be accounted for needs to be clearly defined.

In addition, the calculation of the confidence interval on the ratio is exact only in certain particular cases, otherwise an
approximation, for example with the delta method, would be necessary. Moreover, our method is also less straightforward
for deriving ratios and CI for secondary parameters such as Cmax or AUC and would require stochastic computations.

The main limitation of our methodology is the a priori knowledge of covariable distributions to compute the FIM.
Indeed, without their distribution in the target population, the design evaluation cannot be performed. Nevertheless, the
main use of this approach may be to design a phase III study based on phase II results, and at this stage of pharmaceutical
development, expert usually have clues about the covariate distribution in the targeted population. In addition, if methods
based on provided distributions is chosen, data are not mandatory as distributions can for instance be chosen according to
expert opinion. In the same way, as copula do not require data, we can imagine using copulas from other projects or from
other sources but corresponding to the target population of the trial. However, problems arise in the presence of discrete
covariates, since the theory of copulas has not yet been fully extended to them, especially for non-ordered categorical data
[29]. However, this is an active research area in pharmacometrics, and dedicated research and R package were recently
published [29], it is therefore likely that solutions will be proposed in the near future.

Finally, these methods save a considerable amount of time compared with simulations, enabling a wider range of designs
to be evaluated. Therefore, this tool can be used to study changes in the power of tests as a function of sample size, IIV,
effect size or sampling design before conducting a trial to help in decision making. The speed of calculation could be
further increased, for example by using efficient integration schemes (e.g. Quasi-Monte Carlo methods) or by deriving
a analytical formula of the linearized FIM in the case where the continuous covariates follow a multivariate Gaussian
distribution. These promising results suggest that the method should be more widely implemented in the PFIM package.
In addition, this work opens the prospect of optimizing the distribution of covariates in clinical trials with the aim of
maximizing power of relevance tests.
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A Technical appendix
A.1 Power of Test
A.1.1 Power computation for significance test
The null hypothesis for the Wald test of comparison is H0 : β = 0 and the alternative hypothesis is H1 : β ̸= 0. The test
statistics is given by equation (23).

W =
β̂

SE(β̂)
∼ N

(
β

SEβ
, 1

)
(23)

• Under H0, W ∼ N (0, 1), therefore H0 is rejected if |W | ≥ q1−α/2, where q1−α/2 denotes the 1− α/2-quantile of the
normal distribution

• Under H1, β ̸= 0, W ∼ N
(

β

SEβ
, 1

)
.

The power is computed for a given β as the probability to reject H0 under β ∈ H1:

Pcomp = PH1

(
|W | ≥ q1−α/2

)
= PH1

(
W ≥ q1−α/2

)
+ PH1

(
W ≤ −q1−α/2

)
= P

(
X +

β

SEβ
≥ q1−α/2

)
+ P

(
X +

β

SEβ
≤ −q1−α/2

)
with X ∼ N (0, 1)

= P
(
X ≥ q1−α/2 −

β

SEβ

)
+ P

(
X ≤ −q1−α/2 −

β

SEβ

)
= 1− Φ(q1−α/2 −

β

SEβ
) + Φ(−q1−α/2 −

β

SEβ
)

(24)

• β > 0: Because P
(
X ≤ −q1−α/2

)
= α/2 and β

SEβ
> 0, we have that PH1

(
W ≤ −q1−α/2

)
< α/2

Therefore, the second term can be neglected and

Pcomp ≈ PH1

(
W ≥ q1−α/2

)
≈ 1− Φ(q1−α/2 −

β

SEβ
)

(25)

• β < 0: On the contrary,

Pcomp ≈ PH1

(
W ≤ −q1−α/2

)
≈ Φ(−q1−α/2 −

β

SEβ
)

(26)

A.1.2 Power computation for Relevance test
The null hypothesis is H0: ”the covariate effect is not relevant”, i.e. rl,c(PX) ∈ [Rinf ;Rsup] while the alternative
hypothesis is H1: ”the covariate is relevant”, i.e. rl,c(PX) /∈ [Rinf ;Rsup]. This two sided null hypothesis can be split into
two, respectively H0,inf and H0,sup :{

H0,inf : rl,c(PX) ≥ Rinf and H0,sup : rl,c(PX) ≤ Rsup

H1 : rl,c(PX) < Rinf or rl,c(PX) > Rsup

Thus H0 is not rejected unless neither H0,inf nor H0,sup is rejected.

For rl,c(PX) = eβl,c (z−zref ),the hypothesis write: H0 : βl,c ∈ [Binf ;Bsup], where depending on the sign of (z − zref ),
Bsup and Binf equals logRsup

z−zref
or logRinf

z−zref
.

The null hypothesis is rejected if H0,inf is rejected, i.e. β̂l,c −Binf < s1, or if H0,sup is rejected, i.e. β̂l,c −Bsup > s2;
where s1 and s2 are chosen to reach an α type one error. Because these two events are incompatible the following holds: minβ∈H0 P

(
β̂l,c −Binf < s1

)
= α

minβ∈H0 P
(
β̂l,c −Bsup > s2

)
= α

(27)

Recalling that β̂l,c−βl,c
SEβl,c

∼ N (0, 1), the system writes:
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minβ∈H0 P (βl,c −Binf < s1) = minβ∈H0 Φ

(
s1 +Binf − βl,c

SEβl,c

)
= α

minβ∈H0 P (βl,c −Bsup > s2) = minβ∈H0 1− Φ

(
s2 +Bsup − βl,c

SEβl,c

)
= α

=⇒

{
s1 = qαSEβl,c = −q1−αSEβl,c
s2 = q1−αSEβl,c

(28)
Finally, at level 1 − α, the null hypothesis is rejected if β̂l,c − Binf < −q1−αSEβl,c or if β̂l,c − Bsup > q1−αSEβl,c ;

equivalently, the null hypothesis is rejected if β̂l,c+ q1−αSEβl,c < Binf or if β̂l,c− q1−αSEβl,c > Bsup. The first inequality
involves the upper bound of the 1− 2α CI on the ratio, while the second inequality involves the lower bound.

The power is the probability under H1 to reject H0:

Prelev = Φ

(
−q1−α +

Binf − βl,c
SEβl,c

)
+ 1− Φ

(
q1−α +

Bsup − βl,c
SEβl,c

)
(29)

On one hand, if Binf < βl,c,Φ

(
−q1−α +

Binf − βl,c
SEβl,c

)
< Φ(−q1−α) = α, therefore this term is negligible in power

computation. On the other hand, if Bsup > βl,c, 1 − Φ

(
q1−α +

Bsup − βl,c
SEβl,c

)
< 1 − Φ(q1−α) = α, therefore this term is

negligible in power computation. Consequently, to compute the number of subjects needed to achieve, a given power let
us distinguish two cases:

• If Binf < βl,c : Prelev ≈ 1− Φ

(
q1−α +

Bsup − βl,c
SEβl,c

)
=⇒ SEβl,c =

Bsup − βl,c
Φ−1 (1− Prelev)− q1−α

• If Bsup > βl,c : Prelev ≈ Φ

(
−q1−α +

Binf − βl,c
SEβl,c

)
=⇒ SEβl,c =

Binf − βl,c
Φ−1 (Prelev) + q1−α
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B Addition details on the evaluation by simulation
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Male (N = 53)

Methods:

Data

Copula

Independant Gaussian

Female (N = 47)

Figure 4: Evaluation - Covariate distributions for Male on the left and Female on the right: Data boxplots, fitted Copulas
boxplots and fitted independent Gaussian densities.
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Design 1 Design 2

True Omega

High Omega

Figure 5: Evaluation - Boxplots of Relative Estimation Error across 200 datasets for the 4 scenarios
The boxplot displays the median, the 25th and 75th percentiles, while the whiskers are 5th and 95th percentiles. The red diamond corresponds to the
mean.
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Design 1 Design 2

True Omega

High Omega

PFIM predictions:

◆ Data

◆ Independant Distribution

◆ Copula

Simulation results:

NSE

◆ mean

RSE

◆ mean

Figure 6: Evaluation - Normalized and Relative Standard Error for the 4 scenarios: PFIM predictions using the three
methods for handling covariates and simulation results across 200 datasets
The boxplot displays the median, the 25th and 75th percentiles, while the whiskers are 5th and 95th percentiles.
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C Addition details on PK example simulation

28

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.16.24314758doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.16.24314758
http://creativecommons.org/licenses/by-nc/4.0/


FIM to predict uncertainty in covariate effects and power to detect their relevance Fayette et al.

Table 8: Application - Theoretical Sampling Design
Study N Daily Doses, mg (N) n Samplings, hours after first dose

XL184-001 40 140 (35) - 200 (5) 15 0.5, 1, 2, 4, 8, 96, 100, 336, 432,
432.5, 433, 434, 436, 440, 672

XL184-010 77 140 (77) 43 0.5, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14,
24, 48, 72, 120, 168, 240, 288,
336, 408, 504, 744, 744.5, 745,
746, 747, 748, 749, 750, 752, 754,
756, 758, 768, 792, 816, 864, 912,
984, 1032, 1080, 1152, 1248

XL184-020 63 20 (21) - 40 (21) - 60 (21) 21 0.5, 1, 2, 3, 4, 5, 6, 8, 10, 12,
14, 24, 48, 72, 120, 168, 240, 288,
336, 408, 504

XL184-201 39 140 (39) 7 336, 340, 672, 676, 1008, 1012,
1344

XL184-203 - NRE 136 40 (55) - 60 (36) - 100 (45) 5 504, 1008, 2016, 3024, 4032
XL184-203 - RDT 185 60 (35) - 100 (150) 5 2016, 2352, 2688, 3024, 3360

XL184-301 210 100 (1) - 140 (209) 7 2, 4, 6, 672, 674, 676, 678
XL184-306 41 20 (1) - 40 (1) - 60 (39) 3 504, 1008, 2016
XL184-307 498 20 (18) - 40 (41) - 60 (439) 2 504, 2016
XL184-308 282 20 (5) - 40 (33) - 60 (244) 2 672, 1344
XL184-309 452 40 (7) - 60 (445) 3 336, 672, 1344

N : refers to the number of subjects included in the study, n: the number of PK samplings per subject

Figure 7: Application - Boxplots of Relative Estimation Error across 200 datasets - Base parameters
The boxplot displays the median, the 25th and 75th percentiles, while the whiskers are 5th and 95th percentiles. The red diamond corresponds to the
mean.
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Figure 8: Application - Boxplots of Relative Estimation Error across 200 datasets - Covariate effects parameters
The boxplot displays the median, the 25th and 75th percentiles, while the whiskers are 5th and 95th percentiles. The red diamond corresponds to the
mean.
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Table 9: Application - RB and RRMSE across 200 datasets - Base parameters
Parameter RB (%) RRMSE (%)

µKa 3.97 20.9
µCl/F 0.237 7.90
µQ -0.282 2.02

µVc/F 3.27 16.1
µVp/F 0.418 2.37
ωKa -0.305 7.85
ωF 0.36 2.58
ωCl -2.77 6.47
ωVc -1.24 9.15
σ 0.00625 0.797

Table 10: Application - Simulation Value, Estimate, RB and RRMSE across 200 datasets - Covariate effects parameters
Parameter Value Estimate RB (%) RRMSE (%)
βKa,CAP -0.911 -0.892 -2.11 33.9
βKa,Dose 0.734 0.738 0.578 29.1
βF,CAP -0.166 -0.153 -7.74 30.8
βCl/F,Sex -0.274 -0.257 -6.17 23.6
βCl/F,Black 0.162 0.16 -1.08 83.0
βCl/F,Asian -0.0668 -0.0741 10.9 127

βCl/F,OtherRace 0.0279 0.0174 -37.8 537
βCl/F,CRPC -0.0115 -0.00522 -54.6 808
βCl/F,RCC -0.139 -0.14 0.361 67.0
βCl/F,MTC 0.643 0.661 2.80 16.2
βCl/F,GB 0.178 0.192 7.73 96.7
βCl/F,HCC -0.13 -0.134 3.38 76.0

βCl/F,OtherMalign 0.171 0.199 16.3 83.4
βCl/F,Age -0.157 -0.161 2.41 61.0

βCl/F,Weight -0.0393 -0.0221 -43.8 285
βVc/F,Sex 0.0939 0.117 24.4 148
βVc/F,Black 0.0441 -0.0564 -228 930
βVc/F,Asian -0.363 -0.423 16.5 95.4

βVc/F,OtherRace -0.126 -0.172 36.5 362
βVc/F,CRPC -0.297 -0.256 -13.9 82.2
βVc/F,RCC -0.422 -0.397 -5.88 91.4
βVc/F,MTC -0.0657 -0.0425 -35.3 278
βVc/F,GB -0.735 -0.75 2.09 76.0
βVc/F,HCC -0.166 -0.225 35.7 158

βVc/F,OtherMalign -0.272 -0.248 -8.8 85.5
βVc/F,Age 0.0644 0.104 62.1 347

βVc/F,Weight 1.19 1.25 4.74 25.6
CRPC: Castration-resistant prostate cancer, RCC: Renal cell carcinoma, MTC: Metastatic medullary thyroid cancer, GB: Glioblastoma multiforme, HCC:
Hepatocellular carcinoma, OtherMalign: other malignancy, CAP: Capsule formulation
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PFIM predictions:

◆ Data

Simulation results:

NSE

◆ mean

RSE

◆ mean

Figure 9: Application - Normalized and Relative Standard Error - Base parameters: PFIM predictions using the Data
method for handling covariates and simulation results across 200 datasets
The boxplot displays the median, the 25th and 75th percentiles, while the whiskers are 5th and 95th percentiles.
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PFIM predictions:

◆ Data

Simulation results:

NSE

◆ mean

RSE

◆ mean

Figure 10: Application - Normalized and Relative Standard Error - Covariate effects: PFIM predictions using the Data
method for handling covariates and simulation results across 200 datasets
The boxplot displays the median, the 25th and 75th percentiles, while the whiskers are 5th and 95th percentiles.
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