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Key Points 
 
Question: Can fully automated machine learning-based software improve upon routine clinical 
rates of leg dystonia diagnosis in children with cerebral palsy? 
 
Findings: Open-source software was developed that utilizes machine learning models to detect leg 
dystonia in clinically acquired videos of children with cerebral palsy from two different clinical 
centers, achieving higher sensitivity, specificity, positive-predictive value, negative-predictive value, 
and accuracy for dystonia diagnosis than has been demonstrated for routine clinical care.  
 
Meaning: This software could facilitate screening children with cerebral palsy for dystonia, a 
common, debilitating, and under-diagnosed movement condition that requires accurate diagnosis 
for tailored treatment.  
 
 
Abstract 

Importance: Dystonia in cerebral palsy (CP) is common and debilitating but under-diagnosed, 
particularly in the legs. Only 13% of children with CP and leg dystonia have that dystonia diagnosed 
in clinic. Yet, early and accurate dystonia diagnosis is critical for appropriate treatment selection. 

Objective: To facilitate automated leg dystonia diagnosis in CP, our objective was to develop open-
source software that used machine learning (ML) models and clinically available video data.  

Design, Setting, and Participants: In this cross-sectional study, videos of children with CP (age 5 
and older) doing a seated alternating hand open-close task were acquired between 1/1/2020 and 
12/14/23 from two tertiary care CP centers (193 videos from Center 1, 30 videos from 2). These videos 
were assessed for leg dystonia by 8 pediatric movement disorders physicians (gold-standard 
diagnosis by expert consensus). Movement features they cited when identifying dystonia were 
extracted from their consensus-building discussions using conventional content analysis and were 
then quantified from the videos leveraging our open-source software. Quantified features from 163 
videos from Center 1 were used to train ML models (4664 models based on 11 ML algorithms) which 
were then tested on 30 videos from Center 1 and 30 videos from Center 2.   

Main Outcome(s) and Measure(s): Sensitivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV) and accuracy of ML models were computed as compared to gold-standard 
leg dystonia diagnosis by expert consensus. 

Results: Expert-cited quantifiable movements associated with dystonia diagnosis were used to 
identify 63 kinematics features to extract from videos. Feature importance analysis showed that 
variance features had higher importance than amplitude features. ML models achieved 84% 
sensitivity, 84% specificity, 84% PPV, 85% NPV, and 84% accuracy for identifying leg dystonia in 
testing videos from Center 1 and 100% sensitivity, 67% specificity, 75% PPV, 100% NPV, and 83% 
accuracy for identifying leg dystonia in videos from Center 2. However, for videos where at least 60% 
of experts agreed regarding the presence or absence of dystonia (n=23/30 from Center 2), ML models 
were 100% accurate for identifying leg dystonia. 
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Conclusions/Significance: We have developed open-source software that can use clinically 
acquired videos to identify leg dystonia in children with CP. These methods may be useful for 
facilitating clinical dystonia diagnosis in children with CP. 

Introduction 

Dystonia is a debilitating movement disorder formally defined as “sustained or intermittent muscle 
contractions causing abnormal, often repetitive movements or postures”.1 The most common 
condition associated with dystonia in children is cerebral palsy (CP), which affects 2-4 of every 1000 
people globally.2–4 Early and accurate dystonia diagnosis in people with CP is crucial for many 
reasons: treatments for dystonia are distinct from treatments for other movement conditions like 
spasticity,5,6 there is evidence that dystonia-specific treatments work best if administered early,7 and 
dystonia is a relative contraindication to some surgical procedures commonly done in young children 
with CP.8–10 Current clinical practices for diagnosing dystonia rely heavily on the expertise of trained 
clinicians (e.g. pediatric movement disorders specialists). The gold standard for dystonia diagnosis 
is the consensus opinion of these experts as they review video or in-person assessments of a 
person’s movements. However, these experts are in short supply and not available at all centers.11 
Furthermore, dystonia is variable by definition,1,12 making clinical diagnosis at one time point by one 
clinician difficult. For example, a clinic visit with an expert clinician has 13% sensitivity, 11% 
specificity, 18% positive predictive value (PPV), 8% negative predictive value (NPV), and 12% 
accuracy for leg dystonia diagnosis in a young person with CP when compared to gold standard 
consensus-based expert assessment.13 Clinical dystonia underdiagnosis in the legs is particularly 
notable given that dystonia most commonly affects the legs in people with CP.14 Clearly, there is a 
dire need to facilitate clinical dystonia diagnosis.  

Though there are many scales to guide dystonia severity assessment after it has been accurately 
identified, the only clinical tool available to facilitate dystonia diagnosis in people with CP is the 
Hypertonia Assessment Tool (HAT).15,16 The HAT provides a valuable framework to distinguish 
dystonia from spasticity and rigidity. However, the items governing dystonia diagnosis have the 
lowest interrater reliability and the movements that must be recognized to identify dystonia when 
using the HAT are subtle.15,16 Therefore, for the HAT to work optimally as a screening diagnostic tool, 
it must also be employed by well-trained clinicians.  

Noting that dystonia diagnosis heavily relies on visual assessment, recent advances in video-based 
pose estimation can facilitate dystonia diagnosis. Open-source tools for identifying body 
coordinates in clinically-acquired videos (e.g. DeepLabCut17 and OpenPose18) can facilitate 
movement quantification. Furthermore, rigorous qualitative analysis of the language experts use to 
describe dystonia can help determine the most valuable movement features to quantify.19 Using 
these methods, we recently demonstrated that leg adduction variability and leg adduction amplitude 
correlate with expert assessments of leg dystonia severity in people with CP during gait.20 However, 
it is unclear what features govern experts’ leg dystonia assessments in people with CP as they 
perform other tasks (noting that not all people with CP can walk). We hypothesize that expert-cited 
features can be quantified in clinically acquired videos and used to train machine learning (ML) 
models to facilitate leg dystonia diagnosis.  

In this study, we asked eight pediatric movement disorders physicians to assess for leg dystonia in 
videos of children with CP doing a seated motor task. Using their consensus-building discussions, 
we determined the movement features they most often cited when diagnosing dystonia. We then 
quantified these expert-cited features in the same videos using body coordinates extracted with 
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OpenPose18 and used these quantifications to train, validate, and test dystonia diagnostic ML 
models. We hypothesized that this approach could yield an automated dystonia diagnostic model 
that outperforms current clinical leg dystonia diagnostic rates in children with CP (13% sensitivity, 
11% specificity, 12% accuracy)13 when compared to gold-standard expert consensus. 

Methods 

Standard protocol approvals, registrations, and patient consents  
  
This study received approval from the Washington University in St. Louis Institutional Review Board 
on 6/5/23 (Approval Number: 202102101).   
  
Subjects, motor task, and video acquisition  
 
Videos of young people with CP are acquired during routine clinical care at Gillette Children’s 
Hospital (henceforth called Center 1) and St. Louis Children’s Hospital (henceforth called Center 2). 
Both centers record people with CP performing an alternating hand open/close task. We have 
previously established that this task is particularly valuable for distinguishing the presence vs. 
absence of dystonia.21 Videos of this task at both sites are of the person sitting in a chair facing 
forward, resting their non-dominant hand on the ipsilateral thigh, and then raising and alternately 
opening and closing/fisting their dominant hand as quickly as possible for approximately 5 seconds. 
This task is then repeated with the non-dominant hand. At Center 1, videos were recorded with a 
Panasonic AG-AC160AP camera at 1920 x 1080 pixel resolution at 30 frames per second. At Center 
2, videos are recorded with a Google Pixel 5 smartphone camera at 3840 x 2160 pixel resolution at 60 
frames per second rate. 

Videos for this study were taken during routine clinical care between 1/1/2020 and 12/30/2021 at 
Center 1 and between 4/20/2023 to 12/14/2023 at Center 2. To be included, subjects had have a 
clinician-confirmed diagnosis of CP according to the 2006 consensus diagnostic criteria22 and had 
to be at least 5 years old, with this age cutoff chosen to increase the likelihood that the child would 
developmentally have the cognitive ability and attention span to attempt the motor task in full. 
Exclusion criteria were the full body not being visible in the video or the person being unable to 
complete the task during the video recording. Videos from Center 1 were all videos meeting inclusion 
and exclusion criteria recorded during the study period. Videos from Center 2 were 30 videos chosen 
from all eligible videos to have an equal distribution of subjects who had been clinically determined 
to have dystonia and not have dystonia, as determined by each person’s treating movement 
disorders clinician using the Hypertonia Assessment Tool. 15,16 

Consensus-based expert video assessment  
 
To ensure subject anonymity, the faces of all participants in the videos were blurred using ShotCut 
(Meltytech, LLC) and custom-written software.23 A subset of 24 videos was reviewed in consensus by 
8 pediatric movement disorders physician experts from different institutions across the United 
States (JB, RGM, MK, DM, JOM, LT, JW, SW). Leg dystonia severity was rated by each expert using the 
Global Dystonia Rating Scale (GDRS),24 a 10-point Likert scale (0 - no dystonia, 10 - severe dystonia) 
with high inter-rater reliability for assessing leg dystonia severity in people with CP.20 For computing 
the GDRS for leg dystonia severity, experts rated the bilateral proximal legs (including hips) and 
bilateral distal legs (including feet). Combining these ratings resulted in a GDRS score range of 0-40. 
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To build consensus, experts participated in three 1-hour Zoom sessions (Zoom Video 
Communications, Inc.) to discuss leg dystonia severity in each of 24 videos. After rating leg dystonia 
severity using the GDRS in these consensus-building sessions, the remaining videos from Center 1 
by at least two of the eight experts, with scores entered via a REDCap survey. For any videos where 
the GDRS scores differed by more than 6 out of 40 possible points between two experts, the entire 
group of 8 experts re-assessed the video. Videos from Center 2 were each rated by 7 experts (JB, RGM,  
DM, JOM, LT, JW, SW). The final leg dystonia severity assessment for each video was calculated as 
the median GDRS across all expert reviewers with GDRS<1 indicating leg dystonia was absent and 
GDRS≥1 indicating that leg dystonia was present. 

Qualitative analysis of consensus-building discussions 
 
Consensus-building sessions were recorded and transcribed. Transcripts were analyzed using 
conventional content analysis25 to determine the salient ideas, or codes, stated by experts when 
assessing videos for leg dystonia. Transcripts were coded independently by two coders (SG, KC), 
who met to resolve any coding discrepancies by consensus and then consolidated their codes into 
a single code book. Potentially quantifiable movements (e.g. “foot inversion”) were distinguished 
from non-quantifiable codes (e.g. “posturing”) and used to calculate kinematics analogues from 
videos for training ML models. 
 
Extraction of leg coordinates 

We used custom-written software23 leveraging OpenPose18 to estimate leg coordinates that were 
consistently visualizable in the videos: the midpoint of the patella, the midpoint between the 
medial and lateral malleolus, and the tip of the first toe for both the right and left legs. To ensure 
labeling accuracy, the extracted coordinates were overlayed on the videos and visually examined.  

Determining the features used to train dystonia diagnostic models 

Two categories of leg kinematics were calculated: 1) the 2D leg coordinates (n=12, X and Y 
coordinates of the right and left knee, ankle, and first toe), and 2) calculated analogues of 
quantifiable movements cited by experts when assessing videos for dystonia. Since we previously 
demonstrated that variability and amplitude of leg adduction are cited by experts when assessing 
leg dystonia severity during gait and also correlate with their GDRS-based assessments of leg 
dystonia severity,20 the variance, minimum, and maximum of all leg kinematics measures were used 
as the input features to train ML models for leg dystonia diagnosis.  

Dystonia diagnostic model training, validation, and testing 

A total of 4664 ML models were assessed, derived from 11 different ML algorithms: Logistic 
Regression,26 Decision Tree,27 Random Forest,28 Gradient Boosting,29 AdaBoost,30 Support Vector 
Machine,31 K-Nearest Neighbors,32 Naive Bayes,33 XGBoost,34 Extra Trees,35 and Bagging.36 Videos 
from Center 1 were divided into subsets for training (2/3 of the dataset), validation (1/6 of the 
dataset), and testing (1/6 of the dataset), ensuring subsets had comparable GDRS distributions. To 
avoid bias from any single arbitrary division into subsets, ML models were trained, validated, and 
tested on five different subset groupings of the full video dataset, with each grouping having different 
training, validation, and testing subsets. Within each grouping, training and validation were repeated 
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five times using different subsets of videos for training and validation each time (5-fold cross-
validation using the scikit-learn library) (Figure 1).  

 

Figure 1. Dystonia diagnostic model training, validation, and testing. The full video dataset is 
divided into different subsets for training (2/3 of the dataset), validation (1/6 of the dataset), and 
testing (1/6 of the dataset) in each of 5 different dataset groupings of the full dataset. Within each 
dataset grouping, training and validation occurs 5 times, using different subsets for training and 
validation each time.  

For each dataset grouping, a single ML model was selected for testing (out of the 4664 ML models 
used for training and validation) based on having the highest NPV and specificity averaged across all 
5 validation folds. NPV and specificity were prioritized because the majority of people with CP have 
leg dystonia,14 suggesting that a model’s ability to detect the absence of dystonia may yield the best 
diagnostic model overall. To determine the optimal number of ML model features needed to 
maximize NPV and specificity, we first calculated feature importance within each dataset grouping 
using eight feature selection methods: Spearman's rho,37 Kendall's tau,38 ANOVA F-test/univariate 
feature selection,39 Extra Trees Classifier,35 Random Forest,28 Maximum Relevance - Minimum 
Redundancy,40 Sequential Feature Selection (forward),41 and Recursive Feature Elimination.42 
Features were then ranked in descending order of feature importance for each grouping averaged 
across the eight feature selection methods, from 1 to N. Models were first trained on just the top 
ranked feature, then the top 2 ranked features, then the top 3 ranked features, and so on until the 
model was trained using all features). The model trained on the optimal number of features to 
maximize NPV and specificity was tested on the testing dataset for each of the five dataset groupings 
to determine the sensitivity, specificity, PPV, NPV, and accuracy of the model for leg dystonia 
diagnosis using videos from Center 1.   

Of the N features used to train the ML models, we determined the features most relevant for leg 
dystonia diagnosis in two ways:  
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1. We compared the distributions of feature importance rankings across variance, minimum, and 
maximum features using a one-way ANOVA.  

2. We determined the training features shared by the ML models that maximized NPV and specificity 
across all five dataset groupings. 

We created an average ensemble of the best performing models (highest NPV and specificity) from 
each of the five dataset groupings from Center 1 and tested this average ensemble using a separate 
dataset of the 30 videos from Center 2 selected to have comparable distributions of people with and 
without dystonia as per the treating clinician’s assessment. Ensemble averaging43 is a common 
method used aggregate the results of multiple ML models and is the simple average of each model’s 
output. In this case, the dichotomous results of each of the five models for each subject (0 = leg 
dystonia absent, 1 = leg dystonia present) were averaged and rounded to the nearest integer value to 
determine the average ensemble determination.  

Results 

Subjects and demographics 

At Center 1, 193 subjects met inclusion and exclusion criteria (age 7.2±3.1 years, 92.75% at Gross 
Motor Function Classification System Levels I-III, 91% with leg spasticity). Of these subjects, 54% 
(n=104) had an average GDRS≥1 and were thus designated as having leg dystonia (Supplementary  
eTable 1). Videos were 7.2±3.5 seconds in duration. 

At Center 2, 30 selected subjects (age 12.2±4.4 years, 100% at Gross Motor Function Classification 
System Levels I-II, 100% with leg spasticity) were divided equally between those with leg dystonia 
(n=15, average GDRS >=1) and those without leg dystonia (n=15, GDRS<0) (Supplementary  eTable 
1).  Videos were 51.5±3.2 seconds in duration. 

Features used to train ML models 

In addition to 2D leg coordinates (n=12 for X and Y coordinates of the left and right knee, ankle, and 
first toe), we also calculated kinematic analogues using these 2D leg coordinates to reflect features 
cited by experts when assessing dystonia. 

Experts cited 15 potentially quantifiable movements a total of 140 times over 3 hours of consensus 
building discussion when assessing videos for dystonia (Figure 2).  

These quantifiable movements were used to develop 11 kinematic analogues (Table 1). Analogues 
for three out of fifteen quantifiable movements cited by experts (namely, toe flexion, toe extension 
and “swan neck” toe posturing) were not calculated as this would all require reliable extraction of the 
coordinates of multiple toes, which could not be accurately and reliably obtained using OpenPose 
following our visual quality inspection. 

To account for differences in subject size and subject-to-camera distances, the 12 leg coordinates 
and 11 calculated movement analogues (total n=23) were divided by the maximum knee-to-ankle 
distance from each video.44  
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Figure 2. Frequencies of quantifiable movements cited by experts when diagnosing dystonia.  

 

Quantifiable movements 
most frequently cited by 

experts 

Calculated kinematic 
analogues 

2D 
coordinate 
analogues 

Foot inversion / ankle 
eversion/ ankle rotation 

| Left Toe (X) – Left Knee (X) | 
| Left Toe (X) – Left Ankle (X) | 
| Right Toe (X) – Right Knee 
(X) | 
| Right Toe (X) – Right Ankle 
(X) | 
| Left Toe (X) – Right Toe (X) |  

 

Knee extension / knee flexion | Left Toe (Y) – Left Knee (Y) | 
| Right Toe (Y) – Right Knee 
(Y) |  

Left Toe (Y)  
Right Toe (Y) 

Hip adduction / hip 
abduction 

| Left Knee (X) – Right Knee 
(X) | 
| Left Ankle (X) – Right Ankle 
(X) | 

 

Hip flexion   Left Knee (Y) 
Right Knee (Y) 
Left Ankle (Y) 
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Right Ankle 
(Y) 

Foot dorsiflexion  | Left Toe (Y) – Left Ankle (Y) | 
| Right Toe (Y) – Right Ankle 
(Y) | 

Left Toe (Y) 
Right Toe (Y)  

Hip rotation/ hip internal 
rotation 

| Left Toe (X) – Left Knee (X) | 
| Left Toe (X) – Left Knee (X) | 
| Left Toe (X) – Right Toe (X) | 
 

 

Table 1. Expert cited quantifiable movements, their calculated analogues, and 2D coordinate 
analogues. |a-b| represents absolute difference between ‘a’ and ‘b’. 

Comparison of feature importance rankings 

The variance, minimum, and maximum of the coordinates and calculated analogues yielded 69 
features used for training ML models. Their feature importance rankings averaged across all five 
dataset groupings are shown in Supplementary eTable 2. Variance features are ranked significantly 
higher than minimum and maximum features (one-way ANOVA, p<0.005, Figure 3).  

 

 

Figure 3. Comparison of the mean importance ranking of variance, minimum and maximum 
features. Features are ranked from 1 (highest importance) to 69 (lowest importance). The mean 
feature importance ranking for the variance features was significantly better than the mean 
rankings for minimum and maximum features (one-way ANOVA, *p<0.005). Whiskers indicate the 
interquartile range, the upper and lower edges of the boxes represent the 75th and the 25th 
percentile of the distribution, respectively, and the red middle line represents the median of the 
distribution. 

Features shared by high performing ML models 

Out of the eleven ML algorithms, the Naive Bayes33 algorithm demonstrated the highest performance 
(highest specificity and NPV) in all 5 dataset groupings. These 5 ML models were trained on the 

Lowest ranked

Highest ranked
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following numbers of top-ranked features: 38, 50, 31, 38, and 35 (Figure 4). Of these features, 25 were 
shared across all 5 ML models. Seventeen out of the twenty-five selected features were variance 
features, four were minimum features, and four were maximum features (Table 2). Across all 5 
dataset groupings from Center 1, ML models obtained a mean sensitivity, specificity, PPV, NPV, and 
accuracy of 87%, 85%, 84%, 88% and 86%, respectively, during validation (Table 3) and 84%, 84%, 
84%, 85% and 84%, respectively, during testing (Table 4).  

Average ensemble model and testing on videos from Center 2 

When tested on 30 videos from Center 2, the average ensemble model had sensitivity, specificity, 
PPV, NPV, and accuracy of 100%, 67%, 75%, 100% and 83%, respectively. Notably, there was 
disagreement between the 7 raters regarding whether leg dystonia was present or absent in each of 
these 30 videos: All 7 raters agreed regarding the presence or absence of leg dystonia in 16/30 videos, 
only 6/7 raters agreed for 7 videos, and only 4/7 raters agreed for 7 videos.  When considering only 
the 23 out of 30 videos where more than 4/7 raters agreed regarding the presence or absence of leg 
dystonia, the average ensemble model always accurately predicted the majority rater responses (i.e. 
sensitivity, specificity, PPV, NPV, and accuracy for leg dystonia diagnosis was 100%).  

 

Feature 
importance 
ranking Variance feature 

Feature 
importance 
ranking Minimum feature 

Feature 
importance 
ranking Maximum feature 

1 

Variance 
|Right Toe(X) - Right 
Ankle (X )| 14 

Minimum |Left 
Toe(Y) - Left 
Ankle (Y)| 16 

Maximum |Left Toe(Y) -
Left Ankle (Y)| 

2 
Variance |Left Toe(X) 
- Left Ankle (X)| 21 

Minimum |Right 
Toe(Y) – Right 
Ankle (Y)| 17 

Maximum |Right Toe(Y) – 
Right Ankle (Y)| 

3 Variance Left Toe (X) 23 
Minimum Inter 
Ankle (X) 22 Maximum Inter Toe(X) 

4 
Variance Left Ankle 
(Y) 25 

Minimum Left 
Toe (Y) 24 Maximum Inter Ankle (X) 

5 Variance Right Toe (Y)     

6 
Variance Inter Ankle 
(X)       

7 Variance Left Toe (Y)       

8 
Variance |Left Toe(Y) 
- Left Ankle (Y)|       

9 Variance Inter Toe(X)       

10 

Variance |Right 
Toe(Y) – Right Ankle 
(Y)|       

11 
Variance |Left Toe(Y) 
- Left Knee (Y)|     

12 
Variance Right Ankle 
(Y)     

13 Variance Right Toe (X)     
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15 

Variance 
|Right Toe(Y) - 
Right Knee (Y)|     

18 
Variance |Left Toe(X) 
– Left Knee (X)|     

19 
Variance Right Ankle 
(X)     

20 
Variance Left Ankle 
(X)     

Table 2. Features used to train all five optimal ML models across five dataset groupings. 

 

 

Figure 4. The mean of NPV and specificity of ML models when trained on different numbers of 
top-ranked features. The black points denote the best performing model for each of the five 
dataset groupings of the full dataset. The x-axis represents the number of features used for training 
and validation. For instance, a value of 50 on the x-axis indicates that the top 50 features, according 
to their importance, were used for training and validating the models. The y-axis represents the 
mean validation NPV and specificity of the best-performing ML model (out of 4664 models) when 
trained on the selected number of features.  

 

Dataset 
Grouping 

Sensitivity 
(%) 

Specificity 
(%) PPV (%) NPV (%) 

Accuracy 
(%) 

Optimal 
number 
of 
features 

1 91 86 85 91 88 38 
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2 81 81 80 82 81 50 

3 86 90 88 88 88 31 

4 86 87 86 87 87 38 

5 91 80 80 91 85 35 

Mean 87 85 84 88 86 38.4 
Table 3. ML model performance during validation across all five dataset groupings from 
Center 1. The number of features used to train the model was selected to maximize NPV and 
specificity (Figure 4). NPV – negative predictive value; PPV- positive predictive value.  

 

Model with highest 
NPV and specificity 
from each dataset 
grouping 

Sensitivity 
(%) 

Specificity 
(%) PPV (%) NPV (%) 

Accuracy 
(%) 

1 80 93 92 82 87 

2 100 80 83 100 90 

3 93 87 88 93 90 

4 80 73 75 79 77 

5 67 87 83 72 77 

Mean 84 84 84 85 84 
Table 4. ML model performance during testing across all five dataset groupings from Center 1. 
NPV – negative predictive value; PPV- positive predictive value.  

Average Ensemble 
Model 

Sensitivity 
(%) 

Specificity 
(%) PPV (%) NPV(%) Accuracy(%) 

All 30 videos 
100 67 100 75 83 

23 videos for 
which more than 

4/7 experts agreed 
regarding 

presence/absence 
of leg dystonia 100 100 100 100 100 

Table 5. ML model performance during testing on dataset from Center 2. NPV – negative 
predictive value; PPV- positive predictive value.  

Software graphical user interface (GUI) development 

An open-source software package (DxTonia)23 was developed using 250 pre-defined and 2 custom 
libraries (details in eAppendix 1), 2 opensource software packages (OpenPose18 and exiftool45) and 
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the five best performing ML models described above. The software provides an interactive GUI to 
automate the process of leg dystonia detection from HOC videos. Its architecture is explained in 
Supplementary eFigure 2 and a demonstration video is available here: 
https://drive.google.com/drive/folders/1WGG4dfpLej4GRxtMJABAqe5nUVV-LftV?usp=sharing .  

Key features of this software facilitating usability are: 

1. Download and use without any installation. 
2. Fully automated leg dystonia detection with a single click—no prior movement disorder 

expertise is required. 
3. Fast diagnosis: The software takes approximately 5 times the video duration for first-time 

use and 0.5 times the video duration for subsequent uses. 
4. Provides body coordinates in JSON, CSV, and Python variables, and dystonia ratings in JSON 

format for post-processing. 
5. Open-source, allowing integration with other machine learning models. 

Discussion 

We developed an open-source software package (DxTonia) that uses ML models that identify leg 
dystonia in videos of children with CP performing a seated motor task with high sensitivity, 
specificity, PPV, NPV, and accuracy compared to gold-standard expert consensus assessment. Our 
results additionally suggest 25 leg kinematic features that may be most important for detecting leg 
dystonia and also suggest that variability of leg movements, more so than the amplitude of leg 
movements, may be most important for detecting leg dystonia. Finally, given low rates of leg dystonia 
diagnosis during routine clinical care, our hope is that software like what we have described here 
can help facilitate clinical screening for leg dystonia.  

Limitations and the future work 

The performance of ML models is heavily reliant on dataset size. With only 193 subjects' data, we 
couldn't fully leverage deep learning's potential for classification. Despite using 5-fold cross-
validation and 5-fold testing, it is challenging to comment on the generalizability of the model's 
performance to datasets from different demographic populations, cameras, and environmental 
settings. While our study demonstrated encouraging results for the ML models’ performance on an 
independent dataset from another center, we acknowledge that further validation with a broader and 
more diverse range of datasets would be beneficial in fully assessing its generalizability. Thus, future 
work will involve refining and testing the models across various clinical institutions and 
environmental conditions. 

All stages of the proposed assessment, except for data collection are fully automated in the 
proposed software. Moving forward, we aim to develop an automated pipeline for automated data 
collection and secure local storage using smartphones, kinematics extraction via SecurePose46 
(automated body estimation software), and generation of leg dystonia assessment reports. Such a 
system would improve the accessibility of leg dystonia assessment.  

Conclusion 

We have developed an open-source software package (DxTonia) that has the potential to facilitate 
clinical leg dystonia assessment in children with CP. Future work will focus on broader validation of 
this software in larger populations across additional centers.  
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