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Abstract

Examining the downstream molecular consequences of genetic variation significantly
enhances our understanding of the heritable determinants of complex traits and disease
predisposition. Metabolites serve as key indicators of various biological processes and
disease states, playing a crucial role in this systematic mapping, also providing opportunities
for the discovery of new biomarkers for disease diagnosis and prognosis. Here, we present a
genome-wide association study for 249 circulating metabolite traits quantified by nuclear
magnetic resonance spectroscopy across various genetic ancestry groups from the Estonian
Biobank and the UK Biobank. We generated mixed model associations in the Estonian
Biobank and six major genetic ancestry groups of the UK Biobank and performed two
separate meta-analyses across the predominantly European genetic ancestry samples (n =
599,249) and across all samples (n = 619,372). In total, we identified 89,489
locus-metabolite pairs and 8,917 independent lead variants, out of which 4,184 appear to be
novel associated loci. Moreover, 12.4% of the independent lead variants had a minor allele
frequency of less than 1%, highlighting the importance of including low-frequency and rare
variants in metabolic biomarker studies. Our publicly available results provide a valuable
resource for future GWAS interpretation and drug target prioritisation studies.

Introduction

Systematic mapping of the heritable determinants underlying complex traits and disease
predisposition can be greatly improved by detailed understanding of downstream molecular
consequences of genetic variation. Studying metabolite traits is crucial because they serve
as key indicators of various biological processes and disease states. Metabolite studies can
reveal the complex interactions between genes and metabolic pathways, providing a more
comprehensive understanding of molecular human biology and the potential for novel
therapeutic targets. This understanding can lead to the identification of new biomarkers for
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disease diagnosis, prognosis, and treatment, as well as the development of personalised
medical interventions.

Although genome-wide association studies (GWAS) for several traits and diseases now
exceed the sample size of 1 million individuals (COVID-19 Host Genetics Initiative, 2023;
Suzuki et al., 2024; Yengo et al., 2022; Zhou et al., 2022), studies of molecular traits such as
gene expression (Vosa et al., 2021), plasma proteins (Sun et al., 2023) or circulating
metabolites have lagged behind. Notable exceptions are five blood lipid traits where the
largest meta-analysis now includes data from 1.65 million individuals (Graham et al., 2021).
Therefore, recent large-scale metabolite GWAS continue to uncover novel associations and
biological insights (Karjalainen et al., 2024; Richardson et al., 2022; Smith et al., 2022; van
der Meer et al., 2024). For example, Karjalainen et al performed GWAS meta-analysis of 233
circulating metabolites from the Nightingale Health nuclear magnetic resonance (NMR)
platform in up to 136,016 participants from 33 cohorts (Karjalainen et al., 2024), identifying
443 independent loci and revealing significant pleiotropy and polygenicity (Karjalainen et al.,
2024). Additionally, using up to 115,082 samples from the phase 1 release of the UK
Biobank Nightingale Health platform NMR data, two studies reported high levels of pleiotropy
and genetic correlation between metabolites (Richardson et al., 2022; Smith et al., 2022).
Similarly, the latest study using 207,836 unrelated White British UK Biobank participants
from phase 2 release of the UK Biobank NMR data increased the number of discovered loci
to 497 (van der Meer et al., 2024).

However, for more than half of the metabolites captured by NMR, the proportion of
heritability explained by genome-wide significant variants remains below 50% in the largest
GWAS to date (van der Meer et al., 2024), indicating that much larger sample sizes are
needed to discover the remaining effects. Furthermore, existing GWAS studies using the
Nightingale Health NMR platform have been limited to common variants (MAF > 1%) due to
limited sample sizes as well as low imputation accuracy of low-frequency variants. Therefore
less attention has been paid to low-frequency and rare variation, which, while explaining less
heritability over-all, could still provide important biological insights (Nag et al., 2023).

The large number of metabolites, their complexity and diversity create a challenge for their
identification, compared to other omics measurements. Although the Nightingale Health
NMR platform is highly reproducible and 39 of 249 inferred metabolites have now been
clinically validated, there have been various changes over the years both in the number of
metabolites quantified as well as their absolute quantification results (Bizzarri et al., 2023).
This variability can pose additional challenges when meta-analysing metabolites across
multiple cohorts. For example, although the latest NMR data release from the UK Biobank
contains 249 metabolites, Karjalainen et al analysed only 233 metabolites from the same
platform, 225 of which were shared with the UK Biobank (Karjalainen et al., 2024). Thus, to
reduce unwanted variability and maximise statistical power, it is essential to ensure that
metabolite quantification and normalisation is performed in a uniform manner across cohorts.

Here, we present a genome-wide association study for 249 circulating metabolites quantified
by nuclear magnetic resonance spectroscopy across the complete set of UK Biobank
participants (n = 434,020) from diverse genetic ancestry groups and European-ancestry
individuals from the Estonian Biobank (n = 185,352) (Figure 1). We also performed two
separate meta-analyses across the predominantly European ancestry samples (n = 599,249)
and across all samples (n = 619,372), resulting in 3-5x larger sample size compared to
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previous studies (Karjalainen et al., 2024; Richardson et al., 2022; Smith et al., 2022; van
der Meer et al., 2024). These publicly available results will provide a valuable resource for
future GWAS interpretation and target prioritisation studies.
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Figure 1. Overview of the analysis plan. First, a separate GWAS was performed for each
metabolite in the Estonian Biobank and six ancestry groups of the UK Biobank: EUR
(European), AFR (African), AMR (Admixed American), MID (Middle Eastern), EAS (East
Asian), CSA (Central/South Asian). The definition of these broad genetic ancestry groups is
discussed in (Karczewski et al., 2024). Second, inverse variance weighted meta-analysis
was used to identify shared and ancestry-specific signals. InDel - insertion/deletion variant.
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Results

Per-cohort analyses

We performed GWAS for 249 metabolites (Table S1) in the Estonian Biobank (EstBB) and
six genetic ancestry groups from the UK Biobank (UKBB) (Figure 1). The UK Biobank
genetic ancestry groups were defined previously by the Pan-UKBB project (Karczewski et
al., 2024). Relying on the population-specific genotype imputation panel for the EstBB (Mitt
et al., 2017) and the Genomics England imputation panel (Shi et al., 2024 ) for the UKBB
allowed us to test 10-96 million variants for all ancestry-metabolite pairs (up to 9% more than
(Karjalainen et al., 2024; van der Meer et al., 2024)). The number of trait-level genome-wide
significant (p < 5x10%) locus-metabolite pairs ranged from 37 (UKBB_AMR) to 63,235
(UKBB_EUR) and the number of independent lead variants (r2 < 0.8) ranged from 24 to
6,415, with most associations detected in the EstBB and UKBB_EUR subsets (Table 1). In
comparison, applying the same filtering to Karjalainen et al summary statistics revealed
8,724 genome-wide significant locus-metabolite pairs corresponding to 669 independent loci.

Table 1. Number of significant locus-metabolite pairs (p < 5x10®) and unique lead variants
(r2 > 0.8) detected in each genetic ancestry group and the two meta-analyses.

Genetic ancestry Locus-metabolite Unique lead variants | Sample size
group pairs

EstBB 27,015 2,394 185,352
UKBB_EUR 63,235 6,415 413,897
(European)

UKBB_AFR (African) 916 144 6,439
UKBB_AMR 37 24 928
(Admixed American)

UKBB_MID (Middle 92 44 1,500
Eastern)

UKBB_CSA 1,070 112 8,652
(Central/South Asian)

UKBB_EAS (East 358 40 2,604
Asian)

meta_EUR 88,278 8,784 599,249
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meta_ALL . 89,489 8,917 619,372

To assess the similarity of the associations detected in the two biobanks, we used LD score
regression to calculate genetic correlations for each metabolite between the EstBB (n =
185,352) and the EUR subset of the UKBB (n = 413,897). We observed generally high
genetic correlations for the matched metabolites between the two biobanks (median rg =
0.91, mean rg = 0.89, Bonferroni-corrected p < 0.05 for all comparisons; Table S2).
Motivated by the high genetic correlation between the two biobanks, we proceeded with the
meta-analyses.

Discovery of novel loci via meta-analysis

In the meta-analysis of EstBB and the EUR subset of the UKBB (meta_EUR, n = 599,249),
we identified 88,278 locus-metabolite pairs corresponding to 8,784 independent lead
variants (r2 < 0.8), representing approximately 10-fold increase as compared to the results
reported by (Karjalainen et al., 2024). The heritability of individual metabolites ranged from
2.8% for Acetoacetate to 19.5% for HDL_size (median 10.2%) (Figure S1) and we observed
a clear linear relationship between heritability and the number of loci discovered for each
metabolite (Figure S2). In the following sections, we will focus on 56 selected metabolites
representing amino acids, glycolysis related metabolites, ketone bodies, fluid balance,
infammation, and major lipid subclasses (Table S3). If not mentioned otherwise, we present
the results from the meta-analysis of the EUR genetic ancestry groups from EstBB and
UKBB (meta_EUR). Besides these results, we have publicly released the complete GWAS
summary statistics for all 249 metabolites in all genetic ancestry groups as well as the two
meta-analyses via the NHGRI-EBI GWAS Catalog (see Data availability).

We compared the associations detected in our meta_ EUR meta-analysis to the largest
independent metabolomics GWAS meta-analysis using the same NMR platform
((Karjalainen et al., 2024), n = 136,016). On average, 97% of the lead associations detected
by Karjalainen et al also replicated in our meta_EUR analysis (Figure 2) with a highly
concordant direction of effect (Figure S3). Identical analysis using results from our meta_ALL
analysis is presented in Figure S4. We also detected many novel associations for all tested
metabolites. The fraction of novel associations ranged from 27% for 3-Hydroxybutyrate
(bOHbutyrate) to 85% for Lactate (Figure 2). Altogether, we identified 4,085 novel loci not
previously reported by Karjalainen et al, including 248 loci on chromosome X.
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meta_EUR: number of lead variants per metabolite
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Figure 2. Number of genome-wide significant loci detected among selected
metabolites shared with Karjalainen et al. Coloured bars represent novel loci. Grey bars
represent loci detected by both our analysis and by Karjalainen et al. Black represents loci
detected by Karjalainen et al and missed by us. Six metabolites included in our analysis
(Clinical_LDL_C, non_HDL_C, Omega_6_by_Omega_3, PUFA_by MUFA, Total BCAA,
Total_L, Total_P, Total _PL) were not profiled by Karjalainen et al. Identical analysis using
results from our meta_ALL analysis is presented in Figure S4.
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Associations with low-frequency variants

While the previous GWAS studies of NMR metabolites have focussed on common variation
(MAF > 1%) (Karjalainen et al., 2024; van der Meer et al., 2024), we tested all variants with
minor allele count (MAC) greater than 20. Thus, in our meta_EUR meta-analysis, 12.4% of
the independent lead variants (n = 1,088 variants) had MAF < 1% (Figure 3). As expected,
these low-frequency variants also had larger effect sizes than those at higher allele
frequencies (Figure 3). This estimate is a lower bound as many loci with common lead
variants are likely to contain secondary signals with lower allele frequencies.
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Figure 3. Detected metabolite trait associations with low-frequency variants. (A)
Relationship between lead variant minor allele frequency (MAF) and effect size (beta). Each
dot signifies the lead variant (+/- 1Mb window) from each locus-metabolite combination
(meta_EUR). The size of each dot has been scaled by -log,, p-value. (B) Number of
detected significant associations in relation to the lead variant MAF in meta_EUR analysis.
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In addition to the EUR genetic ancestry group, we also performed GWAS in five smaller
genetic ancestry groups of the UK Biobank (AFR, AMR, CSA, EAS, MID) (Table 1). Including
these summary statistics into the meta-analysis increased the number of independent lead
variants from 8,784 to 8,917 (Figure 1, Table 1), 41 of which were not tested in the EstBB
and UKBB_EUR cohorts due to low allele frequency (allele count < 20). This highlights the
need to substantially increase the sample sizes for under-represented genetic ancestry
groups to enable the discovery of ancestry-specific effects.

Genetic correlation and pleiotropy

To understand the shared genetic control of various classes of metabolites, we used LD
score regression to estimate the pairwise genetic correlations between the selected set of 56
metabolites in our meta_EUR meta-analysis (Figure 4). Pairwise genetic correlations for all
249 metabolites are shown in Table S4. As expected, we observed high genetic correlations
between 25 lipid traits. The three branched-chain amino acids (Leu, Val, lle, total
branched-chain amino acids), ketone bodies, and a group of lipid-related metabolites (LDL
and HDL size, HDL cholesterol, ratio between polyunsaturated and monounsaturated fatty
acids and unsaturation) also formed three distinct highly genetically correlated clusters
(Figure 4). In contrast, other amino acids and glycolysis-related metabolites exhibited
moderate genetic correlations with other metabolites. Finally, it is especially interesting that
negative correlations with large clusters of other metabolites appear for metabolite ratios,
such as PUFA_by MUFA and omega_6_by omega_3.
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Figure 4. Genetic correlations for each of the 56 selected metabolites in the meta_EUR
dataset. The highest correlation was observed between branched-chain amino acids,
ketones, and lipid-related metabolites, respectively.

Additionally to the calculated genetic correlations, we identified clusters of lead variants that
were shared (r? > 0.8) between different metabolite traits. Among the 249 metabolite traits,
most lead variants were significantly associated (p < 5x10°%) with multiple metabolites (mean
= 10; median = 2). When focussing on the selected 56 metabolites, we detected 880
independent lead variants that were significantly associated (p < 5x10%) with five or more
metabolites. Most prominently, a common missense variant (MAF = 40%) in the glucokinase
regulatory protein (GCKR) (rs1260326, GCKR:p.Leu446Pro) was significantly associated (p
< 5x108) with 51 (out of 56) selected metabolites (Figure S5).
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As another example of a highly pleiotropic locus, a non-coding variant (rs12916) in the
HMG-CoA reductase (HMGCR) gene was associated with 27 (out of 56) selected
metabolites and overall, with 180 (out of 249) tested metabolite traits (Figure 5A). Genetic
variation in HMGCR has been robustly linked to cardiovascular disease (Ference et al.,
2016) and HMGCR is also a known drug target for statin therapy.

Nevertheless, not all associations were equally pleiotropic. For example, a low-frequency
(MAF = 0.4%) missense variant in the histidine ammonia lyase (HAL) gene (rs61937878)
was significantly associated (p < 5x10%) with 2 out of 56 selected metabolites (histidine and
glycine) and no additional significantly associated metabolites were detected among the full
set of 249 tested (Figure 5B). HAL converts histidine to trans-urocanate (Hall, 1952), thus
explaining the extremely strong association with histidine (beta = 0.864; log(p) = 951). In
contrast, the association with glycine was much weaker (beta = 0.071; log4o(p) = 9.60) and
could not be easily explained by a direct effect of the HAL enzymatic activity.

Discussion

A major advantage of our study is that we were able to use samples from two large biobanks
assayed on the same metabolomics platform. All samples were processed and analysed in
the same way, following identical procedures for sample processing, spectra generation,
data acquisition in the same laboratory, thus reducing technical variability and increasing
statistical power for discoveries. This low technical variability was exemplified by the high
genetic correlation that we observed between the two biobanks (mean rg = 0.89).
Furthermore, our meta-analyses involved 3-5x more samples and up to 9x more variants
than two previous studies using the same NMR platform (Karjalainen et al., 2024; van der
Meer et al., 2024). As a result, we were able to replicate 97% of previously known
associations while detecting more than 4000 novel associations (Figure 2). At the level of
individual metabolites, the number of detected signals increased between 27-85%. Thus, our
study provides the most comprehensive catalogue of genetic associations with these
metabolites yet.

By utilising state-of-the-art population-specific genotype imputation panels (Mitt et al., 2017;
Shi et al., 2024; Taliun et al., 2021), we were able to test more low-frequency variants than
previous studies, leading to the discovery of numerous novel locus-metabolite associations.
As a result, 12.4% of the independent lead variants detected in our analysis had a minor
allele frequency (MAF) of less than 1% (Figure 3). This proportion is only likely to increase
as we and others seek to identify independent low-frequency signals at established GWAS
loci. Thus, while these low-frequency associations are unlikely to explain a large proportion
of trait heritability, they can still be a valuable resource of genetic instruments for
cis-Mendelian randomisation (cis-MR) and drug target MR studies (Richardson et al., 2022).
We expect future statistical fine mapping and rare variant analysis studies (Nag et al., 2023)
to uncover many novel biological insights.

While large-scale biobanks provide unprecedented power for genetic discovery, they also
introduce complexities in interpreting genetic associations due to pervasive pleiotropy. Our
results reinforce previous reports of extensive pleiotropy across metabolite GWASs
(Karjalainen et al., 2024; Richardson et al., 2022; Smith et al., 2022). Some of this pleiotropy
is readily interpretable, such as co-regulation between various lipid traits (Richardson et al.,
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2022) or opposing effects between substrates and products of enzymatic reactions (Smith et
al., 2022). However, given our large sample size, we also detected more cryptic pleiotropic
effects such as the histidine ammonia lyase (HAL) missense variant effect on glycine (Figure
5B). Such extensive overlaps exemplify that as cohorts grow larger, the detection of
pleiotropic signals becomes more pronounced, complicating the disentanglement of direct
and indirect genetic effects. This observation aligns with the omnigenic model, where all
expressed genes in a cell contribute to complex traits through interconnected regulatory
networks (Boyle et al., 2017; Sinnott-Armstrong et al., 2021; Smith et al., 2022).

Besides revealing molecular mechanisms of trait-associated genetic variation, the integration
of genomic and metabolomic data from multiple biobanks has demonstrated the potential of
metabolomics-based risk scores to estimate common disease risk more effectively than
traditional polygenic scores (Buergel et al., 2022; Nightingale Health Biobank Collaborative
Group et al., 2023). However, training these metabolomic risk scores requires longitudinal
data from large biobanks, which might not be available for diseases with low prevalence in
the general population. Interestingly, a recent study demonstrated that it is possible to
combine GWAS data for molecular biomarkers and disease outcomes to build predictive risk
models in the absence of longitudinal data (Sens et al., 2024). These findings underscore
the ongoing potential of large metabolite GWAS to improve our understanding of disease risk
and progression, paving the way for personalised prevention and treatment strategies
(Julkunen et al., 2023).

Our study also has several limitations. First, 97% of the samples included in our analysis
were of predominantly European genetic ancestries. This demographic skew severely limited
our ability to detect genome-wide significant signals in other genetic ancestry groups and
may influence the generalizability of our findings across genetic ancestry groups. As a result,
the number of genome-wide significant signals increased by only 1.3% (Table 1) when
samples from other UKBB genetic ancestry groups (AFR, AMR, CSA, EAS, MID) were
included in the analysis. Secondly, due to significant computational and methodological
challenges, we did not perform statistical fine mapping of the identified loci. As a result, we
are likely missing many secondary signals at the genome-wide significant loci. We expect
that cross-population fine mapping methods such as SuSiEx can help to resolve some of
these issues in the future (Yuan et al., 2024). Lastly, we applied a global genome-wide
significance threshold (p < 5x10®) tailored for common variants. To control for false-positive
associations, this threshold may need adjustment to account for the large number of
metabolites tested and the low allele frequency threshold (allele count > 20) utilised in our
study.

Our comprehensive results, made publicly available, will serve as a valuable resource for the
scientific community for future research, enabling more detailed analyses of genetic
influences on circulating metabolite levels and paving the way for additional future studies
towards improved understanding of genetic basis of metabolic traits and complex diseases,
identify novel therapeutic targets, and develop personalised intervention strategies.
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Methods

Cohorts

Estonian Biobank. The Estonian Biobank (EstBB) is a volunteer-based biobank with
212,955 participants in the current data freeze (Milani et al., 2024). All biobank participants
have signed a broad informed consent form and their blood sample collection was
undertaken across the country between 2002 and 2021 (Leitsalu et al., 2015). The activities
of EstBB are regulated by the Human Genes Research Act, which was adopted in 2000
specifically for the operations of EstBB. Individual level data analysis in EstBB was carried
out under ethical approval 1.1-12/624 from the Estonian Committee on Bioethics and Human
Research (Estonian Ministry of Social Affairs), using data according to release application
6-7/G1/8988 from the EstBB.

UK Biobank. The UK Biobank is a longitudinal biomedical study of approximately half a
million participants between 38-71 years old from the United Kingdom (Bycroft et al., 2018).
Participant recruitment was conducted on a volunteer basis and took place between 2006
and 2010. Initial data were collected in 22 different assessment centers throughout Scotland,
England, and Wales. Data collection includes elaborate genotype, environmental and
lifestyle data. Blood samples were drawn at baseline for all participants, with an average of
four hours since the last meal, i.e. generally non-fasting. NMR metabolomic biomarkers
(Nightingale Health, quantification library 2020) were measured from EDTA plasma samples
(aliquot 3) during 2019-2024 from the entire cohort. Details on the NMR metabolomic
measurements in UK Biobank have been described previously for the first tranche of
~120,000 samples (Julkunen et al., 2023). The UK Biobank study was approved by the
North West Multi-Centre Research Ethics Committee. This research was conducted using
the UK Biobank Resource under application numbers 91233 and 30418.

Genotype imputation

Estonian Biobank. All EstBB participants have been genotyped at the Core Genotyping Lab
of the Institute of Genomics, University of Tartu, using lllumina Global Screening Array v1.0,
v2.0 and v3.0. Samples were genotyped and PLINK format files were created using lllumina
GenomeStudio v2.0.4. Individuals were excluded from the analysis if their call-rate was <
95%, if they were outliers of the absolute value of heterozygosity (> 3SD from the mean) or if
sex defined based on heterozygosity of X chromosome did not match sex in phenotype data
(Mitt et al., 2017). Before imputation, variants were filtered by call-rate < 95%, HWE p-value
< 1e-4 (autosomal variants only), and minor allele frequency < 1%. Genotyped variant
positions were in build 37 and were lifted over to build 38 using Picard. Phasing was
performed using the Beagle v5.4 software (Browning et al., 2021). Imputation was performed
with Beagle v5.4 software (beagle.22Jul22.46e.jar) and default settings. Dataset was split
into batches of 5,000. A population specific reference panel consisting of 2,695 WGS
samples was utilised for imputation and standard Beagle hg38 recombination maps were
used. Based on principal component analysis, samples who were not of European ancestry
were removed. Duplicate and monozygous twin detection was performed with KING 2.2.7
(Manichaikul et al., 2010), and one sample was removed out of the pair of duplicates.
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UK Biobank autosomes. Genotype imputation for the UK Biobank (UKBB) autosomal data
was conducted using a high-coverage whole sequencing reference panel (342 million
autosomal variants) from 78,195 individuals from the Genomics England (GEL) project.
Reference panel construction and UK Biobank imputations have been described previously
(UKBB data field 21008) (Shi et al., 2024).

Briefly, the UK Biobank SNP array data consisted of 784,256 autosomal variants. Initially,
113,515 sites identified by previous centralised UK Biobank analysis as failing quality control
were removed, along with an additional 39,165 sites failing a Hardy—Weinberg equilibrium
test on 409,703 GBR samples, with a p-value threshold of 17°. The resulting SNP array data
were mapped from the GRCh37 to GRCh38 genome build using the GATK Picard LiftOver
tool. Alleles with mismatching strands but matching alleles were flipped. A further 495 sites
were removed due to incompatibility between the two reference genomes, resulting in a final
SNP array incorporating 631,081 autosomal variants used for phasing and imputation.

Haplotype estimation of the SNP array data, a prerequisite for imputation, was carried out
one chromosome at a time using SHAPEIT4 v4.2.2 (Delaneau et al., 2013) without a
reference panel, utilising the full set of UK Biobank samples. SHAPEIT4 was run with its
default 15 Markov chain Monte Carlo iterations and 30 threads. Autosomal imputation using
the GEL reference panel was conducted with IMPUTES (Rubinacci et al., 2020) (v.1.1.4).
The SNP array data were divided into 408 consecutive and overlapping chunks of
approximately 5 megabases (Mb) each, with a 2.5 Mb buffer across the genome using the
Chunker program in IMPUTES. Each chunk was further divided into 24 sample batches,
each containing 20,349 samples. IMPUTES was run on each of the 9,792 subsets using a
single thread and default settings. The resulting imputed genotype dosages are stored in
BGEN format, and phasing information is stored in VCF format. More details on the imp

UK Biobank X chromosome. As the UKBB genotypes imputed by Genomics England did
not include the X chromosome, we used the TOPMed r2 imputation for the X chromosome
(UKBB data field 21007). Imputation was performed using the TopMed Imputation Server
(Das et al., 2016). The data were divided into 10 Mb chunks, and each chunk underwent
several checks to ensure validity. These checks included verifying the inclusion of variants in
the reference panel, ensuring a sufficient overlap with the reference panel, and maintaining
an adequate sample call rate. Chunks that did not meet these criteria were excluded from
further analysis. Overall, quality control methods employed by the TopMed Imputation Server
were slightly more conservative than those employed by GEL and thus the sample size for
each sub-population decreased by roughly 0.5% (final sample sizes: AFR - 6,411; AMR -
925; CSA - 8,627; EAS - 2,595; EUR - 412,523; MID - 1,491). Genotype phasing was
performed with Eagle2 (Loh et al., 2016) and imputation was conducted with mimimac4 (Das
et al., 2016). After imputation, all chunks of each chromosome were merged into a single file.
For chromosome X, additional checks were performed to verify ploidy and ensure the
accuracy of mixed genotypes. The chromosome was split into three regions (PAR1,
non-PAR, PAR2) for phasing and imputation, and these regions were later merged into a
complete chromosome X file.
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NMR metabolite data quality control and normalisation

NMR data generation in the EstBB and UKBB has been previously described (Nightingale
Health Biobank Collaborative Group et al., 2023). During the quality control of the Nuclear
Magnetic Resonance spectroscopy (NMR) metabolomics data, we detected a difference
between distributions of several metabolites (notably Ala and His) driven primarily by
spectrometer and batch effect. We removed this unwanted technical variation using the R
package 'ukbnmr' in both EstBB and UKBB data (Ritchie et al., 2023). We excluded
individuals with more than 5 missing metabolite measurements from the cohort, confirmed
that none of the 249 metabolites had a significant number of missing measurements (8000
for EstBB, 24000 for UKBB), and applied a metabolite-wise inverse normal transformation to
obtain the final dataset.

Association testing

We conducted genome-wide association tests for each of the seven genetic ancestry groups
separately using regenie v3.1.1 (Mbatchou et al., 2021), with sex, age, age squared and the
top principal components used as covariates (PC1-PC10 for EstBB, PC1-PC20 for UKBB).
For step 1 (whole genome model), we used genotype calls for UKBB and genotyping data
for EstBB and included variants with a minor allele frequency (MAF) of at least 1%, a minor
allele count (MAC) of at least 20, Hardy-Weinberg equilibrium exact test p-values of 10"° or
less, and maximum per-variant and per-sample missing genotype rates of 0.1.

For step 2 (association testing using a linear regression model), we used imputed genotypes
and selected variants with a MAC of at least 20 and an imputation INFO score of at least 0.6.

Meta-analysis

We performed two different inverse-variance weighted fixed-effect meta-analyses:
meta_EUR on individuals of predominantly European genetic ancestry (EstBB cohort and
EUR genetic ancestry group of UKBB), and meta_ALL which encompasses all seven genetic
ancestry groups from UKBB and EstBB.

Genetic correlations

We employed LD score regression (LDSC) (Bulik-Sullivan et al., 2015) to obtain pairwise
genetic correlations for all 249 NMR metabolites. Correlations were calculated between
biobanks for each metabolite and between all metabolites in three of the larger datasets
(EstBB, UKBB_EUR and meta_EUR) using the European reference panel LD scores.

Lead variant and locus definition

We obtained the set of dataset-metabolite-variant triplets by iterating over variants that met
the genome-wide significance threshold of 5x102. The variant with the lowest p-value was
designated as the lead variant within a 2 Mb locus. In each dataset, neighbouring loci were
merged into one if their lead variants were in LD with an r® of at least 0.05. To better evaluate
the independence of lead variants, we utilised PLINK v1.90b6.26 to calculate pairwise LD
between all lead variants in a single genetic ancestry group, assigning them into shared
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cross-metabolite clusters if r2 was at least 0.8. The variant with the lowest p-value was
considered to be the only independent lead in each cluster.

Data and code availability

Complete genetic ancestry group-specific and meta-analysis association summary statistics
from this study can be downloaded from the GWAS Catalog (Sollis et al., 2023) (accessions
GCST90449363 - GCST90451603, Table S5). GWAS lead variants are available from
Zenodo (https://dx.doi.org/10.5281/zenodo.13937265). The meta_EUR meta-analysis results
can also be viewed in our PheWeb browser (hitps://nmrmeta.qgi.ut.ee/). Meta-analysis code
is available from https://github.com/ralf-tambets/EstBB-UKBB-metaanalysis/. The
individual-level UK Biobank data are available for approved researchers through the UK
Biobank data-access protocol
(https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access). The individual-level
data from Estonia Biobank can be accessed through a research application to the Institute of
Genomics of the University of Tartu (https://genomics.ut.ee/en/content/estonian-biobank).
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Supplementary Figures
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Figure S1. Heritability estimates from LD score regression for the 56 selected metabolites.
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meta_EUR leads vs heritability + 1 SE (249 metabolites)

0.25+

0.204

0.15+

h2_obs

0.10 1

0.054

»

——

0.004

200 400 600
number of independent leads

® Amino acids ® Fluid balance ® Lipoprotein particle concentrations @ Relative lipoprotein lipid concentrations
® Apolipoproteins ® Free cholesterol ® Lipoprotein particle sizes ® Total lipids

® Cholesterol ® Glycolysis related metabolites ® Lipoprotein subclasses ® Triglycerides

® Cholesteryl esters ® Inflammation © Other lipids

® Fatty acids ® Ketone bodies ® Phospholipids
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detected.

18


https://doi.org/10.1101/2024.10.15.24315557
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.10.15.24315557; this version posted October 31, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

1.0 1.0

o
o
[ ]
o
o
[ ]

beta in meta_ EUR
o
o
(]

beta in meta_EUR
o
o

o
o
.

bt
o

1.0 -1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
beta in 100k metaanalysis data beta in 100k UKBB data

Figure S3. Comparison of shared lead variant betas in our European-ancestry
meta-analysis (meta_EUR) and results presented by Karjalainen et al. Left panel,
scatter plot of GWAS lead variant effect sizes from Karjalainen et al main analysis (n = 137k,
33 cohorts) and our meta_EUR. Right panel, GWAS lead variant effect sizes from
Karjalainen et al UK biobank replication (n = 100k) and our meta_ EUR meta-analysis. Even
though Karjalainen et al included 3,701 samples from the Estonian Biobank, these were
older samples profiled in 2011- 2012 that were excluded from our meta-analysis due to
significant batch effects. Thus, there is no sample overlap between our meta-analysis and
the primary analysis conducted by Karjalainen et al. The 100k UK Biobank samples used for
replication by Karjalainen et al were also part of our meta-analysis, explaining the extremely
high concordance in GWAS effect sizes.
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meta_ALL: number of lead variants per metabolite
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Figure S4. Number of genome-wide significant loci detected among selected
metabolites shared with Karjalainen et al in the meta_ALL meta-analysis. Coloured
bars represent novel loci. Grey bars represent loci detected by both our analysis and by
Karjalainen et al. Black represents loci detected by Karjalainen et al and missed by us.
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