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One Sentence Summary:  
 

Implantable brain-computer interface studies primarily evaluate engineering-related outcome 

measures over clinical outcome measures. 

 

 

Abstract:  

Implantable brain-computer interfaces (iBCIs) aim to restore function in patients with severe 

motor impairments by translating neural signals into motor outputs. As iBCI technology 

advances toward clinical application, assessing iBCI performance with robust and clinically 

relevant outcome measures becomes crucial. This systematic review analysed 77 studies, 

with 63.6% reporting outcome measures prospectively. Decoding outcomes were most 

frequently assessed (67.5%), followed by task performance (63.6%). Only 22.1% of studies 

reported a clinical outcome measure, often related to prosthetic limb function or activities of 

daily living. Successful iBCI translation and regulatory approval requires clinical outcomes 

developed collaboratively with individuals with motor impairments. 
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INTRODUCTION 
 

Brain-computer interfaces (BCIs) are systems which record neural signals and translate these 

into commands to control external devices, thereby bypassing dysfunctional or damaged 

pathways from brain to muscles. [1,2] The aim of motor BCIs is to restore functional 

independence for individuals with severe motor impairments, for instance due to amyotrophic 

lateral sclerosis (ALS), spinal cord injury (SCI), or stroke.  

Following the first human microelectrode array implantation in 2004, [3] implantable BCIs 

(iBCIs) have enabled the control of computer cursors, digital clicks [4] and robotic prosthetic 

limbs. [5] More recently, implantable BCIs have been used to decode attempted handwriting 

[6] and attempted speech [7,8] in patients with paralysis. Alongside these advances in 

decoding and performance, fully implanted BCI systems have been developed, requiring 

substantially reduced setup burden and enabling independent use at home. [4,9–11]  

Despite advances in investigational clinical studies, no iBCI technology has yet received a 

full regulatory approval, or been adopted as a standard of care. A major challenge in the 

clinical translation of iBCI devices is an absence of consensus for clinically meaningful 

performance metrics that can be used when evaluating device efficacy in clinical trials. 

[12,13] In the USA, the Food and Drug Administration has highlighted the absence of an 

appropriate outcome measure, [14] and government funding has been awarded to investigate 

this. [15] 

In this systematic review, we aim to assess the outcome measures reported in all iBCI 

publications. We aim to determine if any consensus can be identified from existing literature 

and to inform the future selection of iBCI clinical endpoints.  
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RESULTS  
 

Search results 

Our search identified a total of 4279 records across three databases (1652 in MEDLINE, 2197 

in Embase and 430 in CINAHL). Following deduplication, 2711 records remained, of which 

341 were selected for full-text screening. A total of 77 studies were included in the final 

analysis. A full Preferred Reporting Items for Systematic Reviews and Meta-Analysis 

(PRISMA) flowchart is shown in Figure 1.  

 

Study characteristics and participant demographics 

The review included 77 studies published between 2000-2023. The majority (79%, n = 62) of 

studies were conducted in the United States. An overview of study characteristics is shown in 

Table 1. As some research participants were included in multiple publications, all publications 

were cross-referenced to identify 53 unique participants. The majority (77%, n = 41) of 

participants were male, with an average age of 46.2 years. A total of 45 patients (85%) suffered 

from amyotrophic lateral sclerosis (ALS), spinal cord injury (SCI) or stroke. An overview of 

participant demographics is shown in Table 2.  Details of all included studies are shown in 

Supplementary Materials C. Most of the included studies, 62.8% (n = 49), reported their 

outcome measures prospectively.
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Figure 1: PRISMA flowchart 
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Table 1: Overview of study characteristics 

 
 
 
Table 2: Overview of participant demographics 

Total 77 

Publication year (range) 2000-2023 

Study design   

Single-participant 51 (66%) 
Multi-participant 26 (34%) 

Country  

USA 62 
France 4 
Netherlands 3 
China 2 
Switzerland 2 
Australia 2 
Canada 2 

Total participants 53 

Gender  

Male 41 (77%) 

Female 12 (23%) 

Average age (earliest reported) 46.2 

Pathology  

Spinal cord injury (SCI) 21 (40%) 

Amyotrophic lateral sclerosis (ALS) 16 (30%) 

Stroke  8 (15%) 

Other 8 (15%) 
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Types of outcome measures reported 

Among the different categories of outcome measures, decoding-related outcomes such as 

decoding accuracy were the most frequently reported, in 67.5% of the publications (52 

publications). Task-related outcomes, such as successful task completion or target accuracy, 

were also reported most publications (63.6%, n = 49). Clinical outcomes were more rarely 

used, with only 22.1% (17 publications) reporting a clinical outcome. This is shown in Figure 

2. 

 

Figure 2: Percentage of publications reporting decoding-related, task-related and clinical 

outcome measures 
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Clinical outcome measures 

The clinical outcome measures used varied widely, with 20 different clinical outcomes reported 

across 17 publications. Nearly half (47%, n = 8) of the studies reporting a clinical outcome 

were published after 2020. 

Clinical outcome measures most commonly related to upper limb functioning, such as the 

Action Research Arm Test (ARAT) or the Graded and Redefined Assessment of Strength, 

Sensibility and Prehension (GRASSP), used by 13 publications. The second most commonly 

assessed type of clinical outcome were activities of daily living (ADLs), such as 

communication, online banking and shopping, with 6 publications assessing completion of at 

least one ADL. Other outcome measures relate to assistive device functioning, such as the 

Psychosocial Impact of Assistive Devices (PIADS) scale, adverse events and quality of life 

(QOL). This is shown in Figure 3. 
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Figure 3: (A) Number of publications reporting different clinical outcome measures, grouped 

by category. (B) Number of publications reporting different individual clinical outcome 

measures. ARAT = Action Research Arm Test. BBS = Berg Balance Scale. BBT = Box and 

Block Test. EQ-5d-5l = EuroQOL-5d-5l. FMMIS = Fugl-Meyer Motor Impairment Score. 
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GRASSP = Graded and Redefined Assessment of Strength Sensibility and Prehension. GRT = 

Grasp Release Test. HADS = Hospital Anxiety and Depression Scale. ISNCSCI = International 

Standards for Neurological Classification of Spinal Cord Injury. MOS SF-36 = Medical 

Outcomes Study Short Form-36. PIADS = Psychosocial Impact of Assistive Devices Scales. 

QIF-SF = Quadriplegia Index of Function - Short Form. QUEST 2.0 = Quebec User 

Evaluation of Satisfaction with Assistive Technology version 2.0. SCIM = Spinal Cord 

Independence Measure. 
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Decoding- and task-related outcome measures 

The most commonly reported engineering outcome measure was accuracy, with 76% of of the 

included studies (59 publications) reporting this as an outcome. Task accuracy was most 

commonly reported, e.g. task success rate or accuracy (47%, n = 36) followed by model 

accuracy, e.g. decoding or classification accuracy (44%, n = 34). 

Several studies involved iBCIs developed for the purpose of assisting communication, e.g. via 

cursor-based typing or speech/phoneme decoding. Out of 78 total studies, 14 studies reported 

a communication-speed outcome measure such as correct characters per minute (CCPM) or 

words per minute (WPM). Of these studies, the majority (8 publications) used character-based 

metrics such as CCPM or CPM, although more recent studies (6 publications) tend to use word-

based metrics such as WPM. 

Another metric of speed, the information transfer rate (ITR) and its derivatives, was reported 

in 8 studies (10% of all publications). Combined, a total of 18 studies (23%) reported a speed-

related metric such as CPM or ITR.  
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DISCUSSION  
 

To our knowledge, this is the first systematic review of outcome measures used to assess iBCI 

devices. We identified a total population of 53 participants with iBCIs evaluated across 77 

studies. Most studies assessed iBCI outcomes using measures of engineering performance, 

such as decoder or task performance. Only 22.1% (n = 17) studies reported a clinical outcome 

measure, most of which evaluated robotic prosthetic upper limb function (n = 13). The 

proportion of studies evaluating clinical iBCI outcomes has increased in recent years, however 

clinical measures were heterogenous and often specific to the types of tasks being performed.  

 

Clinical iBCI outcome measures are increasingly utilised, but highly heterogenous 

Of the 18 studies we identified utilising clinical outcome measures, nearly half (47%, n = 8) 

were published since 2020, and this represents a higher proportion of the outcome assessments 

being used to assess iBCI devices. Despite increasing interest in evaluating the clinical benefit 

of iBCI devices, there is substantial variability in the assessments being used. This has included 

quality of life (QoL) metrics, specific measures of upper limb function, and assessments of 

satisfaction in the use of assistive devices. 

In most cases, assessments were specific to a single task or function being restored, most 

notably in the case of restored upper limb function. Whilst these measures may be useful in a 

specific context, such measures are neither agnostic to task nor device, precluding use as a 

generalised measure of iBCI outcomes. Moreover, assessments of physical function are less 

immediately relevant, as ongoing iBCI studies are primarily aiming to restore control of digital 

devices and/or communication (e.g. BrainGate2 (NCT00912041), Neuralink PRIME 

(NCT06429735), Synchron COMMAND (NCT05035823),  BRAVO (NCT03698149)). This 

suggests outcome measures which can capture the clinical benefits of restored digital functional 
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independence are most appropriate for the first wave of iBCI devices approaching clinical 

translation.  

 

The single most commonly captured clinical outcome was the performance of activities of daily 

living. However, this typically comprised assessment of individual activities rather than using 

an existing standardised measure. To our knowledge, no ADL currently exists which captures 

restored digital functional independence. The development of a ‘digital activities of daily 

living’ instrument has previously been proposed by Fry et al., and the US Food and Drug 

Administration. [12,13].  

 

The quality of life (QoL) measures identified in our review, such as the EuroQol-5D-5L, are 

existing measures which are agnostic to both device type and the function being restored. 

QoL assessments measure an individual's perception of their overall well-being, which 

includes feelings about health status and the nonmedical aspects of one’s life. However, QoL 

assessments are typically used only as supplementary measures when evaluating therapeutic 

interventions due to inherent limitations. They are confounded by a wide range of variables, 

such as socioeconomic status and psychological wellbeing, leading to temporal fluctuations 

and a high degree of inter-subject variability. If constricted to health-related QoL, this is still 

confounded by comorbidities. Moreover, a study of patient perceptions in ALS, a population 

involved in current BCI studies, has demonstrated persistently elevated QoL, despite 

progressive paralysis of all four limbs and the resulting dependence upon carers. [16] This 

suggests an effective psychological adaptation to new deficits, which would skew the 

assessment of any intervention to restore bodily functions. Whilst it is necessary to capture 

patient reported outcomes in randomised studies of interventions, [17] and a QoL measure 
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may be the most such appropriate assessment, these challenges may limit the potential for 

QoL assessments as a primary measure of clinical benefit with iBCI devices.  

Given the inherent heterogeneity in device types, desired outputs, patient selection, and 

baseline motor impairments, it is unlikely that one single comprehensive measure will be 

developed to evaluate overall iBCI clinical benefit. To this end, Fry et al. (2022) suggest that 

BCI clinical outcome measures should address three dimensions: how a patient ‘feels’ (e.g. 

quality of life scores), how a patient ‘functions’ (e.g. activities of daily living scale) and how 

a patient ‘survives’ (i.e. health-related outcomes, including device safety). [12]  

 
Engineering performance measures have been selected with greater consistency 
 
Engineering measures of decoder and task performance were more commonly and 

consistently used in the included studies. Accuracy was measured in 76% of studies (n=59). 

Performance measures related to speed, e.g. characters per minute or bit rate, were utilised in 

only 23% of studies (n = 18). The preference for measuring device accuracy as an 

engineering metric is aligned with patient preference literature, which demonstrates patients 

prioritise high accuracy over other aspects of iBCI performance, such as speed.  Whilst 

commonly used and preferred by patients as a performance characteristic, accuracy is a one 

dimensional measure and does not give information on the task difficulty or complexity, e.g. 

the degrees of freedom, cognitive load being used, or training burden. Moreover, isolated 

measurement of accuracy does not account for the environmental context in which a task can 

be performed. Therefore, such engineering measures do not account for how an individual 

feels and functions in their daily life, [18] and the US Food and Drug Administration have 

referred to these assessments as ‘lab-tests’, rather than assessments of real world function. 

[13] Inclusion of engineering metrics, such as accuracy, may still be useful to evaluate 

performance of the BCI device, however additional assessments of real world function will 

be necessary to determine clinical beneifts.  
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Accuracy was most commonly defined at the task level, i.e., number of successful trials/total 

number of trials, with assessment in 36 studies (47%). This definition at the task level is most 

appropriate for application across different iBCI studies, as it is a standardised accuracy 

measure for discrete, continuous, and hybrid discrete/continuous iBCI applications. Other 

definitions, such as classification accuracy, are specific to the nature of the paradigm 

employed when decoding motor intentions.   

Whilst information transfer rate or characters per minute of language output have also been 

referenced as measures of BCI function, [13] these assessments were overrepresented by 

benchmark studies of iBCI performance, and less commonly used in the literature overall. 

However, it may be the case that these measures are only reported if successful in 

demonstrating a new breakthrough, as there is less frequent reporting on low or failed 

outcome measures across the academic literature. 

 

Towards a standardised and clinically meaningful iBCI outcome measures 

Current iBCI research primarily utilises engineering-related outcome measures, quantifying 

device performance in terms of decoding accuracy or subsequent performance at tasks. This 

focus is understandable, given the considerable ongoing and addressed technical challenges 

in developing iBCI systems. Furthermore, device-related outcomes will remain important in 

the context of fundamental science research, iBCI quality control, and development of next 

generation devices. However, to develop and validate devices for clinical translation, an 

increased focus on clinically meaningdul, patient-centred concepts of interest is essential. 

[13,18] This may include evaluations of functional independence, patient quality of life, or 

direct assessments of restored bodily functions.  

The selection and development of appropriate clinical outcome assessments must involve 

multi-stakeholder consensus, [13] including input from individuals with lived experience of 
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severe motor impairment. This is critical to ensure future device outcomes match a user’s 

priorities and expectations.  Moreover, given the emergence of multiple companies working 

to translate iBCI devices at scale, this work must also ensure collaboration across different 

commercial actors. In the USA, the creation of the iBCI collaborative community (iBCI-CC) 

is an important step to enable this work (ibci-cc.org), along with organisation of multiple 

workshops by regulators to discuss iBCI clinical outcome assessments. [13,14] 
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MATERIALS AND METHODS 
 

This systematic review was conducted in line with Preferred Reporting Items for Systematic 

Reviews and Meta-Analysis (PRISMA) 2020 guidelines. A PRISMA checklist is attached in 

Supplementary Materials A. The review was prospectively registered on Open Science 

Framework (OSF) (https://osf.io/ky5g4). 

 

Search strategy 

Search strategies were developed for three databases (MEDLINE, Embase and CINAHL) 

which combined synonyms for brain-computer interfaces, intracortical and patient. A senior 

medical librarian was consulted throughout the process. The search was carried out using Ovid 

(Wolters Kluwer, Netherlands) and EBSCO, and run from inception to 12th December 2023. 

An example search strategy is included in Supplementary Materials B. Further studies were 

identified through reference lists of included records. 

 

Eligibility criteria 

Screening was performed in accordance with the criteria shown in Table 3. The scope of this 

review was limited to implantable BCI devices, defined as an intracranial device which records 

neural activity and decodes this into an output signal to control an external effector. Non-

invasive BCI devices and cochlear implants have previously been discussed in detail. [19–23] 

Additionally, studies were excluded where transient implantation was carried out for the 

primary purpose of peri-operative care, e.g. seizure localization in epilepsy patients.  
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Table 3: Exclusion criteria. 

 

 

Study selection 

Included records were screened by two independent reviewers (ED, ES). An initial pilot screen 

of 50 records was carried out to ensure concordance, following which reviewers were blinded 

to each other’s decisions using Rayyan (Rayyan Systems Inc, Cambridge, MA, USA). 

Disagreements were resolved by consensus or discussion with a third reviewer (JB). Full-text 

screening was carried out by the same reviewers (ED, ES). 

 

Data management, extraction, and appraisal 

Data extraction was carried out using a piloted proforma in Microsoft Excel (Microsoft, 

Redmond, WA, USA). Risk of bias assessment was carried out in duplicate by two reviewers 

(ES, ED) using the Mixed Methods Appraisal Tool (MMAT) checklist. Zotero (Zotero, Vienna, 

VA, USA) was used for reference management. 

 

Data synthesis 

Analysis was carried out in R (R Core Team, 2019). Plots were produced using the ggplot2 

package. [24] Figures were edited using Inkscape (Inkscape Project, 2020).  

As protocol papers were rarely published prior to publication of the included manuscripts, 

outcome measures were considered to be prospectively reported if they were clearly defined in 

the methods section. 

   
Exclusion criteria 

1 
  
No use of implantable BCI devices 

2 
  
No discussion of BCI recalibration 

3 
  
Not a full text, independent publication 

4 
  
Not a primary study 

5 
  
Text not available in English 

6 
  
Full text not available 

7 
  
Non-human subjects 
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During data extraction, outcome measures were divided into three categories: 1. evaluation of 

decoder performance (e.g. classifier accuracy), 2. evaluation of task performance (e.g. 

successful target acquisition), or 3. assessment of clinical outcome (e.g. Graded Redefined 

Assessment of Strength, Sensibility and Prehension, GRASSP scale). 
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