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Abstract 

Introduction: Rheumatoid arthritis (RA) is an auto-immune disease which causes irreversible damage 

to tissue and cartilage within synovial joints. Rapid diagnosis and treatment with disease-modifying 

therapies is essential to reduce inflammation and prevent joint destruction. RA is a heterogeneous 

disease, and many patients do not respond to front-line therapies, requiring escalation of treatment 

onto biologics, of which TNF inhibitors (TNF-i) are the most common.  

 

Objectives/Methods: In this study we determined whether serum metabolomics, using nuclear 

magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy, could discriminate 

RA blood sera from healthy human controls and whether serum metabolomics could be used to 

predict response or non-response to TNF inhibitor (TNF-i) therapy.  

 

Results: NMR spectroscopy identified 35 metabolites in RA sera, with acetic acid being significantly 

lower in RA sera compared to healthy controls (HC, FDR<0.05). PLS-DA modelling identified 2-

hydroxyisovalericacetic acid, acetoacetic acid, mobile lipids, alanine and leucine as important 

metabolites for discrimination of RA and HC sera by 1H NMR spectroscopy (averaged 83.1% balanced 

accuracy, VIP score >1). FTIR spectroscopy identified a significant difference between RA and HC 

sera in the 1000-1200 cm-1 spectral area, representing the mixed region of carbohydrates and nucleic 

acids (FDR<0.05). Sera from RA patients who responded to TNF-i were significantly different from 
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TNF-i non-responder sera in the 1600-1700 cm-1 region (FDR<0.05).  

 

Conclusion: We propose that NMR and FTIR serum metabolomics could be used as a diagnostic tool 

alongside current clinical parameters to diagnose RA and to predict whether someone with severe RA 

will respond to TNF-i. 

 

1. Introduction 

Rheumatoid Arthritis (RA) is a chronic autoimmune condition characterised by inflammation of 

synovial joints, causing swelling, stiffness and pain that can lead to irreversible joint damage if left 

untreated (Firestein 2003). Affecting 1% of the global population (Mizoguchi et al. 2018), it is the most 

common inflammatory joint disease (Cascao et al. 2010), and is a serious health and economic 

problem. In addition to joint inflammation, people with RA are at a higher risk of developing 

comorbidities such as osteoporosis, cardiovascular disease and lung disease (Figus et al. 2021), 

impacting negatively on quality of life and ability to work. Rapid diagnosis and initiation of preventative 

interventions for RA at the earliest stage can affect the disease course and halt progression of erosive 

disease. Recognising and diagnosing early RA from other inflammatory arthritides at the onset of 

disease is not straightforward and diagnosis is made from a spectrum of symptoms, inflammatory 

blood markers, x-ray and/or ultrasound of joints (Dey et al. 2023). We suggest that metabolomics 

techniques could help increase confidence in this diagnosis. Furthermore, predicting treatment 

outcomes has been a focus of many clinical studies (Anderson et al. 2020; Koo et al. 2021; Norvang 

et al. 2018). Despite its relative success, only around 60% of patients with severe RA have any 

measureable decrease in disease activity in response to TNF inhibitor (TNF-i) therapy, and only 30-

40% achieve a low disease state, as classified by DAS28 scores (28-joint Disease Activity Score) 

below 2.6 (Kihara et al. 2017). Whilst more recent multiomics approaches have attempted to 

determine response to front-line methotrexate treatment (Wang et al. 2012) and TNF-i (Yoosuf et al. 

2022) there is still currently no clinical diagnostic test to help stratify people with RA to an optimal 

treatment regime. 

 

Serum metabolomics is a powerful tool for the differentiation of disease classes. Metabolic profiles are 

highly dynamic and differences may arise in disease even when protein or gene level do not show any 

change. NMR spectroscopy approaches have been used to obtain a global, unbiased views of small 

molecules in intact biofluids and tissues with minimal sample preparation, thus contributing to the 

understanding of the molecular characteristics of many diseases without the separation processes that 

may contribute significantly to the analytical variability (Gowda et al. 2014). Serum has been widely 

used in human blood metabolomics as it provides a wealth of metabolic information on health and 

disease, and is relatively easy to obtain by venipuncture without the need for invasive joint or tissue 
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biopsy (Dunn et al. 2011). However, serum can often encounter potential confounding effects of 

haemolysis which affect the overall analysis (Gowda et al. 2014). In a recent study, serum was 

analysed by 1H-NMR to identify the markers in serum for early and reliable differential diagnosis of 

reactive arthritis and RA (Dubey et al. 2019). This work demonstrated that people with reactive arthritis 

are clearly distinguishable from controls and furthermore these patients can also be distinguished from 

people with RA based on the metabolic profiles. 

 

Analysis of serum samples by 1H-NMR metabolomics requires minimal sample preparation, however 

the technology is not readily available in hospital laboratories. Developing an affordable, sensitive, 

specific and user-friendly portable diagnostic tool is critical to assure fast and accurate diagnosis of 

conditions. Fourier transform infrared (FTIR) spectroscopy is an analytical technique that has been 

widely used to understand composition of soft biological mediums and complex biofluids. Vibrational 

spectroscopy has seen an expansion in biomedical research for the evaluation of blood and blood 

derivatives such as plasma and serum (Crocco et al. 2023). Metabolic changes in body fluids alters 

the constituent molecules, providing strong guidance for subsequent clinical assessment (Baker et al. 

2016). Attenuated total reflectance (ATR) FTIR serum analysis of patients diagnosed with breast 

cancer demonstrated high sensitivity and specificity in detection of the disease, close to those of 

mammography and ultrasound (Sitnikova et al. 2020). ATR-FTIR has also been shown to have a high 

sensitivity in the diagnosis of osteoarthritis in equine serum (Paraskevaidi et al. 2017). The presence 

of diagnostic autoantibodies such as anti-citrullinated protein antibody, rheumatoid factor, anti-

neutrophil cytoplasmic antibodies, and anti-nuclear antibodies in auto-immune sera has been shown 

to correlate significantly with the wave numbers in the IR spectra (Durlik-Popinska et al. 2021). 

 

The aim of this study was to use 1H NMR spectroscopy to investigate the metabolic composition of 

serum from people with RA. Using a combination of NMR and FTIR spectroscopy we then analysed 

the potential of serum metabolomics to discriminate RA sera from healthy individuals. Finally, we look 

to differentiate pre-treatment sera from responders and non-responders to TNF-i treatment based on 

follow up clinical data to determine potential spectral markers. 

 

2. Methods 

 

2.1 Ethical Approval 

The study was approved by the NRES Committee North West (Greater Manchester West, 

Manchester, UK, Ref: 11/NW/0206) for the collection of sera from people with RA, and the University 

of Liverpool Central Research Ethics Committee (Ref: 1672) for the collection of sera from healthy 
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controls (HC). All participants gave written, informed consent in accordance with the Declaration of 

Helsinki. All patients fulfilled the ACR criteria for the diagnosis of RA (Aletaha et al. 2010) and had 

severe RA with a DAS28 score >5.1. Response to TNFi was determined at 3 months by a decrease in 

DAS28 score >1.2. 

 

2.2 Serum collection 

Approximately 9 mL whole blood was drawn by venipuncture into Z serum clot activator monovette 

tubes (Griener Bio-one), followed by resting at room temperature (20-25oC) for 30 mins. The tube was 

then centrifuged at 1,500 xg for 15 min to retrieve the serum and 1 mL of sample was snap-frozen in 

liquid nitrogen and stored at -80oC. 

 

2.3 1H-NMR metabolomics 

Immediately prior to NMR acquisition, the serum samples were defrosted on ice for 30 min. 120 μL of 

each sample was added to 120 μL of buffer master mix (200 mM sodium phosphate pH 7.4 in 20% 
2H2O and 2.4 mM NaN3) and kept on ice throughout. The samples were centrifuged at 21,500 xg for 5 

min at 4oC, and 200 μL of the supernatant transferred into a 3 mm outer diameter NMR tubes. Serum 

samples were analysed on a Bruker Ascend 700 MHz spectrometer (Massachusetts, USA) fitted with 

a 5mm TCI Cryoprobe, Avance III HD console and a SampleJet automated sample changer, keeping 

samples chilled (4-10oC) prior to acquisition. Prior to sample acquisition the spectrometer was 

calibrated for temperature and magnetic field stability using accepted quality assurance criteria as 

defined by Metabolomics Standards Initiative (MSI) (Sumner et al. 2007). The spectra for the serum 

samples were acquired at 37oC using 1H 1D CPMG edited pulse sequence (vendor supplied 

cpmgpr1d) was used to attenuate the signals from large molecules (proteins etc.) enabling quantitative 

appraisal of small molecule metabolites  (Soininen et al. 2009). Each individual spectrum underwent 

quality control within the vendor supplied software (Bruker Topspin v3.6) by observing in each spectra 

water suppression quality, baseline correction and half height half width of the glucose anomeric peak 

at a chemical shift of 5.244 ppm. Alignment was checked by the anomeric glucose peak at 5.24 ppm 

and the binned (via integration of the area under each peak/bin region) using a pattern file previously 

produced for serum samples, with peaks annotated using the Chenomx NMR Suite 8.2 software 

(Chenomx Inc., Edmonton, Alberta, Canada). Representative metabolite peaks were selected using 

the correlation reliability score (CRS) developed by Grosman (Grosman 2020) which takes into 

consideration the property of NMR which states that peak intensities of correlated metabolites across 

the spectra will increase or decrease together.  
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2.4 Serum FTIR analysis 

High throughput Fourier transform infrared (FTIR) spectroscopy was used to obtain infrared spectra 

from serum samples. Samples were first diluted in deionised water (1:5) in order to avoid signal 

saturation at the detector as well as non-linear effects. Samples were transferred to 96-well silicon 

substrates (Bruker Ltd, Coventry, UK) and dried (approximately 1 h) at 37oC prior to data collection. 

FTIR data were acquired in the mid-IR range (400-4000 cm-1), with 64 spectral co-adds and 4 cm-1 

spectral resolution using a FTIR spectrometer (Bruker Invenio, Bruker Ltd, Coventry, UK). A total 

number of 4 infrared spectra were collected and from each sample/patient and all the spectra were 

vector normalised and baseline corrected. Mean average of the obtained spectra from each patient 

serum was calculated and carried forward for analysis.  

 

2.5 Statistical analysis of metabolic profiles  

The statistical calculations were carried out with software using R (v4.0.2) for univariate analysis and 

MATLAB 2023b (Mathworks, MA) for multivariate analysis. The comparison of NMR spectra between 

groups consisted of the analysis of the respective vectors of bucket integrals by using both univariate 

and multivariate statistics. Following tests for normality using the Shapiro-Wilks test, univariate 

analysis was carried out by Student’s t-test or Mann-Whitney test as appropriate, with application of a 

Benjamini-Hochberg false discovery rate (FDR) correction. For multivariate analysis, data were Pareto 

scaled before applying unsupervised PCA. Supervised PLS-DA was employed to build predictive 

models between experimental groups. The model performance was assessed by employing a five-fold 

double cross-validation (CV) procedure. This procedure employs two nested loops of CV: the outer 

loop and the inner loop. The data were firstly split into 5 folds (outer loop), each fold was used as a 

test set and the remaining 4 folds were used as the training set. The outer loop was repeated five 

times so that each fold had been used as a test set once. Within each training set defined by the outer 

loop, another five-fold CV (inner loop) was performed to tune the PLS-DA model (i.e., to select the 

optimal number of PLS-components with the minimal classification error). A PLS-DA model was then 

built on the training set with the optimal number of PLS-components and applied to the corresponding 

test set defined by the outer loop to estimated the performance of PLS-DA model which was assessed 

by balanced error rate (BER), defined as the average of the error rate of each class, and also the 

confusion matrix. In order to determine the statistical significance of the results and also to minimise 

the effect of variance caused by different combinations of training and test set, the double CV 

procedure was repeated 1,000 times  with the order of samples randomly permuted each time, within 

each double CV procedure, a permutation test was also performed. Within each permutation test, the 

same double CV procedure was performed, but trained with the lables randomly permuted (i.e., a 

NULL model). The performance of the NULL was then compared with those of the model trained with 

correct labels (i.e., an observed model). Based on the results of 1,000 such comparisons, an empirical 
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p-value was derived by calculating the percentage of the cases when the performance of the NULL 

model was better than that of the observed model, if there is not a single case that the NULL model 

was better than the corresponding observed model, the p-value would be designated as <0.001.  

3. Results 

3.1 1H-NMR Serum Metabolomics analysis of RA sera  

Serum spectra were divided into 160 bins and a total of 31 unique metabolites were annotated. CRS 

(Grosman 2020) was performed on the serum NMR data and a representative bin per metabolite was 

selected and carried forward for analysis (Table 1). 

 

Table 1: List of annotated metabolites from serum spectra. Table reports the total number of annotated 
peaks for each metabolite and the level of identification based on the metabolite reporting standards set out 
by the metabolomics society. A representative bin was chosen out of all related annotated peaks and 
brought forwards in the subsequent statistical analysis. HMDB = Human Metabolome Database. 
 
Metabolite HMDB Number of peaks 

annotated in 
spectrum 

MSI level of 
identification 

defined in  (Sumner 
et al. 2007) 

Representative 
Bin 

shared 

2-Hydroxybutyric 
Acid 

HMDB0000008 5 2 4.0319 - 4.0087 single 

2-Hydroxyisovaleric 
Acid 

HMDB0000754 5 2 0.8934 - 0.8794 single 

3-Hydroxybutyric 
Acid 

HMDB0000011 5 2 2.4285 - 2.4119 single 

Acetic Acid HMDB0000042 1 2 1.9232 - 1.9151 single 

Acetoacetic Acid HMDB0000060 1 2 2.237 - 2.2246 single 

Alanine HMDB0001310 1 2 1.499 - 1.4701 single 

Arginine HMDB0000517 8 2 1.9151 - 1.86 single 

Choline HMDB0000097 1 2 3.2032 - 3.1837 single 

Citric Acid HMDB0000094 2 2 2.684 - 2.649 single 

Creatine HMDB0000064 4 2 3.045 - 3.0372 single 

Desaminotyrosyne HMDB0002199 2 2 6.9768 - 6.9459 single 

Glucaric Acid HMDB0000663 3 2 4.1436 - 4.1361 single 

Glucose HMDB0000122 30 2 3.9206 - 3.9083 single 

Glutamic Acid HMDB0003339 6 2 2.2606 - 2.237 single 

Histidine HMDB0000177 12 2 7.2292 - 7.1669 single 

Isoleucine HMDB0000172 3 2 1.0312 - 1.0023 single 

Isopropyl Alcohol HMDB0000863 1 2 1.1902 - 1.1527 single 

Lactic Acid HMDB0000190 6 2 4.1261 - 4.0922 single 

Leucine HMDB0000687 4 2 0.9473 - 0.9311 single 

Lysine HMDB0000182 3 2 3.0573 - 3.045 single 

Mannose HMDB0000169 1 2 5.2 - 5.1608 single 

Mobile Lipids  9 2 0.8794 - 0.8566 single 

Myo Inositol HMDB0000211 2 2 3.595 - 3.5703 single 

NDMA HMDB0255256 1 2 3.1565 - 3.1465 single 

Phenylalanine HMDB0000159 3 2 7.3429 - 7.2987 single 

Phosphocholine HMDB0001565 1 2 3.2345 - 3.2032 shared 
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Proline HMDB0251528 5 2 2.3305 - 2.2777 single 

Propylene Glycol HMDB0001881 1 2 1.1527 - 1.1276 single 

Threonine HMDB0000167 1 2 3.6199 - 3.595 shared 

Tyrosine HMDB0000158 2 2 7.0088 - 6.9768 single 

Valine HMDB0000883 4 2 1.0582 - 1.0312 single 

 

Principal Component Analysis (PCA) did not highlight any separation between RA and HC groups 

(Figure 1A). Univariate analysis identified acetic acid has being lower in RA sera compared to HC 

(Figure 1B, FDR <0.05). The results of PLS-DA suggested that there is a partial separation between 

RA and HC samples. The averaged confusion matrix of the prediction of test sets is shown in Figure 

1C, the averaged balanced accuracy was 83.1% with a p < 0.05. Although it is worth mentioning that 

the rather discrete NULL and observed distributions (Figure 1D) suggests that the statistical power 

was low and this is mainly due the number of biological replicate samples. The averaged VIP scores 

plot (Figure 1E) shows the importance of each variable to the model and the plot shows that 2-

hydroxyisovaleric acetic acid, acetoacetic acid and mobile lipids were the most important metabolites 

for model prediction (VIP score >1), the latter representing high density lipids (HDL), low density lipids 

(LDL) and triglycerides (Figure 1E,F). Amino acids alanine and leucine were also important 

metabolites in the model prediction (Figure 1F).  

  
Figure 1: Univariate and multivariate analysis of RA and HC sera by 1H NMR metabolomics. (A) PCA 

scores plot of HC and RA serum. Brackets report the variance explained by the PC. (B) Acetic Acid was 

significantly lower in RA sera (FDR<0.05). (C) PLS-DA averaged confusion matrix of predicted tests sets. (D) 

The distributions of the performance of PLS-DA classification models: observed distribution (blue) and NULL 

distribution (red). (E) Top VIP scores of PLS-DA model built on disease discrimination. In red metabolites with 

VIP scores > 1. (F) Boxplots of important metabolites indicated by PLS-DA measured in HC and RA serum.  

 

3.2 FTIR serum metabolomics 

We next examined the chemical composition of serum samples derived from HC, RA and SLE using 

A B

F

C

E

FDR<0.05

p < 0.05 (0.0104)

D

HC

RA

HC RA

88.50% 11.50%

22.27% 77.73%
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FTIR spectroscopy. Figure 2 shows the quantile plot of the whole serum spectra (400 – 4000 cm-1). 

The biomolecular and bonding vibration assignments are tentative and are based on numerous 

studies (Ghimire et al. 2020; Ramalingam et al. 2014) as shown in Supplementary Table 1. For the 

subsequent analysis the fingerprint region (940 – 1771 cm-1) was re-scaled by using extended 

multiplicate signal correction (EMSC) method (Afseth et al. 2012). 

  
Figure 2: Quantile plot of serum FTIR spectra. Plots depict the median spectral plot (black line) and variation 

from the median within each cohort, HC (n=10) and RA (n=20) (yellow to red scale) 

 

3.3 Prediction of response to TNF inhibitors using serum metabolomics 

We next investigated the potetial of serum metabolomics to predict response to TNF-i therapy in RA. 

First using 1H NMR metabolomics, we saw no separation by PCA (Figure 3A) and univariate analysis 

found no significant difference between any metabolite bins (data not shown). Similarly, PLS-DA did 

not show any separation between the RA responders vs. non-responders to TNF-i (data not shown) 

with poor balanced accuracies (55.7%, p > 0.1) which were not significantly better than those of NULL 

modes.  

 

Next we performed a univariate t-test on the FTIR spectra to determine the difference between the RA 

TNF-i responders and non-responders groups, and against the HC group. When compared against 

the HC group, both RA groups achieved a significant difference in the 1000-1200 cm-1 spectral area, 

the mixed region of carbohydrates, and nucleic acids (Figure 3B, FDR<0.05). TNF-i responders were 

significantly different from both HC (FDR<0.05) and TNF-i non-responders (FDR<0.05) in the 1600-

1700 cm-1 and close to significance in 1450-1500 cm-1 spectral regions. PCA of HC and RA TNF-i non-

responders serum showed an overlap with clear variance within groups (Figure 3C). HC and RA TNF-i 

responders showed a partial separation on PC2 (Figure 3D) whereas RA TNF-i responders vs RA 

TNF-i non-responders were completely overlapping (Figure 3E). We used the second derivative of 

absorbance intensities ratio at 1622/1651 cm−1 to estimate the deformation-induced changes in FTIR 

spectra and also as a semi quantitative determination of the β-sheet/α-helix content ratio. A significant 

difference between HC and RA TNF-i non-responders was observed by ANOVA with Tukey’s post-hoc 

test (Figure 3F, p-value=0.029). However no significant difference was observed when comparing RA 

responders vs HC or RA TNF-i responders vs RA TNF-i non-responders. 

HC RA

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.24315530doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.15.24315530
http://creativecommons.org/licenses/by/4.0/


 9

    
Figure 3. Predicting response to TNFi using NMR and FTIR serum metabolomics. (A) PCA scores plot of 

1H NMR analysis of sera from RA TNF-i responders (RA-R, n=30) and non-responders (RA-NR, n=8). Brackets 

report the variance explained by the PC. (B) FTIR p-value calculation of HC vs RA TNF-i responders (red), HC 

vs RA TNF-i non-responders (blue) and RA TNF-i responders vs RA non-responders (green) (n=10 each group). 

The region above by the horizontal black line represents adj.pvalue<0.05. (C) FTIR PCA score plots for HC vs 

RA TNF-i non-responders, (D) HC vs RA TNF-I responders (E) and RA TNF-i responders vs non-responders. (F) 

Boxplot showing the ratio of the second derivative of the area integrals of α-helix/β-sheet (1622/1650 cm-1) and 

Tukey post-hoc p-values. 

 

PLS-DA models were employed on the fingerprint region of the spectra (wavenumber 940 cm-1 to 

1771 cm-1) to build predictive models for each type of classification (HC vs. RA-R, HC vs. RA-NR and 

RA-R vs. RA-NR). The results showed that high averaged balanced accuracy achieved by models 

discriminating HC and RA-R (92.3%,Figure 4A, p < 0.001); by contrast, the averaged balanced 

accuracy was much worse in models discriminating HC and RA-NR (73.1%, Figure 4B p < 0.05). For 

models discriminating RA-R and RA-NR, the averaged balanced accuracy was only 59.7% which is 

not statistically significant with p > 0.1 (data not shown). It is interesting to see that although the 

results of discriminant analysis of RA-R vs. RA-NR was not statistically significant, RA-R and RA-NR 

have different extent of overlap when compared to the HC group (Figure 4C,D). It is likely that these 

two group also have subtle differences in their FTIR spectra but the current study does not have 

sufficient statistical power to detect this, mainly due to very limited number of samples. The 

distributions of the VIP scores showed that the most important area for classification in both RA 

groups versus HC was the 1000-1200 cm-1 spectral area, the mixed region of carbohydrates, and 

nucleic acids. The α-helix and β-sheet area for proteins at 1600 to 1700 cm-1 was also important in all 

A B

C D E F

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.24315530doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.15.24315530
http://creativecommons.org/licenses/by/4.0/


 10

the models created (Figure 4C,D). 

  
Figure 4: Multivariate analysis of FTIR spectra. (A) Averaged PLS-DA confusion matrix for HC vs RA-R 

classification and the distributions of performance of observed models (blue) and NULL models(red). (B) 

Averaged PLS-DA confusion matrix for for HC vs RA-NR classification and distributions of observed models 

(blue) and NULL models (red). VIP scores plots of PLS-DA model for (C) HC vs RA-R and (D) HC vs RA-NR. 

Areas of interest relating to carbohydrates and nucleic acids (1000-1200cm-1) and a-helix and b-sheet (1600-

1700cm-1) are indicated in blue. 

 

4. Discussion 

In this study we have analysed the serum of people with RA and healthy controls to investigate the 

metabolic composition of this biofluid using two spectroscopy techniques, FTIR and 1H-NMR. Previous 

studies reported significant discriminant properties for comparing HC and RA sera using 1H-NMR with 

valine, isoleucine, lactate, alanine, creatinine and histidine as the main discriminating factors  (Dubey 

et al. 2019; Zabek et al. 2016). Our NMR metabolomics analysis of serum identified acetic acid levels 

as significantly lower in RA compared to HC, and multivariate modelling also identified 2-

hydroxyisovaleric acid, acetoacetic acid, mobile lipids and the amino acids alanine and leucine being 

the most influential metabolites in PLS-DA models between HC and RA which reached an averaged 

83.1% balanced accuracy on blind test sets which was statistically significant compared to the NULL 

distributions (p < 0.05).  

 

Our analysis provides important insight into the metabolic changes associated with inflammation in 

RA. The most significant difference between RA and HC sera was in the levels of acetic acid, which 

were lower in RA. Acetic acid is a short chain fatty acid (SCFA) and is produced by the fermentation of 

p < 0.05 (0.0229)

p < 0.001 (0.0003)

HC

RA-R

HC RA-R

92.78%

91.91%

7.22%

8.09%

77.91%HC

RA-NR

RA-NRHC

68.35%

22.09%

31.65%

A

B

C
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nucleic acids

α-helix & β-sheet
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PLS-DA model, HC vs. RA-NR

D
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dietary fibers by gut microbiota. It is one of several SCFAs that have been implicated in the regulation 

of immune responses including regulating immune cell activation and differentiation as well as the 

balance between pro-inflammatory and anti-inflammatory cytokine production (Lin et al. 2023). Lower 

levels of SCFAs have been observed in the feces of people with RA and in animal models of RA. In 

antigen-induced arthritis (AIA) mice, supplementation with SCFA decreased arthritis severity and 

supported regulatory B cell differentiation via the aryl-hydrocarbon receptor (AhR) (Rosser et al. 

2020). SCFA can also regulate the differentiation and function of T cells, and promote the 

differentiation of naïve T cells into regulatory T cells (Tregs), which help in maintaining immune 

tolerance (Lin et al. 2023).  2-hydroxyisovaleric acid is a breakdown metabolite of branched chain 

amino acids (BCAA) including leucine, and changes in the levels of these metabolites could reflect 

increased protein turnover and muscle wasting associated with chronic inflammation (Imai et al. 2024). 

Increased dietary consumption of BCAA has been associated with development of RA, but not 

severity of disease (Soleimani Damaneh et al. 2024). Lipid metabolism is also known to be 

significantly altered in RA (Robinson et al. 2022). People with RA have an increased risk of severe 

outcomes from cardiovascular disease, despite having low levels of LDL cholesterol and high levels of 

HDL cholesterol, often described as the RA “lipid paradox” (Choy et al. 2014). DMARD therapies like 

methotrexate can increase levels of LDL and HDL cholesterol as well as triglyceride levels (Navarro-

Millan et al. 2013), and it is worth noting that all RA patients in our study were taking DMARD therapy. 

 

Previous research highlighted the possibility of metabolomics to predict the response to TNF-i therapy 

in people with RA using urine (Kapoor et al. 2013). Our untargeted analysis was not able to reproduce 

the same predictive values using serum, reaching a balanced accuracy of 55.7% which was not 

significantly better than the NULL distribution (p > 0.1). Our analysis methods differed in the pre-

processing step which could affect the overall results. We annotated the metabolites following MSI 

guidelines (Sumner et al. 2007) before binning and then carried out univariate and multivariate 

analysis, whereas the previous study segmented the spectra into increments of 0.005 ppm and 

annotated the metabolites after the analysis (Kapoor et al. 2013).  Another factor may be that the 

number of biological replicate samples in our study was very limited which results in low statistical 

power, possibly leading to a false negative result. We additionally analysed the RA sera using FTIR, 

an affordable, sensitive, specific and user-friendly diagnostic tool to determine if this technology can 

discriminate people with RA from healthy individuals. An abundance of research shows that IR can 

characterise and quantify functional groups from the resulting spectra and generates a biochemical 

fingerprint of the sample (Balan et al. 2019; Huber et al. 2021; Shaw et al. 1999). The particular IR 

fingerprinting has been thoroughly investigated in the diagnostics discipline and many have shown a 

promising statistics for application in a clinical environment (Sala et al. 2020) with many proof of 

concept studies highlighting the ability of FTIR to differentiate between HC and various diseases such 
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as breast, ovarian, bladder, oesophageal and brain cancers, as well as non-malignant diseases such 

as Alzheimer’s Disease (Backhaus et al. 2010; Butler et al. 2019; Cameron et al. 2019; Gajjar et al. 

2013; Hands et al. 2016; Maitra et al. 2019; Ollesch et al. 2014; Paraskevaidi et al. 2017). All these 

studies have observed these differences in the serum and plasma. These biofluids are present and in 

high amounts in current biobanks due to the fact that the blood collection is relatively non-invasive and 

common tests are employed using plasma or serum. The ability to diagnose disease rapidly with high 

sensitivity and specificity would improve the quality of life and prognosis for patients, in particular 

those with RA who could receive the most appropriate course of treatment at the developing stages of 

the disease. 

 

Caveats for analysis of biobanked materials are the variance in sample collection with specific 

protocols required for serum and plasma collection for both IR and NMR. There are a range of blood 

collection tubes with a variety of coatings available. These have been analysed by 1H-NMR and have 

shown to have an intrinsic variability between them, including in tubes from the same manufacturer but 

from different batches (Phelan et al. 2016). For the collection of serum there is no available research 

on the changes caused by differing vacutainer brands and types. Previous studies have attempted to 

analyse serum using IR, the first of which analysed 384 serum samples, producing 84% in sensitivity 

and 88% in specificity in prediction of RA disease to HC (Staib et al. 2001). More recently new studies 

used ATR-FTIR to compare RA and HC and found significant differences in the serum fingerprint 

region (Durlik-Popinska et al. 2021; Lechowicz et al. 2016).  

 

In our study we observed that sera from both RA responders and non-responders to TNF-i treatment 

were different from HC. The 1000-1200 cm-1 region was particularly interesting as it was both 

significantly different in both RA groups compared to HC and is the area with the greatest importance 

in the PLS-DA projection in the same comparisons. This area predominantly arises due to vibrations 

from nucleic acids and carbohydrates. Particularly, the appearance of new bands in 1175–1140 cm−1 

region is believed to be the result of glycosidic linkage formation in polysaccharide, made up of 

glucose, mannose and fructose (Hong et al. 2021). The overall increase in this region in people with 

RA could be explained by nutrient factors and their influence on the systemic inflammation. A lower 

velocity of carbohydrate absorption, presents a negative relationship with CRP, interleukin-6 (IL-6) and 

TNF-α which are all mediators of inflammation (Ma et al. 2013). Nucleic acids detected as cell free 

(cf)DNA have also been identified as an important biomarker in autoimmune rheumatic diseases 

(Duvvuri et al. 2019). In patients with RA, cfDNA levels in peripheral blood and synovial fluid are 

elevated and have been associated with disease progression (Leon et al. 1977; Leon et al. 1981). 

Recent studies have demonstrated that NETosis from neutrophils results in a selective extrusion of 

inflammatory mitochondrial DNA (Hashimoto et al. 2021; Kaplan et al. 2012). The correlation of 
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autoantibodies with the spectral area 1000-1200 cm-1 of ATR-FTIR spectra in sera from people with 

RA (Durlik-Popinska et al. 2021) also suggests how this range is particularly important in the 

classification of RA serum where autoantibodies are more part of the pathophysiology of the disease. 

 

In FTIR spectra a prediction of α-helix and β-sheet with ∼7% of errors in the prediction is achieved 

using the absorption at only two wave numbers 1611 and 1652 cm−1 (Barth 2007). These peaks have 

been assigned as vibrational modes of α-helixes and β-sheets respectively in our data to determine 

differences in HC and both RA groups. The area integral ratio between the two structures proves the 

robustness as a sensitive and selective screening signature for the discrimination of RA non-

responders to HC. Comparing responders to non-responders to TNF-i treatment did not show any 

significant difference in this ratio. Many studies in RA have already demonstrated the effect of protein 

mutation to the pathogenesis of this inflammatory disease and others such as inflammatory bowel 

disease (Huber et al. 2020; Koelink et al. 2014; Kurko et al. 2013) and their manifestation may be the 

primary reason for the RA non-responder induced α-helix to β-sheet integral ratio difference to HC. 

For the intra group comparison of RA responders and RA non-responders to TNF-i treatment, FTIR 

highlighted the 1480-1580 cm-1 and 1600-1700 cm-1 spectral areas as being significantly different. 

PLS-DA prediction resulted in 92.3% and 73.1% averaged balanced accuracy for RA responders and 

RA non-responders respectively. The VIP also pointed to the same areas as being the most important 

for the PLS-DA model. Both areas are associated with protein content in the samples with the 1480-

1580 and 1600-1700  

cm-1 regions representing amide II and amide I respectively and are characteristic for rheumatoid 

factor auto-antibodies (Olsztynska-Janus et al. 2012).  

 

A major limitation in this study was our inability to analyse the same clinical samples by both methods 

due to the limited amount of material available and samples being exhausted by multiple experiments 

and technical replicates. Furthermore, for a more robust statistical and multivariate analysis more 

samples would be needed to increase the reliability and statistical power of the NMR and FTIR 

findings. Finally the donors were not required to fast before the blood collection and samples were 

obtained at different times in the day which would affect the NMR small metabolite abundances and 

increase variances between patients in the same group. Nevertheless, we believe this pilot study has 

shown the value in analysing human serum by NMR and FTIR and has tentatively shown that it is 

possible to discriminate sera from people with RA from HC that would benefit from further investigation 

in a larger and more well-defined clinical cohort.  

 

In conclusion, this work has demonstrated the clinical usability of FTIR in the diagnosis of RA. This 

technique offers a simple, cost-effective solution for routine screening using only serum which is 
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readily available and can be ontained in the clinic and can be used alongside routine blood tests. The 

alteration of unique spectral markers in the serum may be an important diagnostic tool for the future 

early confident detection of RA in combination with other existing criteria such as X-ray images 

highlighting erosions, auto-antibody titres and non-specific markers of inflammation (ESR and CRP). 

Furthermore it could increase the ability to stratify RA patients as responders to or non-responders to 

treatments which would be an advantageous asset in the treatment process of RA. 
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Supplementary Table 1: Discriminatory Infrared spectral bands, with biomolecular assignments and their 
bond vibrations, adapted from (Ghimire et al. 2020; Ramalingam et al. 2014). vas = asymmetric stretching 
vibration, vs = symmetric stretching vibration, v = v stretching vibration 
 
Band (cm-1) Assignment and vibrations 

900-1158 Carbohydrates (Glucose, Mannose, Fructose) and nucleic acids 

(Deoxyribose/Ribose DNA, RNA): C-O, C-C stretch, C-H bends, 

Endocyclic C-O-C vibration and, νs(PO2−) 

1208-1244 Amide III, νas(PO2−) 

1317-1382 Collagen: CH2 wagging, the vibration of α, and β anamor 

1420-1430 Polysaccharides, νs (COO-), (CH2) 

1480-1580 Amide II of proteins: (α-helical, β-pleated sheet, unordered conformation 

structures), δ(N-H), ν(C-N) 

1600-1700 Amide I of proteins: (α-helical, β-pleated sheet, β-turns, random coils, and sidechain, β 

(anti-�+turn) structures), ν(C=O), ν(C-N), CNN 

1720-1750 Lipids C=O stretching 
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