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Abstract27

The fragmentomics-based cell-free DNA (cfDNA) assays have recently illustrated prominent abilities28

to identify various cancers from non-conditional healthy controls, while their accuracy for identifying29

early-stage cancers from benign lesions with inconclusive imaging results remains uncertain.30

Especially for breast cancer, current imaging-based screening methods suffer from high false-positive31

rates for women with breast nodules, leading to unnecessary biopsies, which add to discomfort and32

healthcare burden. Here, we enroll 560 female participants in this multi-center study and demonstrate33

that cfDNA fragmentomics is a robust non-invasive biomarker for breast cancer using whole-genome34

sequencing. Among the multimodal cfDNA fragmentomics profiles, the fragment size ratio (FSR),35

fragment size distribution (FSD), and copy number variation (CNV) show more distinguishing ability36

than Griffin, motif breakpoint (MBP), and neomer. The cfDNA fragmentomics (cfFrag) model using37

the optimal three fragmentomics features discriminated early-stage breast cancers from benign38

nodules, even at a low sequencing depth (3×). Notably, it demonstrated a specificity of 94.1% in39

asymptomatic healthy women at a 90% sensitivity for breast cancers. Moreover, we comprehensively40

showcase the clinical utilities of the cfFrag model in predicting patient responses to neoadjuvant41

chemotherapy (NAC) and in combining with multimodal features, including radiological results and42

cfDNAmethylation features (with AUC values of 0.93 – 0.94 and 0.96, respectively).43

44

Keywords: Cell-free DNAmethylation; Fragmentomics; Breast cancer; Whole-genome sequencing;45

Neoadjuvant chemotherapy46

47

48

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.15.24315518doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.15.24315518


3

Introduction49

Breast cancer is one of the most common types of cancer worldwide and accounts for the highest50

number of cancer-related deaths among females [1]. Early detection of breast cancer is crucial for51

improving patients’ outcomes and survival [2]. However, current imaging-based screening52

methodologies, including mammography and ultrasonography, suffer from high false-positive rates,53

leading to many unnecessary biopsies, adding to patient discomfort [3]. Meanwhile, tumor54

biomarkers such as CA15-3 lack sensitivity for early-stage breast cancer [4]. Thus, liquid biopsies are55

needed as a non-invasive alternative or adjunct to select the high breast cancer-risk women for tumor56

biopsies [5].57

Mutation-based circulating tumor DNA (ctDNA) detection has become the companion diagnostic58

by identifying actionable targets and alterations mediating resistance (e.g., ESR1 and PIK3CA59

mutations in breast cancer) [6-8]. However, ctDNA typically lacks mutations, especially in60

early-stage disease, which limits its application in these contexts and reduces its ability to anticipate61

the diagnosis of localized cancer [9]. Besides, lacking common mutations in breast cancer limits the62

detection sensitivity in the patient-naïve approach [10]. Epigenetic analysis approaches offer potential63

solutions to fully exploit liquid biopsy in various settings [11, 12]. We previously conducted a64

whole-genome DNAmethylation analysis on cell-free DNA (cfDNA) and identified ten optimal DNA65

methylation markers associated with breast cancer, which could enhance early detection [4]. However,66

current bisulfite-based methylation sequencing is prone to cfDNA damage, resulting in high cfDNA67

amount, depth dependencies, and increased cost.68

Fragmentomics-based cfDNA assays have recently illustrated prominent abilities to identify69

various cancer types from paired non-conditional healthy controls using whole-genome sequencing70

(WGS) [13-17] and targeted cfDNA panels [18]. Similar to most cancer types, benign tumors also71

release ctDNA with unique features [19]. However, the accuracies of the cfDNA fragmentomics72

profile for identifying early-stage cancers from benign lesions with similar symptoms or inconclusive73

imaging results and predicting the therapeutic response remain largely unclear.74

Herein, we developed a non-invasive liquid biopsy assay for early-stage breast cancer diagnosis75

which analyzes cfDNA fragmentomics through low-depth WGS and machine learning (Figure 1). To76

reveal its clinical utilities, we comprehensively evaluated the performances of this cfDNA77

fragmentomics assay in diagnosing early-stage breast cancer from benign breast nodules, predicting78

patient responses to neoadjuvant chemotherapy (NAC), and combining with multimodal features,79
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including standard imaging techniques and cfDNAmethylation markers. This approach is particularly80

beneficial for female patients who have undergone unnecessary biopsies due to false positives from81

imaging tests on benign breast nodules. Additionally, it can offer valuable insights into neoadjuvant82

treatment planning for breast cancer patients. Combining a cfDNA fragmentomics assay with83

standard imaging techniques enhances the early detection rate of breast cancer, potentially improving84

breast cancer survival rates.85

Results86

Patient characteristics in two independent cohorts87

We enrolled a total of 560 female participants in this multi-center study. In the training set, we88

enrolled 91 patients with breast cancers and 102 women with breast benign nodules from the89

Affiliated Yantai Yuhuangding Hospital of Qingdao University (YYH) in Yantai, China. Seven90

patients who refused to biopsy were excluded. In the external validation cohort, we recruited 14391

patients with breast cancers and 66 women with benign nodules from the Cancer Hospital of the92

Chinese Academy of Medical Sciences (CHCAMS) in Beijing, China. The external screening cohort93

recruited 119 asymptomatic healthy women from our previous cohort of non-cancer healthy94

volunteers in Nanjing, China (Nanjing Cohort [14]). NAC validation cohort included 9/33 (27.3%)95

patients with pathological complete response (pCR) and 24/33 (72.7%) patients with non-pCR from96

the CHCAMS. The robustness analysis cohort contained three stage-II breast cancer patients and97

three patients with benign nodules (Figure 2).98

The breast cancer patients enrolled in the training and validation cohorts were all in the early99

stages (0-II), including 8.8% and 16.0% in ductal carcinoma in situ (DCIS)/stage 0, 36.3% and 39.9%100

in stage I, 54.9% and 42.0% in stage II (Table S1). Among these patients, the majority type of breast101

cancer (80.4% – 85.7%) was invasive ductal carcinoma (IDC), and 16.1% – 18.7% of them were102

identified as triple-negative breast cancer (TNBC) in both cohorts.103

Whole-genome multi-features analysis of cell-free DNA identifies the optimizing cfDNA104

fragmentomics profiles for breast cancer detection105

In the Yantai cohort (training set), an average amount of 5.6 ng cfDNA (2.3 – 26.5 ng) was106

extracted from 500ul plasma. In the Beijing cohorts (validation set), 2 ml plasma was used to extract107

cfDNA for an average amount of 8.8 ng (3.4 – 13.5 ng). We applied low-depth WGS to the cfDNA108

samples. Libraries were sequenced in 7.4× mean depth (2.9 – 11.3×) in the training set and 8.8× mean109
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depth (3.4 – 13.5×) in the validation set, resulting in a highly unique mapping rate and unique110

deduplicated mapping rate of more than 99.96%. The fragmentomics profiles were generated using111

low-depth WGS data from plasma cfDNA. To find optimal features for model construction, six types112

of fragmentomics profiles, including copy number variation (CNV), fragment size distribution (FSD),113

fragment size ratio (FSR), Griffin, motif breakpoint (MBP), and neomer, were generated using114

in-house scripts as previously reported [13, 15, 20-23]. Distinct spectrums of cfDNA fragmentomics115

features were found in patients with breast cancers and benign nodules, especially in CNV, FSD, and116

FSR (Figure S1).117

We used the ichorCNA [15] reported tumor fraction (TF) to show the differences in CNV profile118

between breast cancer patients and benign nodule patients. As shown in Figure S2, the ichorCNA119

reported TF was significantly higher for the breast cancer patients than the benign nodule patients in120

both the training cohort (P = 8.0×10-5) and the validation cohort (P = 0.029). This suggests that while121

the breast cancer and benign groups both vary substantially from health baselines, there are still122

distinguishable differences between the two groups.123

Next, base learners were constructed and optimized utilizing the machine-learning process124

utilizing five different algorithms of the machine-learning process [13] on the training set (Figure 1).125

Among the six fragmentomics features, CNV, FSD, and FSR demonstrated significantly higher area126

under the curve (AUC) values compared to all features (student’s t-test, P = 1.1×10-3, 4.3×10-3, and127

2.7×10-2, respectively; Figure 3A).128

The cfDNA fragmentomics (cfFrag) model accurately distinguishes early-stage breast cancers129

from benign nodules with high specificity in asymptomatic healthy women130

The cfDNA fragmentomics (cfFrag) scores were constructed using the optimal three131

fragmentomics profiles (CNV, FSR, and FSD) to predict breast cancers in the training cohort. A total132

of 24 (3 × 8) top base learners were selected to create the final cfFrag score by the 5-fold133

cross-validation AUC in the training cohort (Figures S3 and S4). Among the three feature types, CNV134

showed the highest mean AUC of 0.742 [0.661 – 0.791] for its top 8 base learners, while the FSD and135

FSR showed similar predict power in mean AUC (0.706 [0.631 – 0.750] and 0.706 [0.647 – 0.754];136

Table S2). The top-performing features for each feature type were identified by summarizing the137

ranking of their relative importance in each base learner, as shown in Tables S3, S4, and S5,138

respectively.139

To illustrate the impact of these top-performing features on the final cfFrag model, a recursive140
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feature elimination analysis was performed. We constructed multiple cfFrag models using various141

subsets of top-performing features and evaluated their performances in the training and validation142

cohorts. The cfFrag model showed possible overfitting in the training cohort by using only subsets of143

top-performing features in the final model (Figure S5). The 5-fold cross-validation AUCs in the144

training cohort gradually decreased as more features were used in the model construction process.145

The fragmentomics model illustrated a solid discriminatory power between the breast cancer and146

benign nodules, yielding AUCs of 0.82 (95% CI: 0.76 – 0.88) and 0.81 (95% CI: 0.75 – 0.87) in147

training and external validation cohorts, respectively (Figure 3B).148

The distribution patterns of the cfFrag scores showed significant differences between the benign149

nodule and breast cancer groups in the training cohort (Wilcoxon, P = 3.9×10-14; Figure S6),150

suggesting the cfFrag scores were positively associated with the probability of breast cancer. A151

similar trend was observed in the prospective validation cohort, with the breast cancer group showing152

a significantly higher cfFrag score than the benign nodule group (P = 4.8×10-13; Figure 3C). It153

achieved a specificity of 51.5% (95% CI: 38.9-64.0%) at the designed 90% sensitivity (95% CI: 83.3154

– 94%) in the independent validation cohort, resulting in an overall accuracy of 77.5% (95% CI: 71.2155

– 83.0%; Table 1). Setting the cut-off value at 85% sensitivity, the fragmentomics model reached156

specificities of 65.7% (95% CI: 55.6 – 74.8%) and 60.6% (95% CI: 47.8 – 72.4%) in the training and157

validation cohorts, respectively (Table S6).158

To verify the specificity of the cfFrag score in healthy women, we analyzed the cfDNA WGS159

data from 119 asymptomatic healthy women to generate the cfFrag scores. As a result, it yielded an160

excellent specificity of 94.1% (112/119, 95% CI: 88.3 – 97.6%; Table 1 and Figure 3D) for both161

cut-off values for 85% and 90% sensitivities.162

The cfDNA fragmentomics (cfFrag) model maintains excellent performances in subgroup analysis163

and correlation with clinical features164

To address the potential bias brought by the imbalanced age between breast cancer and benign165

nodule patients, a propensity score matching analysis was performed. We selected 112 patients (64166

breast cancers and 48 benign nodules with matching ages) from the training cohort and 174 patients167

(117 breast cancers and 57 benign nodules with matching ages) from the prospective validation168

cohort. As a result, the fragmentomics model showed equally excellent predictive ability for breast169

cancer in these age-matched subsets, yielding AUCs of 0.82 (95% CI: 0.73 – 0.90) and 0.82 (95% CI:170

0.75 – 0.88) in the training and validation cohort, respectively (Figure S7A). Similarly, the predictive171
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model was able to maintain its predictive ability in a cohort containing small nodules (size ≤ 1cm),172

showing a high AUC of 0.83 (95% CI: 0.72 – 0.95) in the validation cohort (Figure S7B), compared173

to the traditional imaging methods (AUCs = 0.64 and 0.80 for mammography and ultrasound,174

respectively; Figure S8).175

A subgroup analysis focused on the model’s performance was also performed to investigate176

potential bias. The sensitivities remained high for detecting various breast cancer subgroups,177

including the nodule size, stages, histology, and hormone receptor (HR) status (Figure S9). As the178

size of the benign nodules increased, the ability to identify different subgroups with specificity179

decreased (< 2cm: 54.9%, 2 – 5cm: 40.0%; Figure S10).180

In addition to conducting subgroup analysis within the validation cohort, we performed a181

bootstrap analysis to minimize potential bias. Sensitivities derived from 100 bootstrap iterations for182

various breast cancer subgroups displayed patterns similar to our previous observations (Figure S11).183

Additionally, the specificities for the benign nodule subgroup, assessed through 100 bootstrap184

iterations, align with the trends seen in the validation cohort (Figure S12).185

To demonstrate the performance for early detection, the cfFrag scores showed a significant186

gradual increase from the benign nodule to the DCIS and early-stage (stages I and II) breast cancer187

(ANOVA, P = 1.1×10-11; Figure 3E). Although the cfFrag score distribution showed no significant188

difference between the HR-positive and HR-negative groups, as well as between the TNBC and189

non-TNBC groups, the HER2-negative group’s cfFrag scores were significantly higher than the190

HER2-positive group (Wilcoxon, P = 4.1×10-3; Figure 3F and Figure S13). This suggested the191

potential relation between the cfDNA fragmentomics features and the molecular subtypes.192

The cfDNA fragmentomics (cfFrag) model demonstrates robust performance in the193

down-sampling process and technical replicates194

To decrease the potential cost and required blood samples in the future, we assessed the cfFrag195

model’s performance using downsampled WGS data (5 – 1×) in the validation cohort with five196

technique repeats generated for each coverage depth. The fragmentomics model maintained its197

predictive power during the down-sampling process without showing a significant decrease in AUCs,198

even at a depth of 3× (P > 0.05; Figure 4A).199

To assess the robustness of the cfFrag model within and between runs, two batches of 10ml200

peripheral blood samples were collected from the six patients with a median interval of five days. The201

plasma samples were separated into three equal proportions as technical replicates for each batch,202
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resulting in 36 samples. The model extracted and evaluated the fragmentomics profiles of these 36203

samples. All three fragmentomics profiles (CNV, FSR, and FSD) showed no significant differences204

between the technical replicates and the two batches (Figure S14). Additionally, the robustness205

analysis showed no significant differences between runs and within runs (Wilcoxon, P = 0.2 – 1.0;206

Figure 4B).207

The cfDNA fragmentomics (cfFrag) model can also predict the therapeutic pathological response208

for breast cancer patients after neoadjuvant chemoradiotherapy209

To expand the clinical utility of the cfFrag model to predict the treatment response, we applied210

this assay to 33 female breast cancer patients receiving the NAC. The cfDNA fragmentomics profiles211

were generated using post-NAC plasma samples and were subsequently predicted by the cfFrag212

model. As a result, the cfFrag scores for pCR patients were significantly lower than the non-pCR213

patients (Wilcoxon, P = 3.6×10-3; Figure 4C). However, it is noted that the cfFrag scores for the pCR214

patients were still higher than those for patients with benign nodules. Moreover, the cfFrag model215

demonstrated excellent performance in distinguishing between patients with pCR and with non-pCR,216

yielding an AUC of 0.82 (95% CI: 0.68 – 0.97; Figure 4D). This indicated that the cfFrag model has217

the potential to predict the therapeutic response and minimal residual disease for post-NAC breast218

cancer patients.219

The fragmentomics and methylation of cfDNA exhibit complementarity in breast cancer detection220

To investigate the potential use of combined WGS with whole-genome bisulfite sequencing221

(WGBS) data for the differentiating power of breast cancers and benign nodules. We selected 39222

patients from the prospective validation cohort (including 15 breast cancers and 24 benign nodules)223

enrolled in a methylation-based breast cancer early detection analysis to generate the breast cancer224

risk score (the cfMeth score) through the WGBS [4]. We found that the cfFrag and cfMeth scores225

were positively correlated (Spearman's rank correlation coefficient, R = 0.5, P = 1.2×10-3; Figure 4E).226

Due to the limited size, leave-one-out cross-validation was performed. The combined (cfFrag +227

cfMeth) model showed better performance (AUC=0.96, 95% CI: 0.89 – 1.00) than the cfFrag model228

alone (AUC=0.88, 95% CI: 0.77 – 0.99) and the cfMeth model alone (AUC=0.86, 95% CI: 0.75 –229

0.98), while the addition of imaging data (cfFrag + cfMeth + Xray + Ultrasound) further improved230

the performance (AUC = 0.97, 95% CI: 0.92 – 1.00; Figure 4F).231

The joint diagnostic model combining the cfDNA fragmentomics (cfFrag) scores and breast232

imaging shows superior performance in detecting breast cancer233
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To further improve the performance of the cfDNA fragmentomics-based approach234

cost-effectively, a joint diagnostic model was constructed by integrating the cfFrag scores and the235

breast imaging reporting and data system (BI-RADS) categories for mammography and ultrasound236

using the machine-learning process. As a result, the joint model risk score exhibited a significant237

difference between the breast cancer and benign nodule groups in both the training and validation238

cohorts (Wilcoxon, P < 2.2×10-16; Figures 5A and 5B).239

The joint diagnostic model showed superior performance for distinguishing breast cancers from240

benign nodules, with AUCs of 0.94 (95% CI: 0.90 – 0.97) and 0.93 (95% CI: 0.89 – 0.97) in the241

training and validation cohorts, respectively (Figure 5C), which was significantly higher than the242

cfFrag model alone, as well as the traditional mammography and ultrasound (all P < 0.05; Figure243

S14). Furthermore, the joint model could reach a high specificity of 80.3% (95% CI: 68.7 – 89.1%) at244

the designed 90.2% sensitivity (95% CI: 84.1 – 94.5%) in the independent validation cohort (Table 2).245

Furthermore, the joint model maintained its performance within women with the BI-RADS 4 lesions,246

reaching AUCs of 0.91 (95% CI: 0.86 – 0.95) and 0.91 (95% CI: 0.86 – 0.96) in the training and247

validation cohorts, respectively (Figure 5D).248

The joint model illustrates the potential for increased early detection rates and improved survival249

outcomes in China and the USA250

To assess the potential clinical benefits of the joint model in a real-world setting, we utilized an251

intercept model developed by Hubbell et al [24]. Currently, only 18% of breast cancer patients are252

diagnosed at stage I in China. By utilization of the joint model, the detection rate of stage-I breast253

cancer could be elevated to 93%. Accordingly, less breast cancer would be diagnosed at stages II-IV.254

Based on the stage shifts, it was estimated that the joint model could increase the 5-year survival rates255

of breast cancer in China by 14% (Figure 5E). Similarly, in the USA, the increased detection rate of256

stage-I breast cancer (95%) and the 5-year survival benefit (8%) are also estimated (Figure 5F).257

Discussion258

Current imaging-based breast cancer screening methods suffer from high false positives and259

inconclusive results among female patients with benign breast nodules, which leads to intrusive260

biopsy and unnecessarily adds to the discomfort. In our study, we provided a highly sensitive,261

non-invasive diagnostic tool for early-stage breast cancer detection through the blood-based cfDNA262

fragmentomics analysis, especially against control patients with radiographically263
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malignant-suspicious yet pathologically benign breast nodules. Notably, we have demonstrated a264

significant complementarity between cfDNA fragmentomics, traditional imaging, and cfDNA265

methylation features in the early detection of breast cancer and the assessment of the benign or266

malignant nature of breast nodules. The combination of cfDNA fragmentomics and traditional267

imaging findings, as well as the combination of cfDNA fragmentomics and cfDNA methylation268

features, can further enhance the diagnostic accuracy of breast cancer, aligning with our previous269

findings on combining cfDNA methylation and traditional imaging in breast cancer. The joint270

diagnostic model, integrating our non-invasive cfDNA fragmentomics assay with image findings,271

achieves high diagnostic accuracy (AUCs=0.93 – 0.94). Accordingly, the joint model can guide272

biopsy decisions and reduce unnecessary invasive interventions by 80.3-85.3% in patients with273

suspicious imaging results.274

The detection rate/sensitivity is crucial to avoid cancer diagnostic delay. Thus, 85-90%275

sensitivities for early-stage breast cancer were set as the primary endpoint for the fragmentomics and276

joint models in this study. The fragmentomics-only and joint models performed robust detection rates277

in early-stage breast cancer, even in women with small nodules or inconclusive imaging results278

(BI-RADS 4 lesions). Due to the potential stage shift and increase in the stage-I breast cancer279

diagnosis rate, our joint model was estimated to save a significant number of breast cancer patients280

(an extra 8 – 14%) in the USA and China. However, further real-world studies are still needed to281

identify the cut-off value for each model with the best cost-effectiveness in different populations.282

The detection rates were robustly elevated across increasing breast cancer stages in this study.283

Intriguingly, the cfDNA fragmentomics signal was more significant in patients with DCIS than those284

with stage-I breast cancer, which is consistent with our methylation-based cfDNA analysis [4] but285

inconsistent with previous mutation-based cfDNA analysis [25]. It indicates the advantages of286

epigenetic-based and fragmentomics-based cfDNA analysis in the early detection of DCIS/stage-0287

breast cancer. In addition, the cfFrag model has shown sufficient specificity in asymptomatic healthy288

women, further indicating the potential clinical utility of the cfFrag model in population-based breast289

cancer screening.290

The use of peripheral cfDNA has gained prominence in early cancer detection, as291

methylation-based and fragment-based cfDNA markers have demonstrated effectiveness in detecting292

many cancer types [4, 13-15, 26]. Methylation features in cfDNA are related to the cancer293

tissue-of-origin, while cfDNA fragmentomics features are linked to the abnormal DNA nuclease294
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activities in cancers [27]. Compared to the methylation-based cfDNA approach, fragment-based295

cfDNA assays offer advantages such as lower cost by avoiding sodium bisulfite treatment and296

requiring less blood sample volume because of low sequence depth. Interestingly, our combined297

analysis of cfDNAmethylation and fragmentomics reveals that combining the fragmentomics (cfFrag298

score) and the methylation markers (cfMeth score) could achieve superior performance than each299

marker separately, which was in agreement with the result of the recent sub-study in the Circulating300

Cell-free Genome Atlas [28].301

Monitoring treatment response is crucial to deciding the subsequent treatment strategies for302

breast cancer patients receiving NAC, but this was unmet using the current methods [29]. Recently,303

mutation-based and methylation-based ctDNA detection approaches have been demonstrated to304

predict the treatment response and residual disease in post-NAC breast cancer patients [30, 31]. Our305

study suggests that the features of cfDNA fragmentomics could be used as an alternative approach to306

evaluate the treatment response in breast cancer patients.307

Limitations308

Firstly, the sample size of the combining analysis of the cfDNA fragmentomics and methylation309

is relatively small. Multi-omics cfDNA analysis with large sample sizes is still needed to identify the310

optimal non-invasive combination with low cost using a trace amount of blood sample for the early311

detection of breast cancer. Secondly, similar to most previous cfDNA fragmentomics studies that only312

focused on one cancer type [13-15], we also aimed to identify the breast cancer-specific cfDNA313

fragmentomics features in this study. With the identification of the cfDNA fragmentomics spectrum in314

different cancer types in the future, it would be cost-effective to develop a pan-cancer diagnostic315

model to detect multiple types of cancer and indicate the cancer origin.316

Conclusions317

This pilot study systematically evaluates performance in applying cfDNA fragmentomics as a318

non-invasive biomarker for breast cancer. The low-depth cfDNA fragmentomics profiling with319

automated machine learning demonstrated excellent and robust performance in distinguishing320

early-stage breast cancers from benign nodules with inconclusive imaging results, the predictive321

value of NAC response, and sufficient specificity in asymptomatic healthy women in a multi-center322

prospective setting. The combination of non-invasive cfDNA fragmentomics features and standard323
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diagnostic imaging improved the rate of accurate detection of early breast cancer. This approach324

holds promise for improving clinical outcomes and streamlining healthcare practices.325

Materials and methods326

Study Design and Participants327

In this multi-center study, we recruited female patients independently in three centers in China.328

The training set enrolled 200 consecutive female patients with malignant-suspicious breast imaging329

results from the YYH in Yantai. The external independent validation sets, referred to as Beijing330

cohorts, prospectively enrolled 209 consecutive female patients who underwent breast lesion biopsy,331

33 female breast cancer patients after NAC, and six female patients with repeating samples for332

robustness analysis from the CHCAMS in Beijing. The external screening cohort recruited 119333

asymptomatic healthy women from our previous Nanjing cohort [14]. The recruitment period was334

from January 1, 2019, to August 1, 2022. This study adhered to the guidelines of the STARD335

(Standards for Reporting of Diagnostic Accuracy Studies).336

Sample Collection and Clinical Evaluation337

We collected 10 ml of peripheral blood samples from each participant before biopsy or surgery.338

In the Yantai cohort (training set), the collected blood samples were kept in EDTA blood collection339

tubes (Becton Dickinson, CA) at a temperature of 4ºC and underwent centrifugations (1,800 g for 10340

minutes and 16,000 g for 10 minutes both at 4ºC) within 2 hours. In the Beijing cohorts (independent341

validation set), the collected blood samples were kept in the CELL-FREE DNA BCT® blood342

collection tubes (Streck, NE) at room temperature (RT, 15 – 25ºC). Plasma was extracted within 48343

hours following blood collection by centrifugations of the blood according to the protocols in the344

training set.345

Standard mammography and ultrasonography techniques were conducted at two centers and346

independently interpreted according to the BI-RADS standard. Patients with suspicious breast347

imaging results underwent surgical or core needle biopsies. The pathological examination of tissue348

specimens confirmed the malignant or benign status of each participant. Women with negative349

imaging or biopsy results were excluded from having breast cancer after a 6-month follow-up. The350

molecular subtype of each lesion was determined according to the pathologic criteria for HR351

(including estrogen receptor and progesterone receptor) and human epidermal growth factor receptor352

2 (HER2) [32].353
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Library preparation and whole genome sequencing354

For the cfDNA extraction, we used the liquid handling platform (Hamilton Microlab STAR,355

Hamilton Company, NV) and the QIAamp Circulating Nucleic Acid Kit (Qiagen, Germany)356

according to previously reported protocols [13]. The Qubit dsDNA HS Assay Kit (Thermo Fisher357

Scientific, MA) was then utilized for measuring the extracted cfDNA’s concentration. The PCR-free358

WGS library was automatically constructed on Biomek (Beckman Coulter, UK), using 5-10 ng of359

cfDNA sample and the KAPA Hyper Prep Kit (KAPA Biosystems, MA). The constructed library was360

quantified by the KAPA SYBR FAST qPCR Master Mix (KAPA Biosystems, MA) before paired-end361

sequencing on NovaSeq platforms (Illumina, CA).362

For the quality control of bioinformatics analysis, Trimmomatic [33] was used to trim the raw363

sequencing data. The removal of PCR duplicates was performed by the Picard toolkit364

(http://broadinstitute.github.io/picard/). The high-quality reads were then mapped to the human365

reference genome (GRCh37/UCSC hg19) using BWA sequence aligner [34].366

Fragmentomics profiling367

As tumor cell fragments are shorter than those from normal cells [35], the FSR profile analyzes368

the ratio of short fragments in the human genome. Short fragments are defined as 100 – 150bp and369

long fragments are defined as 151 – 220bp [13, 15, 20]. The human genomes were divided into 5Mb370

bins, in which the ratios of short to long fragments were calculated, resulting in a total of 1,082 (541371

bins × 2) FSR features. The FSD profile focused on the detailed length patterns of cfDNA fragments,372

categorizing these fragments based on increments of 5bp in the range of 100bp to 220bp [13, 36]. The373

proportion of fragments in each bin was computed on the human chromosome arm level for human374

autosomes, resulting in 936 FSD features that machine learning algorithms can employ. The CNV375

profile was calculated using ichorCNA [15]. For each sample, the genome was divided into 1Mb bins.376

The depth for each bin was then compared to the default baseline using the Hidden Markov Model377

(HMM). The log2 ratio for each bin was calculated, generating 2475 features. The profiling of Griffin,378

neomer, and MBP was present in Supplementary methods (File S1).379

cfFrag Model construction and validation380

A machine-learning process that utilizes five different algorithms, including the random forest,381

the generalized linear model, the deep learning, the gradient boosting machine, and the eXtreme382

gradient boosting [13], was employed to generate optimal base learners. A breast cancer prediction383

model, namely the cfFrag scores, was developed using the mean value of top base learners ranked by384
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the AUC of the 5-fold cross-validation for the optimal three fragmentomics profiles in the training385

cohort (Yantai cohort; File S1).386

The machine-learning process was also utilized to develop a joint diagnostic model for the387

training cohort, which adopts the cfFrag scores and the BI-RADS categories of mammography and388

ultrasound. A similar automated machine-learning process was used to construct the joint diagnostic389

model by using the cfFrag scores as numeric features and the BI-RADS by mammography and390

ultrasound as categorical features. The process utilized a randomized search for automatic algorithm391

selection and hyperparameter tuning. The best-performing model was selected from a total of 200392

trained models based on the highest AUC using the training cohort via a 5-fold cross-validation393

approach. Cut-off values were determined using a 5-fold cross-validation to predict the score of the394

training cohort to reach 85% and 90% sensitivities. The external independent validation cohorts395

evaluated the joint diagnostic models’ performance. In addition, to expand the clinical utility of the396

cfFrag model, its performance was further evaluated in the NAC cohort.397

Statistical Analysis398

The receiver operating characteristic (ROC) curves were generated by the pROC package399

(version 1.17.0.1) [37]. The sensitivity, specificity, and accuracy with the corresponding 95%400

confidence intervals (CI) were calculated by the epiR package (version 2.0.19) [38]. Propensity score401

matching analysis used the MatchIt package (version 4.2.0) [39]. All statistical analyses, including402

student’s t-test, Wilcoxon, and ANOVA, were performed in R (version 3.6.3) [40].403
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Figure legends529

530
Figure 1. Study Design.531

Plasma samples collected from patients with breast cancers or benign nodules were used to extract532

cfDNA. WGS was performed on the cfDNA to generate fragmentomics feature types. The533

fragmentomics machine learning model was constructed using the optimal three fragmentomics534

profiles in the training set, including FSR, FSD, and CNV. Five different algorithms were utilized in535

the automatic machine-learning process. For each feature type, the top three models with the536
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highest AUCs of 5-fold cross-validation in the training cohort were selected, and the mean cancer537

score (the cfFrag score) was used for the fragmentomics model. The cfFrag model was developed in538

the training cohort and evaluated in the validation cohorts. Abbreviation: cfDNA, cell-free DNA;539

WGS, whole-genome sequencing; FSR, fragment size ratio; FSD, fragment size distribution; CNV,540

copy number variation; GLM, generalized linear model; GBM, gradient boosting machine; RF,541

random forest; DL, deep learning; XGBoost, eXtreme gradient boosting; AUC, area under the542

curve; CV, cross-validation.543

544
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545

546

Figure 2. Patient Enrollment.547

In this multi-center study, we recruited 200 consecutive female patients with malignant-suspicious548

breast imaging results from the Yantai cohort as the training set. As a result, 91 patients with breast549

cancer and 102 women with benign breast nodules were enrolled, and seven patients who refused to550

biopsy were excluded. The external validation cohorts were composed of a screening cohort of551

healthy women in Nanjing (N = 119) and three independent validation cohorts in Beijing, namely552

the prospective validation cohort (N = 209), the neoadjuvant chemotherapy validation cohort (N =553

33), and the robustness analysis cohort (N = 6). *The prospective validation cohort included 39554

participants (14 with breast cancer and 25 with benign nodules) enrolled in a methylation-based555

early detection analysis for breast cancer through whole-genome bisulfite sequencing [4].556

Abbreviation: NAC, neoadjuvant chemotherapy; pCR, pathological complete response.557
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Figure 3. Evaluation of the cfDNA Fragmentomics (cfFrag) Model.559

A. Boxplots for AUCs of top base learners for six different cfDNA fragmentomics features. The560

t-test P values are 0.0011, 0.0043, 0.027, 0.17, 0.34, and 0.086 for these features, respectively. B.561

ROC curves using the training cohort (5-fold cross-validation) and the independent validation562

cohort. C. Violin plot illustrating cfFrag score distribution in the independent validation cohort's563

benign nodule and breast cancer groups. The cutoffs, shown as the dotted lines, were determined by564

the training cohort. D. Violin plot using cfFrag cancer risk scores in 119 healthy female volunteers565

from our previous study [13]. The cfFrag scores for most healthy women (112/119) were lower than566

both cut-off values, yielding an excellent specificity of 94.1%. E. The box plot illustrating cfFrag567

score distribution in the benign nodule group and very early (DCIS), and early-stage (stages I and II)568

breast cancer groups. F. The box plot illustrating the cfFrag score distribution of different subgroups569

in the validation cohort. Abbreviation: CNV, copy number variation. FSD, fragment size570

distribution. FSR, fragment size ratio. MBP, motif breakpoint; AUC, area under the curve; CV,571

cross-validation; ns, not significant; sens, sensitivity; BN, benign nodule; ROC, receiver operating572

characteristic; DCIS, ductal carcinoma in situ; HR, hormone receptor; HER2, human epidermal573

growth factor receptor 2.574
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Figure 4. Comprehensively Evaluating cfFrag Model Using Additional Cohorts.576

A. Box plot for the validation cohorts’AUCs for the down-sampling process (5× to 1×). There is no577

significant performance drop till 3× coverage (ns, no significance; ** P <0.01). B. Box plot for578

cfFrag scores in external test cohort containing 3 breast cancer patients and 3 benign nodule579

patients. For each patient, two batches × three repeats were performed. C. ROC curve for580

distinguishing patients with pathological complete response (N = 9) from patients without581

pathological complete response (N = 24) in a neoadjuvant therapy cohort. D. Violin plot using582

cfFrag cancer risk scores in patients with pCR and non-pCR. E. Scatter plot showing the correlation583

between cfMeth scores and cfFrag scores for a subset of patients in the validation cohort (N = 39)584

with previously reported whole-genome bisulfite sequencing data [4]. F. ROC curves for a subset of585

patients in the validation cohort (N = 39) with previously reported whole-genome bisulfite586

sequencing data [4] and imaging data using leave-one-out cross-validation. BC, breast cancer; BN,587

benign nodule; sens, sensitivity; NAC, neoadjuvant chemotherapy; pCR, pathological complete588

response; AUC, area under the curve.589
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Figure 5. Evaluating Performance for Joint Model Using Both Fragmentomics and Imaging591

Techniques.592

A. Violin plots illustrating cancer score distribution of the joint model in the benign nodule and593

breast cancer groups in the training cohort. B. The score distribution of the joint model in the594

benign nodule and breast cancer groups in the independent validation cohort. C. ROC curves using595

the training cohort (5-fold cross-validation) and the independent validation cohort. D. ROC curves596

for subset patients with BI-RADS category 4 in the training cohort (5-fold cross-validation) and the597

validation cohort. E. Potential clinical benefit evaluation using breast cancer statistics in China. F.598

Potential clinical benefit of the joint model in the USA. The left bars show the current stage599

distributions of newly diagnosed breast cancer, and the middle bars indicate the stage distributions600

for potential clinical utilization of the joint model in the two countries. Accordingly, mortality shifts601

and 5-year survival benefits (orange bars) achieved by using the joint model are shown in the right602

bars. Abbreviation: sens, sensitivity; BI-RADS, breast imaging reporting and data system.603

604

Table 1. Evaluating the cfFrag Model Performances in the Training and Validation Cohorts.605

Training cohort
(5-fold cross-validation)

Prospective validation
cohort

Asymptomatic
healthy women

Breast cancer patients (n) 91 143 -
Benign nodule patients (n) 102 66 -

Healthy controls (n) - - 119
Sensitivity (95% CI) 90.1% (82.1-95.4%) 89.5% (83.3-94%) -
Specificity (95% CI) 52.0% (41.8-62.0%) 51.5% (38.9-64%) 94.1% (88.3-97.6%)

PPV (95% CI) 62.6% (53.7-70.9%) 80.0% (73.0-85.9%) -
NPV (95% CI) 85.5% (74.2-93.1%) 69.4% (54.6-81.7%) -

Accuracy (95% CI) 69.9% (62.9-76.3%) 77.5% (71.2-83%) -
Abbreviation: CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.606

607

Table 2. Evaluating the Joint Model Performances in the Training and Validation Cohorts.608

Training cohort
(5-fold cross-validation) Prospective validation cohort

Breast cancer patients (n) 91 143
Benign nodule patients (n) 102 66
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Sensitivity (95% CI) 90.1% (82.1-95.4%) 90.2% (84.1-94.5%)
Specificity (95% CI) 85.3% (76.9-91.5%) 80.3% (68.7-89.1%)

PPV (95% CI) 84.5% (75.8-91.1%) 90.8% (84.9-95.0%)
NPV (95% CI) 90.6% (82.9-95.6%) 79.1% (67.4-88.1%)

Accuracy (95% CI) 87.6% (82.1-91.9%) 87.1% (81.8-91.3%)
Abbreviation: CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.609

610
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Supplemental material612

File S1. Supplementary methods613

614

Figure S1. Multi-omic Cell-free DNA Profiles of Breast Cancer Patients, and Subjects with615

Benign Nodule.616

A. Frequencies of chromosome arm-level copy number variations (CNVs) in subjects with breast617

cancers and benign nodules. Amplifications are represented in red, while losses are depicted in blue.618

B. Fragment size distribution (FSD) in chromosome 18p across various groups. The distribution619

illustrates the fragment size profiles among subjects with benign nodules and breast cancers. C. Ratio620

of short (100-150bp) fragments to long (150-220bp) fragments across all 5Mb bins on chromosomal621

arms in subjects with breast cancers and benign nodules. Abbreviation: CNV, copy number variation;622

BC, breast cancer; BN, benign nodule.623

Figure S2. The ichorCNA Tumor Fraction Distribution of Breast Cancer and Benign Nodule in624

the Training Cohort and the Validation Cohort.625

We used the ichorCNA reported tumor fraction (TF) to show the differences in CNV profile between626

breast cancer (BC) patients and benign nodule (BN) patients. The TF by ichorCNA was significantly627

higher for the BC patients compared to the BN patients in both the training cohort (P = 8×10-5) and628

the validation cohort (P = 0.029). This suggests that while the BC and BN groups both vary629

substantially from health baselines, there are still distinguishable differences between the two groups.630

Abbreviation: TF, tumor fraction; CNV, copy number variation; BC, breast cancer; BN, benign631

nodule.632

Figure S3. The Area Under the Curve Distribution of Base Learners in the Training Cohort.633

A total of 24 (3×8) top base learners were selected to create the final cfFrag score by the 5-fold634

cross-validation AUC in the training cohort. Abbreviation: AUC, area under the curve.635

Figure S4. ROC Curves for Selected Base Learners in the Training Cohort.636

Among the three feature types, CNV showed the highest mean AUC of 0.742 [0.661 – 0.791] for its637

top 8 base learners, while the FSD and FSR showed similar predict power in mean AUC (0.706638

[0.631-0.750] and 0.706 [0.647-0.754] ), as shown in Table S3. Abbreviation: CNV, copy number639

variation; AUC, area under the curve; FSD, fragment size distribution; FSR, fragment size ratio.640

Figure S5. Feature Recursive Feature Elimination Analysis in the Training Cohort and the641

Validation Cohort.642
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The cfFrag model showed possible overfitting in the training cohort using only subsets of643

top-performing features in the final model. The 5-fold cross-validation AUCs in the training cohort644

showed a gradual decrease as more features were used in the model construction process.645

Abbreviation: AUC, area under the curve.646

Figure S6. The cfFrag Score Distribution in the Training Cohort (5-fold cross-validation).647

Figure S7. ROC Curve of the cfFrag Model in Subsets of Age-matched Patients and Patients648

with Small Nodule (≤1cm) in the Training and Validation Cohorts.649

A. Receiver operating characteristic (ROC) curves of the cfFrag model using an age-matched subset650

in the training cohort (5-fold cross-validation) and the independent validation cohort. B. ROC curves651

of the cfFrag model using an age-matched subset in the training cohort (5-fold cross-validation) and652

the independent validation cohort. The shadow areas indicate the 95% confidence intervals (CI).653

Abbreviation: ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence654

interval.655

Figure S8. ROC Curves for Traditional Imaging Technique in Different Cohorts.656

Abbreviation: BI-RADS, Breast Imaging Reporting and Data System; ROC, receiver operating657

characteristic; AUC, area under the curve.658

Figure S9. Performance Evaluation for Fragmentomics Model in Different Subgroups of Breast659

Cancer Patients in the Validation Cohort.660

Abbreviation: HR, hormone receptor; HER2, human epidermal growth factor receptor 2; TNBC,661

triple-negative breast cancer; BI-RADS, Breast Imaging Reporting and Data System.662

Figure S10. Performance Evaluation for Fragmentomics Model in Different Subgroups of663

Patients with Benign Nodule in the Validation Cohort.664

Abbreviation: BI-RADS, Breast Imaging Reporting and Data System.665

Figure S11. Bootstrapped (100 times) Performance Evaluation of Fragmentomics Model in666

Breast Cancer Subgroups in the Validation Cohort.667

The sensitivities derived from 100 bootstrap iterations for various breast cancer subgroups displayed668

patterns similar to our observations in Figure S5. Abbreviation: HR, hormone receptor; HER2, human669

epidermal growth factor receptor 2; TNBC, triple-negative breast cancer.670

Figure S12. Bootstrapped (100 times) Performance Evaluation of Fragmentomics Model in671

Benign Nodule Subgroups in the Validation Cohort.672

The specificities for the BN subgroup, assessed through 100 bootstrap iterations, align with the trends673

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.15.24315518doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.15.24315518


31

seen in the validation cohort (Figure S6).674

Figure S13. The cfFrag Score Distribution of Different Subgroups in the Validation Cohort (HR,675

HER2, and TNBC).676

Abbreviation: NS, no significance; HR, hormone receptor; HER2, human epidermal growth factor677

receptor 2; TNBC, triple-negative breast cancer.678

Figure S14. The Feature Correlation of Inter- and Intra-run Samples.679

No significant differences were observed between the technical replicates and the two batches in all680

three fragmentomics profiles, including copy number variation (A), fragment size distribution (B),681

and fragment size ratio (C). Abbreviation: CNV, copy number variation; FSD, fragment size682

distribution; FSR, fragment size ratio.683

Figure S15. Comparing the Joint Model against the Fragmentomics Model, Mammography,684

and Ultrasound.685

ROC curves for the training cohort (A; 5-fold cross-validation) and the prospective validation cohort686

(B). The Wilcoxon P values compare the joint model against each individual technique. Abbreviation:687

AUC, area under the curve.688

689

Table S1. Patient Characteristics.690

Table S2. Selected top-performing base learners for constructing the final cfFrag model.691

Table S3. CNV features ranked by their importance.692

Table S4. FSR features ranked by their importance.693

Table S5. FSD features ranked by their importance.694

Table S6. Evaluating the Fragmentomics Model Performances at 85% Sensitivity Cutoff.695
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