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Abstract 

Objective. We extend existing techniques by using generative adversarial network (GAN) models to 
reduce the appearance of cast shadows in radiographs across various age groups. Materials and 
Methods. We retrospectively collected 12000 adult and pediatric wrist radiographs, evenly divided 
between those with and without casts. The test subset consisted of 100 radiographs with cast and 100 
without cast. We extended the results from a previous study that employed CycleGAN by enhancing the 
model using a perceptual loss function and a self-attention layer. Results. The CycleGAN model which 
incorporates a self-attention layer and perceptual loss function delivered the best quantitative 
performance. This model was applied to images from 20 cases where the original reports recommended 
CT scanning or repeat radiographs without the cast, which were then evaluated by radiologists for 
qualitative assessment. The results demonstrated that the generated images could improve radiologists’ 
diagnostic confidence, in some cases leading to more decisive reports. Where available, the reports from 
follow-up imaging were compared with those produced by radiologists reading AI-generated images. 
Every report, except two, provided identical diagnoses as those associated with follow-up imaging. The 
ability of radiologists to perform robust reporting with downsampled AI-enhanced images is clinically 
meaningful and warrants further investigation. Additionally, radiologists were unable to distinguish AI-
enhanced from unenhanced images. Conclusion. These findings suggest the cast suppression technique 
could be integrated as a tool to augment clinical workflows, with the potential benefits of reducing 
patient doses, improving operational efficiencies, reducing delays in diagnoses, and reducing the number 
of patient visits. 
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1. Introduction 

Damaged limbs often require stabilisation using splints and casts made of resin, fibreglass or plaster (1). 
Removing the cast before imaging is impractical during follow-up radiographs monitoring the position 
or healing of fractures. The presence of a cast produces undesirable artefacts obscuring the visualisation 
of the bone structure and encompasses the examined anatomy. At the time of writing, there has been 
only a single study on cast suppression methods in extremity radiographs, by Hržić et al. (2). We attempt 
to reproduce these results on a larger data set and modify the model by adding a perceptual loss function 
and self-attention layer (3,4). 

The field of medical imaging has significantly advanced due to the use and application of artificial 
intelligence (AI) methods in an extensive range of tasks. These models can be categorised as being 
vision, language, and vision-language models, depending on the nature of input and output data. In the 
context of cast suppression, the relevant vision model is known as a generative adversarial network 
(GAN). GANs have effectively been used for image processing tasks such as CT denoising, artefact 
reduction, radiotherapy planning, intermodality image synthesis, image reconstruction, data 
augmentation, image registration, classification, and inversion problems (5,6). When faced with an 
unpaired image problem, where there is no ground truth for the model to learn from, the cycle-consistent 
GAN (CycleGAN) model can be used. This approach can translate an image from a source domain to a 
target domain without paired images, so the distribution of generated images is indistinguishable from 
that of target images. A cycle consistency loss is introduced so the original image can be returned from 
the generated one. This method performs well for textural and colour changes in images but poorly for 
geometric changes, and the characteristics of the training data used limit its generality (7). Since the 
available casted radiographs do not have paired castless images, and a cast shadow mainly presents a 
textural change, the CycleGAN model is well suited to this problem.  

One of the difficulties in quantitatively evaluating the model in the cast suppression problem is the 
lack of ground truth to which results can be compared. In some studies, a limited number of paired 
images were available and thus used for evaluation rather than training, such as for conversion of CT 
scans between reconstruction kernels (8), noise reduction in low-dose CT scans (9), or generation of CT 
images from CBCT images (10). For many different problems, CycleGAN models are evaluated by 
applying quantitative metrics such as Structural Similarity Index Metric (SSIM), histogram correlation, 
histogram intersection, Chi-squared distance, and Hellinger distance, which compare real and generated 
sets of images (2,11–14). The obvious limitation of these metrics is that spatial information is lost when 
converting an image to a histogram; for example, a circle and square of equal area and brightness would 
yield equivalent histograms despite representing distinct objects. In the original cast suppression study, a 
qualitative evaluation of the model was also undertaken by having radiologists of varying experience 
rank the generated images in terms of subjective quality. One study used a GAN to create lung nodules 
in CT images. It tested how well radiologists could distinguish real from fake and malignant from 
benign nodules (15). Another study used GANs to suppress bone in chest radiographs and tested for 
performance changes in radiologists’ ability to detect nodules (16). In what is perhaps the most 
compelling way of evaluating GAN models, the outputs are used as inputs to other AI models that have 
well-defined performance metrics. Examples include using GANs to improve segmentation and 
classification algorithms (17–24). A limitation in evaluating the CycleGAN method for cast suppression 
is a lack of precise application since there is no evidence that removing the cast shadow improves the 
quality or speed of extracting relevant clinical information in extremity radiographs. This presents an 
opportunity to bridge the gap between an exploratory study and an application that may yield tangible 
clinical benefits.  

This study aims to extend the published CycleGAN method using an adult and pediatric dataset by 
incorporating a perceptual loss function and a self-attention layer. This study further evaluates the 
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model's performance through quantitative and qualitative analyses and investigates its potential for 
clinical application. 

2. Materials and Methods 

This study was exempt from Human Research Ethics Committee review as a retrospective quality 
improvement project. It was consistent with the NHMRC Ethical Considerations in Quality Assurance 
and Evaluation Activities (2014) guideline. 

2.1 Image data acquisition 

The images came from a large metropolitan hospital, including 30000 wrist radiographs taken between 
2013 and 2023. We selected 10200 radiographs and divided them equally into groups of images with 
and without casts. First, original images were converted to 8-bit grayscale PNG files. Preprocessing 
included adding black pixels to images that weren't square and rescaling to 512x512 pixels by Lanczos 
interpolation (25). The images were then grouped into training (n=10000) and testing (n=200) subsets. 
Half of the test images were without cast (n=100) and used as the reference for quantitative assessment, 
and the other half (n=100) were with cast and used to evaluate model performance. 

2.2 Model architecture and implementation 

As in the Hržić et al. study, the model is trained to optimise a loss function consisting of adversarial, 
cycle-consistency, and identity loss. The same training parameters are used for consistency as in 
previous publications (2,7) (cycle-consistency loss with weight λ =10, Adam optimiser with batch size 4, 
and learning rate α = 0.002, which was linearly reduced for the final 100 epochs). Due to computational 
limitations, and since the original study showed that the U-Net 512 architecture gave the best 
performance, we used this generator with 9 layers each for up- and downsampling.  The details of the 
discriminators we applied are identical to those in the original study. The CycleGAN model was 
developed to include a perceptual loss (PL) function and self-attention layer (SAL). The PL function 
compares images based on differences between high-level image feature representations rather than 
differences between pixels, which may improve the quality of generated images (26). This study used a 
VGG16 network trained on the ImageNet dataset (27). The SAL added to the generator allows the 
network to consider the entire input when evaluating parts of the data, which may produce more 
coherent and higher-quality images by allowing the generator to capture intricate and global patterns in 
the images (28). The model was trained using Python (v3.10), Pytorch 2.4, and NVIDIA CUDA 12 
libraries, on an NVIDIA Tesla P40 GPU with 24GB of VRAM. Details of training losses can be found 
in the supplementary information. 

2.3 Quantitative image analysis 

Applying the CycleGAN model to an image alters its associated pixel value histogram, particularly 
causing an increase in high-intensity values (2). In essence, the evaluation metrics quantify the similarity 
between two sets of histograms, which correspond to sets of histograms from real (H1) and generated 
(H2) castless images. In this study, we use histogram correlation (29), histogram intersection (30,31), 
Chi-squared distance (32), Hellinger distance (33), and Structural Similarity (SSIM) index (34,35) as 
quantitative metrics to assess the model. Details about quantitative metrics can be found in the 
supplementary information. 
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2.4 Qualitative image analysis 

To probe the potential for clinical application, we first identified problematic images where the original 
radiology report suggested repeat imaging without the cast. We searched the Picture Archiving and 
Communication System (PACS) for 20 such cases. The model was then applied to these images to 
generate AI-enhanced versions. Three radiologists with 7, 10 and 39 years of experience were then 
asked to re-assess each case using the referral request or indication and the original and AI-enhanced 
images. The radiologists were blinded to the original reports, received all views associated with each 
imaging study, and could view the casted and decasted images side by side. The images were presented 
in a Google Form at low resolution (512×512), without the ability to adjust window and level settings. 
For each case, there was a field for the radiologists to write their report and a checkbox to indicate 
whether the AI-enhanced images improved their diagnostic confidence. A limitation of the qualitative 
assessment in the study by Hržić et al. is that observers ranked only generated images based on 
perceived quality, potentially turning the test into a "beauty contest" rather than focusing on diagnostic 
utility (36). To address this, the experiment compared the radiologists' new reports against the original 
reports and categorised them into three outcomes: 

1. The new report is essentially identical in identifying the presence or absence of fractures. 

2. The new report is decisive about a fracture suspected in the original report. 

3. The new report identifies a fracture not detected in the original report. 

Where available, the new radiologist reports generated in this experiment were compared against reports 
from follow-up CT scans and radiographs without casts. Although the availability of such follow-up 
studies was limited, this comparison allowed us to establish a "gold standard" against which the new 
reports could be validated. 

Each radiologist reviewed 60 image subsets via Google Forms as a separate Turing test. They were 
informed that the images may be all unenhanced, AI-enhanced, or a mixture of the two. Each image 
subset contains 15 real casted images, 15 generated castless images, 15 real castless images, and 15 
generated casted images, all randomly selected. These images were unlabelled and randomly shuffled. 
The radiologists were allowed to zoom and pan within the image. They were also blinded to each other’s 
evaluation and were not shown any sample images before the assessment. The radiologists were asked to 
classify each image as unenhanced or AI-enhanced. This test determined whether radiologists can 
distinguish real from generated images, implying that the model can generate high-quality outputs if 
radiologists cannot detect the AI model (15). The generation of high-quality images could, for example, 
be leveraged as input for deep learning models.  

2.5 Statistical analysis 

First, a Shapiro-Wilk test was performed to determine that quantitative metrics were non-normally 
distributed. Since the histograms generated by each model are produced from the same set of real 
images, and the same set of reference images are used for comparison, we are dealing with paired data. 
Therefore, a Friedman test was performed since the data is non-normal, dependent, and consists of 4 
groups. Post hoc analysis was done using the Wilcoxon signed-rank test, which must be applied for each 
combination of models with six possible combinations for four groups. In this case, a Bonferroni 
adjustment was applied to the threshold p-value for significance. A Chi-squared test for independence 
was performed to check if the distributions of report outcomes were different between radiologists. The 
Turing test assessments were tested for inter-rater reliability and inter-observer discrepancies via the 
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Fleiss’ Kappa statistic and Chi-squared tests, respectively. The statistical analyses were performed using 
Python (v3.12.4). 

3. Results 

The dataset included 10,200 Radiographs, with an average patient age of 35 ± 28 years for those with 
casts and 35 ± 26 years for those without. Of these, 4,996 Radiographs were from male patients, with a 
mean age of 26 ± 21 years, and 5,204 Radiographs were from female patients, with a mean age of 44 ± 
29 years. 

The CycleGAN-PL-SAL model performed the best overall, with an SSIM of 0.5445 ± 0.1001, 
correlation of 0.9863 ± 0.0196, intersection of 191822 ± 28426, Chi-squared distance of 1136451 ± 
2486185 and a Hellinger distance of 0.2902 ± 0.0867. The Friedman test yielded p-values of zero for all 
metrics. It thus implied that a Post Hoc test in the form of a Wilcoxon signed-rank test with a Bonferroni 
adjustment was needed to establish differences between the six comparisons between models. Most 
differences between models were statistically significant at the p = 0.05 level (Bonferroni adjusted to p < 
0.009) in Wilcoxon signed-rank tests. The SSIMs between the CycleGAN and CycleGAN-PL (p = 
0.07), CycleGAN and CycleGAN-PL-SAL (p = 0.11), and CycleGAN-PL and CycleGAN-PL-SAL (p = 
0.03) were not significantly different. The histogram correlations between CycleGAN and CycleGAN-
SAL (p = 0.01) and the Hellinger distances between CycleGAN-PL and CycleGAN-PL-SAL (p = 0.05) 
were not significantly different. The quantitative results are shown in Table 1 and Figure 1. 

As shown in Table 2, radiologists found that the AI-enhanced images improved diagnostic confidence in 
their reporting for 13, 16, and 11 of the 20 cases. In 4, 3, and 0 of the 20 cases, the radiologists reported 
more decisively and identified a fracture that was only suspected in the original report. In 2, 0, and 1 of 
the 20 cases, radiologists identified a fracture not mentioned in the original report. A summary of the 
fracture diagnoses in original reports are categorised and shown in Table 3. Since cases were selected 
because their original reports contained suggestions for repeat imaging, we performed a PACS search 
for repeat scanning. Follow-up imaging was available in 11 of the 20 cases, although one case with a 
follow-up radiograph had a report that still suggested further CT imaging. Of these 10 cases, 7 were 
followed up with X-rays and 3 were followed up with CT scans. Almost every report from radiologists 
reading AI-enhanced images had an identical diagnosis as that found in the report associated with 
follow-up radiographs and CT imaging. In a report that differed from follow-up imaging, one radiologist 
identified a “nondisplaced fracture of the proximal pole of the scaphoid bone”. Although all three 
radiologists correctly diagnosed the distal radius fracture confirmed by the follow-up CT scan, the 
follow-up report states that “the scaphoid is normal”. In the other report with a diagnosis that differed to 
follow-up imaging, one radiologist found that “linear lucency through the distal radius may represent a 
non displaced fracture although assessment is suboptimal”. In this case, the other two radiologists wrote 
“no fracture”, as determined in follow-up imaging. The Chi-squared test yielded a statistic of 6.47 
(p=0.17), indicating that differences in the distribution of report outcomes were not statistically 
significant among radiologists. 

The Turing test experiment demonstrated that radiologists were typically unable to correctly identify AI-
generated images. As shown in Figure 2, the radiologists classified 62% of the AI-enhanced images as 
unenhanced, while they correctly classified 87% of the unenhanced images. For this experiment, Fleiss’ 
Kappa statistic was 0.83 and a Chi-squared test yielded a statistic of 0.19 (p=0.91), showing a high level 
of agreement among raters, and that radiologists’ classifications were not significantly different from 
one another. 
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4. Discussion 

In this study, we extended the method presented by Hržić et al. for suppressing cast artefacts in wrist 
radiographs by incorporating a perceptual loss function and a self-attention layer into the model. We 
investigated the effects of these additions on the model’s performance through quantitative and 
qualitative experiments. Additionally, our model was trained and evaluated on a dataset that required 
fewer preprocessing steps and was not limited to paediatric images. We quantitatively assessed the 
model outputs using standard image processing metrics and found that the enhanced model—including 
the perceptual loss function and self-attention layer—performed best overall. Although the CycleGAN-
PL-SAL model showed relative improvement over the standard CycleGAN model, the quantitative 
metrics did not show absolute improvement compared to those reported by Hržić et al. However, these 
metrics are intrinsically non-reproducible because we used different sets of training and testing images. 
This inability to directly compare absolute values of quantitative metrics underscores a limitation in 
assessing models solely through these metrics. 

The first qualitative test addressed a clinically relevant question and revealed that radiologists 
generally found that AI-enhanced images improved diagnostic confidence. In most cases, radiologists 
produced reports identical to the original ones, suggesting that the model does not generate significant 
artifacts or hallucinations. Notably, in some instances, radiologists provided decisive diagnoses of 
fractures that were only suspected in the original reports, and in three cases, they identified fractures that 
weren’t initially reported. This implies that the model may be suppressing casts effectively to uncover 
true underlying anatomy, demonstrating that thoroughly validated cast suppression could aid in 
diagnosis. One radiologist commented that the model sometimes made their task easier but never harder, 
expressing comfort in using the tool if it was well integrated with the PACS to reassure their diagnoses. 
This sentiment is reinforced by the finding that radiologists mostly produced reports with diagnoses 
identical to those from follow-up imaging. The one report that differed significantly to follow-up 
imaging may be partially attributed to the inherently greater diagnostic capability of CT imaging due to 
its tomographic spatial information. The other report that differed to follow-up imaging was 
inconclusive, indicating the AI-enhanced images were not sufficient to enable the radiologist to make a 
diagnosis. Given that all other reports provided diagnoses matching follow-up imaging, this suggests the 
model is not producing hallucinations but is generating reliable images for diagnosis. Furthermore, the 
demonstrated ability of radiologists to make robust diagnoses using downsampled images was 
particularly impressive. 

The second subjective test in this study demonstrated that the model produces high-quality castless 
images, usually indistinguishable by radiologists from unenhanced images.  Such realistic image 
generation could be leveraged for data augmentation, addressing data scarcity issues and class 
imbalances in datasets used to train other models. An objective validation approach could involve using 
the generated images as inputs for a well-established model to see if performance improves compared to 
using original images. For example, the model developed by Hembroff et al. can detect the presence of 
casts in wrist radiographs with high accuracy (37). This model could be tested with cast-suppressed 
images, objectively evaluating the quality of AI-generated images. These generated images could also 
serve as educational tools for radiology trainees and medical students. 

This study is subject to various limitations relating to data, modeling, and performance evaluation 
methods, which present significant challenges for clinical implementation, particularly in establishing a 
robust validation method. While data availability is not an issue, it would not be difficult to collect a 
volume of data an order of magnitude larger. It is in fact the prohibitive computational costs that limit 
the number of images used in training. Training the model on data from multiple sources and institutions 
at native resolution would require significantly more computational resources. A major limitation of the 
clinical reporting assessment was using low-resolution images that could not be windowed or leveled, 
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preventing the experiment from reflecting routine clinical conditions. Despite strong agreement between 
radiologists, some discrepancies in reporting were noted. The diagnostic reference standard we used 
demonstrated that the model can reliably generate images of sufficient diagnostic quality, which has 
implications for reducing cumulative population dose, improving operational efficiency, reducing delays 
to diagnoses, reducing patient visits, and improving radiologist workflows. However, this validation was 
limited in terms of scope. Despite these limitations, the model successfully generates high-quality cast-
suppressed images. Examples of the model’s successes and failures are shown in Figure 3.  

With access to greater resources, future work should focus on training the model on a greater volume 
of high-resolution images from various sources, and more comprehensively validating the results against 
follow-up imaging. The training and testing data should also include ankle radiographs, as an abundance 
of this data exists with and without casts. In-depth validation would also involve identifying a greater 
number of cases with follow-up imaging, and involving a larger cohort of radiologists in the assessment. 

5. Conclusion 

We extended a GAN-based method for suppressing cast artifacts in wrist trauma radiographs by 
incorporating a perceptual loss function and a self-attention layer into the model architecture. This 
enhancement led to relative improvements over the original method, as demonstrated by quantitative 
metrics on a large dataset that included adult and pediatric images. Qualitative assessments revealed that 
the model enhanced radiologists’ diagnostic confidence and that radiologists were typically unable to 
correctly identify AI-generated images. In some cases, the availability of both original and AI-generated 
images led radiologists to issue more decisive diagnoses for fractures that were previously only 
suspected, while also identifying new fractures that had not been mentioned in the original reports. The 
validation of a subset of reports against follow-up imaging demonstrates that the model can generate 
high-quality diagnostic images. Despite several limitations, this study lays the groundwork for 
developing a pipeline of AI models that can be built and eventually translated to the musculoskeletal 
radiology clinic. To the best of the authors’ knowledge, this is the first time that radiologists have 
reported on AI-generated, cast shadow suppressed wrist radiographs. This tool has demonstrated 
potential for reducing patient doses by avoiding repeat imaging, improving operational efficiency, 
reducing delays to diagnosis, reducing patient visits, and facilitating radiologist workflows. 
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Tables 

 

Table 1: Quantitative comparison metrics with associated standard deviations for comparisons of the generated cast suppressed 

histograms against the reference castless test data set image histograms. The best results are given in bold. 

Metric CycleGAN CycleGAN-PL CycleGAN-SAL CycleGAN-PL-SAL 

SSIM 0.54 ± 0.10 0.54 ± 0.10 0.55 ± 0.10 0.54 ± 0.10 

Histogram 

Correlation 
0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 

Histogram 

Intersection 
190 986 ± 285 926 191 832 ± 28 590 191 530± 28 778 191 822 ± 28 426 

Chi-squared 

distance 
1 325 700 ± 2 810 422 1 196 688 ± 2 411 085 1 229 311 ± 3 284 563 1 136 451 ± 2 486 185 

Hellinger 

distance 
0.30 ± 0.09 0.29 ± 0.09 0.29 ± 0.09 0.29 ± 0.09 

 

 

 
Table 2: Summary results of the clinical application experiment, where diagnoses from each of 20 cases are placed into one of three 

categories. The far-right column indicates how many of these 20 images improve diagnostic confidence. 

 Identical 

Report 

More decisive 

report 

New fracture 

identified 

Improvement in 

diagnostic confidence 

Radiologist 1 14 (70%) 4 (20%) 2 (10%) 13 (65%) 

Radiologist 2 

Radiologist 3 

17 (85%) 

19 (95%) 

3 (15%) 

0 (0%) 

0 (0%) 

1 (5%) 

16 (85%) 

11 (55%) 

 

Table 3: Summary of fracture diagnoses in the 20 cases identified by the PACS search for reports recommending follow-up imaging. 

 No fracture Distal radius 

fracture 

No diagnosis 

Count 14 (70%) 5 (25%) 1 (5%) 
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Figures 

 

 

Figure 1: Bar charts displaying the quantitative metrics: a) SSIM, b) Histogram correlation and c) intersection, d) Chi-squared distance, a

e) Hellinger distance. All differences between models were statistically significant at the Bonferroni-adjusted p < 0.009 level, apart from 

the 5 pairs indicated by the blue squares and red stars (p-values noted in main text).  

 

 

and 
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Figure 2:  Confusion matrix of Turing Test results. The y-axis represents the nature of the displayed image and the x-axis represents the 

percentage of images radiologists classified into each category. Three radiologists evaluated 60 images each, giving a total of 180 

observations. Radiologists’ assessments are grouped together since there was no significant difference between their classifications. 
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Figure 3: Collage showing several input images sampled from the test data set (left) and the associated outputs generated by the 

CycleGAN-PL-SAL model (right). 
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