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Abstract

Chronic kidney disease (CKD) is a complex condition where the kid-
neys are damaged and progressively lose their ability to filter blood, 10%
of the world population have the disease that often goes undetected un-
til it is too late for intervention. Using the UK Biobank (UKBB) we
constructed a CKD cohort of patients (n=46,986) with genomic, clinical
and demographic data available, a subset (n=2,151) having also whole
body Magnetic Resonance Imaging (MRI) scans. We used this multi-
modal cohort to successfully predict, from initially healthy patients, their
5-year outcomes for End-Stage Renal Disease (ESRD, n=210, AUC=0.804
=+ 0.03 with 5 fold cross-validation) and the larger cohort for validation
to predict time-to ESRD and perform Genome-wide association studies
(GWAS). Extracting important clinical, phenotypic and genetic features
from the models, we were able to stratify the cohorts based on a novel
set of significant previously unreported SNPs related to mitochondria/cell
death, kidney development and function. In particular, we show that the
risk allele of SNP rs1383063 present in 30% of the population irrespec-
tive of ancestry and putatively regulating MAGI-1, a gene expressed in
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the podocyte slit diaphragm, is a strong predictor of ESRD and stratifies
male populations of older age.

Introduction

Chronic kidney disease (CKD) is a condition where the kidneys are damaged and
progressively lose their ability to filter blood. It is estimated that 800 millions
or 10% of the world population have CKD [1] and 37 millions in the USA alone.
It has been one of the leading causes of death, while 90% of adults with CKD
and 40% of adults with severe CKD do not know that they already have the
disease [2]. CKD is primarily defined in Clinical Practice Guidelines in terms of
kidney function [3] and CKD patients progress over multiple CKD stages, often
slowly and heterogeneously [4], from mild kidney damage to End-Stage Renal
Disease (ESRD) or kidney failure, defined as either the initiation of dialysis or
kidney transplant.

Despite its prevalence, CKD goes often undetected and it is necessary to have
better understanding of kidney progression and identifying pre-clinical kidney
damage that may lead to CKD. Indeed, the underlying risk factors and patho-
physiological mechanisms of CKD have not been well defined. This might be
due to the fact that many comorbidities are associated with CKD, the main ones
being Type 2 diabetes (T2D), hypertension (HT) and congestive heart failure
(CHF), but also, because most of the focus has been on predicting ESRD from
late stages of CKD [5} 6] [7], 18 [9] [10] [11], when not much can be done to better
understand and slow the progress of the disease. Detecting early-on the deteri-
oration of renal function is an important initial task to then be able to define
co-morbdities and their effect on reducing disease burden to finally slow the
deterioration of renal function.

Substantial kidney damage as determined by loss of nephrons, is a good
example of CKD’s complex etiology as it does not necessarily immediately lead
to clinically measurable effects [12], with substantial nephron loss appearing
simply through aging [13]. This is due to adaptive responses from remaining
nephrons compensating for the missing ones [14], but this also tends to set
the stage for more nephron loss [15] [16] [17]. In such cases, imaging may be
useful as some larger scale correlations in ultrasound and magnetic resonance
imaging (MRI) have been noted [18], and injection of specialized contrast agents
with MRI tuning make it sensitive to glomerular microstructures. However,
substantial work is still needed to address scan time and contrast agent toxicity
for clinical use [19] [20]. In addition, according to a position article which is
based on research conducted in the last decade [19], these images can be used
to measure volumetric data on the kidney which is another important indicator
for CKD progression.

Conversely, rather than using direct markers of specific glomerular and
nephron kidney injury, later stages of CKD are defined based on lower lev-
els of creatinine-based estimated glomerular filtration rate (eGFR below 60 ml
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min 1.73m~2) hence capturing an heterogeneous set of kidney disorders. Ge-
nomic studies have used eGFR as a trait for finding common variants for kidney
disease, seeking possible underlying molecular-level etiology. Such genome-wide
association studies (GWAS) have been successful in explaining up to 20% of an
estimated 54% heritability in this CKD-associated trait [21] and have helped es-
tablish genome-wide polygenic scores (PRS) across ancestries for discriminating
moderate-to-advanced CKD from population controls [22]. There is therefore
an opportunity to explore the relationship between larger scale image features,
clinical measures of kidney function, and genetic analyses for the transition of
early CKD to ESRD.

In this study, we applied a multimodal approach to predict, from early stages
of the disease, progression of CKD to ESRD. The approach entails using de-
mographic data, clinical data from Electronic Health Records (EHR), single
nucleotide polymorphisms (SNPs) and whole body MRI imaging data from UK
Biobank (UKBB), a large-scale biomedical database and research resource with
half a million UK participants. While a number of studies have sought to iden-
tify CKD using Artificial Intelligence (AI) to predict disease, little has been done
to predict progression from early-on stages to ESRD, using whole body MRI
scans [23], although the possibility of using Al to identify predictive features in
image data has been showing some success [24] 25| 26] and has been explored
for CKD looking into multiple modalities that inform structural changes and
vascular function [27] 28]. Specifically, we sought to identify whether factors
influencing the progression could be detected in the integration of genomic data
with imaging and clinical data. Such information may aid in early planning of
therapy and identification of patients requiring more aggressive treatment and
testing, as well as distinguish which genetic variants may tie different aspects
of imaging and disease to kidney failure mechanisms and processes. It would
also help alleviate the fact that despite superior performance in clinical decision
support using multiple data types, a major drawback for widespread adoption
of AT models has been the lack of well-defined methods for interpreting such
models [29]. To our knowledge this is the first successful study applying a mul-
timodal approach to predict advanced stages of CKD and dialysis from early
stages, or even before the disease has manifested. Our approach also led to dis-
covering a new set of genes associated with CKD progression, in particular, to
features extracted from radiomic analysis of the kidney and a variant putatively
influencing the expression of MAGI-1 and able to differentiate slow from fast
progressors to ESRD.

Results

According to the most recent update [30], CKD is defined as abnormalities of
kidney structure or function, present for a minimum of 3 months, with implica-
tions for health; furthermore, CKD is classified based on cause, GFR category
i.e. severity of kidney impairment, and severity of albuminuria, the so-called
CGA classification. Both the estimation of GFR, as well as the exact definition
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of the chronicity criterion mentioned in the KIDGO definition, together with
physiological and pathological fluctuations of kidney function, represent huge
pitfalls in the reliability of the above definition, not to take into account age-
related differences [31] B2], as well as the widely distributed so-called “social
determinants of health” [33]. Furthermore, since that definition ultimately may
encompass also physiological and para-physiological conditions, one risk at a
global level is to devote unnecessary resources to subjects (and not patients)
not really needing them. Therefore, an innovative approach to accurately pre-
dict, from early stages of CKD, and even before its diagnosis, ESRD in the
general population would represent a real game-changer from a medical, as well
as a socio-economic, point of view. The overall design and selection of the CKD
cohort and definition of the 5-year threshold classification task are presented
in Figure [If and Methods. Briefly, 49,744 patients from UKBB were found to
have been diagnosed with CKD (see Methods and [34] for cohort definition), the
average age of CKD patients was 67.7 years and the progress to ESRD for the
210 cases present from the date of CKD 1&2 diagnosis was about 70.5 months.
We note the cohort average age is slightly older than the UKBB set, suggesting
that older patients have had more time for CKD to emerge and be clinically
diagnosed. In order to implement multimodal models, this initial CKD cohort
was reduced to the 2151 patients for which genomic and MRI information was
available, the latter one being the limiting datatype (see Fig). Given the
disease progression in this cohort, we decided that a relevant classification task
would consist on predicting whether a patient currently, or diagnosed in the near
future with early stages of CKD, would progress to ESRD in a 5 year window.
The start of the 5 year window, i.e the index date, is defined as the time that
an MRI scan was first taken. Notably, when the first MRI scan was taken, none
of the patients selected have a CKD 3 & 4 diagnosis and only 188 have a CKD
1 & 2 diagnosis (see Fig[lp).

In order to build a multimodal prediction for the 5 year ESRD classification
task we implemented 3 types of models, Logistic Regression, Random Forest
classifier and XGBoost classifier on features derived from the 4 types of data,
demographic, Clinical Classifications Software (CCS) codes, MRI and genomic
features. The demographic and clinical features were directly implemented,
but the genomic data features were extracted performing a Genome Wide As-
sociation Study (see Methods). Likewise, the MRI data was used to extract
features from the implementation of three different pipelines of analysis, first
the extraction of radiomic features, second a Convolutional Neural Network
(CNN) and third a Vision Transformer (ViT) (see Figl2h). The summary of
the results of a 5-fold cross-validation scheme can be seen in Figure 2b and the
complete results in Supplementary Figures S1-8. Briefly, age and gender ex-
tracted from demographic data were able to predict ESRD 5-year outcome with
an AUC of 0.703, radiomics had the best prediction with an AUROC of 0.743
while the other imaging schemes ViT (AUROC=0.657), CNN (AUROC=0.605)
and clinical data (AUROC=0.640) had similar performance (Fig[2b). Notably
an ensemble method using a voting scheme to integrate all approaches obtained
the highest AUC of 0.804+0.03 (Fig[2b). Although the GWAS analysis was able
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to extract 215 significant SNPs associated with CKD, their inclusion as features
in the 5 Year-ESRD classification task or using them to calculate a Polygenic
Risk Score did not bring any improvement to the performance (AUC=0.54, see
Methods). In order to better understand the multimodal predictions, we per-
formed a Grad-CAM analysis [35] for the results of the CNN pipeline and SHAP
analysis [36] to rank feature importance for the radiomics features, clinical and
demographic data. Interestingly, the attention of the CNN pipeline was mainly
concentrated on kidneys and heart (Fig) and clinical terms related to these
two organs also appeared as the most important CCS codes in the clinical pre-
dictions (see Supplementary Fig. S4b). The SHAP analysis shows that age
of diagnosis and sex are very important features for prediction of the disease
outcome (see F ig top), while for the radiomics features it shows that the
top five Shapley numbers were Energy [37] and Total Energy [38] from the first
order statistics, from the Gray Level Size Zone Matrix (GLSZM) Features the
Zone Entropy [39], from the Gray Level Dependence Matrix (GLDM) Features
the Dependence Non Uniformity [40] and Inverse Difference Moment Normal-
ized (IDMN) [41] (see Fig2d bottom).Hence, we can interpret these results as
having a smaller kidney volume accounted as Energy and overall low image
heterogeneity were features strongly predictive of ESRD (see Fig top).

The analysis of the results for the multimodal predictions for ESRD re-
veal that radiomics has the largest predictive power and the 215 SNP features
extracted from the genomic data are the weakest predictors, also reflected in
Odds-Ratio (OR) close to 1 when applying logistic regression for the larger ge-
nomic cohort of 46,986 patients (see Fig& Supplementary Fig.9-14). However,
these relevant SNPs were extracted for CKD as our cohort only had 210 patients
with ESRD an insufficient number for statistically significant GWAS analysis
(see Tables S1-S10 for GWAS analysis). To overcome this, we decided to take
advantage of our multimodal approach. Indeed, primary setup for GWAS is to
compare two groups of subjects against differences in traits. Often, the size of
the effect, although significant, tends to be very small due to several factors such
as rare variants, complex relationships among SNPs such as epistatic effects, and
heterogeneity of the trait. Non-genetic variables such as clinical data, labora-
tory measurements including eGFR and chemical entities or imaging of body
variables are traits that can be used for GWAS. To address trait heterogeneity
in ESRD as a possible cause for the low predictive power, we took advantage
of our multimodal data approach and the fact that radiomic features had high
predictive power to stratify the target population based on the presence of pre-
dictive features (see Fig). We hoped that performing a GWAS analysis on
this stratified population would allow the discovery of SNP variants associated
to ESRD.

Each of the top five SHAP features from the radiomics model were used to
stratify the cohort using a binary cut at the mean of the feature value to divide
it in two populations (see Fig top). Then, for each of these features, the seg-
mented cohort was used to perform an extraction of SNPs by GWAS, who where
then mapped to genes, and Gene Ontology (GO) terms associated with CKD
were identified (see Table . Gene Ontology enrichment analysis allows the
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discovery of SNPs focal associations with certain structural components given
by the non-genetic data and also helps to overcome the false negative barrier by
asking whether the observed association is higher than would be expected given
random sampling. Figure[3p & c shows the results of mapping energy and non-
uniformity imaging SHAP associated SNPs to "kidney” or "renal” associated
GO terms, the only kidney-associated terms that showed statistically significant
results and larger OR, after running the analysis with a limited set of 2,151 im-
age samples. Indeed, microstructure features like glomerulus and nephron show
weak associations compared to larger scale features such as kidney and renal
that the MRI scans are able to detect. However, GO terms associated with
kidney or adrenal gland development, filtration and homeostasis, and kidney
morphology were present in the genes associated to the relevant SNPs for En-
ergy and Non-Uniformity (see Table [I| and SNPs list in Table .

Although the stratification approach of the imaging cohort showed novel sig-
nificant genes related to ESRD, the GWAS analysis is still limited by the only
2151 patients with available MRI data. In order to expand the cohort to obtain
a higher statistical power for the GWAS analysis and find SNPs associated to
predictive features, we took advantage of the larger CKD population with clin-
ical data and composed of 49,774 patients (see Fig. Given that the clinical
data did not perform highly on the ESRD-5 year outcome prediction task (see
FigPp), we decided to implement the time to event model RankSVX [42] that
uses a reduced set of clinical features to allow for cohort stratification and inter-
pretable predictions [34]. The time to event task consisted on predicting ESRD
onset from stages 1 & 2 of CKD (see Methods). The top features of the predic-
tions, as determined by SHAP analysis, consisted of ”Sex” and the level 3 CCS
code ”Diseases of the Heart” (see supplementary Figure 9) that was used to
stratify and implement the GWAS pipeline described in Figure [3h on the 46,986
subset of patients with genomic information (see results Fig). Although most
of the patients are censored, i.e only 210 patients reach ESRD (see Fig a & b),
the model was able to perform well when predicting the time it takes to progress
from early CKD stages 1 & 2 to ESRD, as shown by the concordance index (c-
index) and Mean Absolute error (MAE) (see Fig. [it). As shown in our previous
publication [34], using higher level 3 CCS codes did not deter the model per-
formance (see Fig. 4 compare CCS level 3 vs. CCS level 4) and helped obtain
a less granular set of features given that all CCS 4 level concepts are included
in CCS level 3. This allowed to stratify a population of about 10,000 patients
around the top feature ”Diseases of the Heart” to implement the GWAS anal-
ysis pipeline described in Figure [3h. Genes with significant SNP associations
to ”Disease of the Heart” SHAP scores with kidney and Cardiovascular disease
(CVD) GO-terms are listed in Table [2| They show relatively weak p-values for
both terms, yet even at relaxed p-value levels, the GO-terms (Tableand Figure
) identify consistent structural features relevant to CKD and CVD. Curiously,
the GO-terms are anti-enriched that is the Odds Ratio are lower than would be
expected by chance when choosing random genes and so the genes containing
SNPs associated with the "Disease of the Heart” CCS feature (Figure [3d) are
an under-representation of the subset of the CVD and CKD related GO-terms.
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That would suggest that the specific issues that the clinical analysis identified
for cardiovascular problems are most significantly tied to a small and specific
subset of genetic kidney problems probably defined by genes MME, ARMCS5,
BCL2, ADORA1 and WDPCP (see SNPs list in Table[S10). Interestingly, both
MME and BCL2 activity are cardiolipin-dependent, a lipid mainly found in mi-
tochondria and heavily enriched in cardiomyocytes [43]. These add to the list of
mitochondria-localized proteins CASP9 (Table [T) and ACSF3 (Table [S8), part
of the mitochondrial fatty acid synthesis (mtFAS), a highly conserved path-
way essential for mitochondrial biogenesis [44]. Overall, these genes illustrate
how SNPs related to genes performing mitochondria-related functions such as
metabolism and apoptosis have been found to be over-represented in our analy-
sis (see Table and might underlie that regulation of cell death in the kidney
is an important characteristic of CKD severity.

Given the success of the survival analysis for extracting genes relative to
specific subset of kidney problems, we decided to test the predictive power of
the 215 SNPs associated with CKD (see Tables |S7| & on this time to event
task. Indeed, although after censoring, the number of subjects in the 5 year
ESRD prediction cohort who actually progressed to ESRD is small and these
genetic features yield relatively low power, we observe a systematically higher
rate of conversion to ESRD for subjects carrying any of the 215 SNPs as shown
in the Kaplan-Meier curves (see Fig). Hence, we combined the 215 CKD-
associated SNPs with the clinical features from the cohort of 46,986 patients
with CKD and trained a RankSVX model for the time to ESRD task. The
SHAP analysis for the top predictive features included sex and age, already
shown to be important predictors (see Figld and Fig.S17), but also two SNP
loci were included, rs1383063 ranked 3rd and rs12191777 ranked 8th (see Fig).
Importantly, the top 3 features, being male with age above 65 years and pres-
ence of rs1383063_A, could be used to differentiate the outcome of patients in
a statistically significant way, as shown by the Kaplan-Meier curve (see Fig
and see Supplementary Figure S18). Also, although genes near rs12191777 did
not have kidney-related functions and did not reach genome-wide significance
((see Supplementary Figure S10), rs1383063 falls in a cis-Regulatory Elements
(cCREs), the distal enhancer E2210115 shown to be acetylated in H3K27, and
about 50kb upstream of the kidney-related MAGI-1 gene and all features fall in
the same Topological Associated Domain (see Supplementary Figure S20). In
[45] rs1383063 was found to be associated with eGFR/creatinine levels, and in
a eQTL but not for MAGI-1, however Rapl pathway, whom MAGI-1 is part of,
was reported to be enriched in eGenes from an eQTL study using glomerular and
tubulointerstitial samples [46]. Hence there is evidence for rs1383063 SNP being
a potential regulator of the expression of MAGI-1, whose product is a member
of the membrane-associated guanylate kinase homologue (MAGUK) family, par-
ticipating in the assembly of multiprotein complexes on the inner surface of the
plasma membrane at regions of cell-cell contact (see Fig). MAGI-1 protein
may play a role as scaffolding protein at cell-cell junctions and in the kidney it
has been shown to localize at the podocyte slit diaphragm, a specialized intra-
cellular junction that is universally injured in proteinuric diseases [47} [48]. Pre-
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cisely, MAGI-1 was found to be differentially expressed in podocytes of CKD vs
Control samples in a recent integrated snRNAseq, snATACseq, and scRNAseq
study [49]. It has also been shown that diminished MAGI-1 expression in cul-
tured kidney podocytes weakened tight junction integrity, although knock-out
mice demonstrated normal glomerular histology, lowering nephrin levels resulted
in spontaneous glomerulosclerosis and low levels of MAGI-1 are related to pro-
teinuric states (see Fig[df bottom) [48] [50]. Interestingly, rs1383063_A was not
only present in 30% (Table of UKBB population but was over-represented
in different ancestries (see Table [3) even if these minority populations did not
play a role in the association of SNPs with CKD (see Supplementary Figure
S16]).

Discussion

CKD is a relentless chronic and progressive condition that has been estimated
to affect more than 850 million individuals worldwide [51]. Furthermore, epi-
demiologic studies have shown that CKD has also emerged as a leading cause of
global mortality [52 53], despite some survival improvement recorded in recent
years, for end-stage renal disease (ESRD) patients, at least in rich, industrial-
ized, countries [54]. Thus, beyond finding more effective treatments, the early
identification of CKD would be of paramount importance; all the more given
its global prevalence and although more challenging, it would be necessary to
find methods that predict the evolution of CKD into ESRD.

Taking advantage of the UKBB dataset, we were able to build a CKD co-
hort of more than 2,000 patients to build a multimodal model that is able to
effectively use imaging features, in addition to demographic and clinical data,
to predict 5-year ESRD outcome with a AUC above 0.8. The radiomic imag-
ing features show that having a smaller kidney volume and overall low image
heterogeneity is strongly predictive of ESRD, together with age and sex (see
Fig top). Conventionally, nephrologists tend to precisely use kidney length,
volume, cortical thickness and echogenicity to evaluate the severity of kidney
injury. Very short renal length (e.g., < 8 cm), apparent white cortex, and con-
tracted capsule contour, all indicate an irreversible kidney failing process with
high specificity but limited sensitivity [3]. The performance of our model is also
notable because the vast majority of the patients do not initially have a CKD
diagnosis at the time the MRI was performed, or are at very early stages of
the disease. Furthermore, by expanding the cohort beyond MRI data to about
50,000 patients with relevant genomic and clinical features, we were able to con-
firm the results observed in the imaging cohort that age, sex and heart/kidney
conditions are the best predictors of the disease outcome (see Figure 4d, Sup-
plementary Figure S4b and S17b). We homed in on a particularly interesting
gene MAGI-1, regulated by the rs1383063 SNP locus associated with a regula-
tory distal enhancer and showing a strong predictive effect for males of older
age. The fact that DGL2 also a member of the MAGUK family [55] was part
of the top genes of the initial CDK-centered GWAS (Table proves that the
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survival analysis, unlike the 5-year classification task, was able to distill variant
rs1383063_A, with a strong predictive power and present in more than 30% of
the population for all ancestries. Overall our study shows that by changing
the predictive task from eGFR levels to predicting CKD or ESRD, we obtain
an interesting set of new gene candidates associated with CKD and kidney fea-
tures, such as kidney development and function, as well as mitochondria-related
functions of metabolism and apoptosis not reported in previous studies [56l, 22].
Also, we think that the phenotype regressions performed against T2D, CHD
and HT, helped focus our genetic analysis on CKD itself and hence obtain a
very different set of relevant SNPs. Overall, our approach was successful as
we are able to train a highly performing multimodal model that is predictive
of ESRD from early stages of the disease and show that the MAGUK family
of genes DGL2 & MAGI-1 are probably good therapeutic targets, given their
importance in regulating proteinuria, a common signature of late CKD progres-
sion. This important advancement should have clinical and medical impact on
the prevention and treatment of chronic kidney disease.

Acknowledgments

We thank Krzysztof Kiryluk, Guillermo Cecchi and Mayra Furlan-Magaril for
their comments while reading the manuscript. This research has been conducted
using the UK Biobank Resource under Application Number 95318. Also, this
work has been partially funded by the EU Horizon 2020 project CAPABLE
#875052.


https://doi.org/10.1101/2024.10.15.24315251
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.10.15.24315251; this version posted October 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

(a) Energy SHAP associated SNPs with kidney or renal associated GO terms, for
GWAS SNP p-values = 0.001

Symbol Count GO_term
CASP9 81 kidney development
GLI3 16 cell differentiation involved in kidney development

CLCNKB 13 renal absorption/ sodium ion absorption
PPP3CA 11 cell proliferation in kidney morphogenesis/renal filtration

INSR 3 adrenal gland development

SALL1 3 kidney/ kidney epithelium/adrenal gland development
AQP3 2 renal water homeostasis/absorption

ARMC5 1 adrenal cortex development

(b) Nonuniformity SHAP associated SNPs with kidney or renal associated GO terms
from GWAS SNP p-values = 0.001

Symbol Count GO_term

CASP9 54 kidney development
C1GALT1 10 kidney development
ALDHI1A2 8 kidney development
FREM2 3 kidney development
LRRK?2 1 regulation of kidney size
UPK3A 1 kidney development

Table 1: Energy or Non-uniformity SHAP associated SNPs with kidney or renal
associated GO-terms

Symbol Count GO_term
MME 4 kidney development/ cardiolipin binding
ARMCS 3 adrenal cortex development
BCL2 1 renal system process
ADORA1 1 negative regulation of renal sodium excretion/heart contraction
WDPCP 1 kidney development

Table 2: ”Diseases of the heart” SHAP associated SNPs with CVD (italicized),
kidney, or renal associated GO-terms for GWAS SNP p-values = 0.001.
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(a) Distribution of potential MAGI-1 regulating alleles in Blackbrit population. Ho-
mozygous value counts OR=0.4811, 95% CI: 0.3982 - 0.5812 p-value of 3.29e-14, parent

population numbers (PP).
rs1383063-1 rs1383063-2 # individuals/PP

G A 149/63882
A A 135/41290
G G 18/25171

(b) Distribution of potential MAGI-1 regulating alleles in SouthAsian population.
Homozygous value counts OR = 0.3224 95%CI: 0.2991 - 0.3476), pValue = 1.966e-

191, parent population numbers (PP).
rs1383063-1 rs1383063-2 # individuals/PP

G A 1472/63312
A A 705/39967
G G 112/25077

Table 3: Distribution of MAGI-1 regulating alleles in UKBB population
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Criteria for classification task
Chronic Kidney Disease
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samples
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(210 severe) * E s* * Din S
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X No-CKD e > — samples
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S-year threshold

Fig. 1: Prediction of End-Stage Renal Disease using a multimodal
cohort. a. Chronic Kidney Disease (CKD) multimodal cohort definition based
on the intersection of patients diagnosed with CKD (49,744), with genomic data
available (46,986) and MRI scans (2,151). Out of those patients, 210 reached
End-Stage renal disease (ESRD). b. Definition of the classification task for
progression from early stages of CKD to ESRD. The index date, i.e start time
for counting the 5 year window, was set as the first record of an MRI (blue
stars). If a patient was diagnosed with ESRD within that window then it was
counted as a positive sample (top green star), if diagnosis was done after 5 years
(bottom green star) then patients were excluded from the analysis (9 patients
with very diverse intervals). Patients censored, i.e not having more records,
before the 5 year window were excluded from the analysis (bottom red star) but
patients that did not have an ESRD diagnosis within 5 years were counted as
negative samples (top red star).
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Fig. 2: Multimodal prediction of end-stage renal disease from early
CKD. a. Three types of analysis pipelines for analysis MRI scans, top Ra-
diomics middle Convolutional Neural Network (CNN), bottom Vision Trans-
former (ViT). See Figures S1-S8 for results details. b. AUROC for the 5
year-ESRD classification task with 5-fold cross-validation using each of the data
modalities, CNN in blue, Clinical in orange, ViT in green, demographic in red,
Radiomics in violet and Ensemble prediction in brown. Genomic is not plotted
as AUROC=0.54. c. Attention heatmap for the CNN shows kidney and heart
being prominent. d. SHAP analysis for top demographic data and bottom Ra-
diomics. Y axis represents different features, heatmap is feature importance for
ESRD outcome and X axis is feature value. Energy is a measure of voxel values;
Gray Level Size Zone Matrix (GLSZM) Entropy measures heterogeneity in an
image; A lower value of Gray Level Dependence Matrix (GLDM) non-uniformity
correlates with a greater similarity in intensity values; Gray-level co-occurrence
matrix (GLCM) inverse difference moment normalized (IDMN) is a measure
of the local homogeneity of an image. The first four features were acquired in
water, the last one in fatty tissue. See Tables S11-S12 for Radiomics details.
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Fig. 3: Extraction of relevant SNPs from traits predictive of end-stages
of renal disease. a. We first constructed unimodal models with imaging
and clinical data. A ranking of important features is then performed for each
model using SHAP middle left panel. Each of the top features is then used as
a trait and a binary stratification of the population is implemented using the
feature’s mean as a cutoff and where each patient including the feature is part
of the group associated with the trait middle right panel. A GWAS analysis
is implemented on the specific subset of the population where the top feature
is present right panel. Results of the Gene set enrichment analysis relative to
kidney-related terms for the Energy b. and Non-Uniformity c. imaging features
and d. clinical features related to diseases of the heart, mark significant imaging
results for most of the GO terms, selecting p-values of 0.001 yielded significant
kidney, renal, and kidney+renal GO terms. Shown are the confusion matrix,
odds ratio and 95% confidence interval, and Fisher exact test p-value. The Odds
Ratio analysis for significant features are shown below and are undefined where
Ngp = 0.
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Fig. 4: Time to event prediction of End-Stage Chronic Kidney Disease
using clinical and genomic features. a. Histogram of the number of days
elapsed from early CKD diagnosis (stage 1 or 2) to ESRD for the 210 patients
in UKBB cohort. Right diagram shows the Time to Event prediction task in-
cluding censored data, i.e patients diagnosed with early CKD but that have not
progressed yet to ESRD. b. Survival curve for 94 patients from a. conditioned
on whether they have any of the SNPs (23 patients) indicated as CKDgeno in
blue curve or with none (71 patients) indicated as the orange curve xCKDgeno.
Differences are not statistically significant. c. Performance of RankSVX model
using Clinical Classifications Software (CCS) codes level 3 or 4 as features is
shown using c-index and Mean Absolute Error (MAE). d. Top 10 features of
RankSVX model using CCS3 and genomic features extracted by SHAP. Red
dots represent the feature value and are an indicator of having the indicated
disease( CCS205 Spondylosis, CCS200 Other skin disorders, CCS6 Hepatitis), a
relevant SNP variant (rs1383063_A or rs12191777_G), being prescribed with an
associated drug therapeutic class (Antibiotics erythromicin and macrolides or
Antidiabetic agents) or a demographic variable (Age higher than, Sex-red indi-
cates male). Negative SHAP values (x-axis) indicate prediction of a higher risk
of ESRD. e. Survival curves for time to ESRD in blue, male having rs1383063_A
Top and older than 65 years bottom. Orange represents the rest of the cohort.
Differences are statistically significant Top Pval< 0.0139, bottom Pval< 0.0085.
f.
SNP rs1383063 sits 50kb upstream of the gene MAGI-1 in a potential enhancer
element enhD E2210115 that has been shown to be acetylated in H3K27 see
middle. MAGI-1 is expressed in the podocyte slit diaphragm shown in bot-
tom part of the kidney glomeruli shong on top. GBM stands for Glomerulus
Basement Membrane.
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Methods

Code availability
Code is available at: https://github.com/jeriscience/ CKDprediction

Enrollee Selection: Enrollee, GP, and HESIN Records Pro-
cessing

The UK Biobank (UKBB) recruited around 500,000 people aged between 40-
69 years in 2006-2010 from across the UK. With their consent, they provided
detailed information about their lifestyle, physical measures and had blood,
urine and saliva samples collected and stored for future analysis. UK medical
records were consented for inclusion in the UKBB. Data are derived from the
UK Biobank’s (UKBB) imputed genomic repository(111,480 subject records),
and subjects with imaging data, enrollment intake records, and GP and HESIN
records (136,749 which also included all the genotyped data then available).
We accepted CKD diagnoses and staging from the UK Biobank rather than
eGFR directly since eGFR by itself does not meet clinical practice guidelines:
Guidelines specify repeated eGFR with proteinuria testing with persistence over
a period of time [3]. A final subset of 2151 CKD patients and 4108 controls
corresponding to the intersection of clinical and genomic (68,781 patients, 26,814
controls after removal of duplicated records) and imaging participants (2151
patients) were available for the multimodal analysis components.

Clinical Overview

We extracted records for CKD stage diagnosis, and for a number of clinically
relevant factors, and constructed derived features. Stages were pooled into
CKD12 for stages 1 and 2, CKD3, CKD4, and CKD5 (dialysis dependant).
First CKD diagnosis did not start at stage 1 for all patients. The earliest
date of diagnosis across all states was taken as date of CKD diagnosis. Among
these others were diagnosis (Dx) for hypertension (HT), type II diabetes (T2D),
congestive heart failure (CHF), whether the Dx for these conditions were applied
prior to the diagnosis for chronic kidney failure (CKD) at any stage (preHT,
preT2D, preCHF). Sex followed the UK Biobank coding (0 = Female, 1 =
Male), age was taken at 2022 derived from UK BB’s date of birth (dob), with
a thresholded age (t-age) for individuals over 60 (near the mean age of CKD
diagnosis), and a centered and scaled age (s_age). CKD5 and Dialysis were
marked as end stage renal disease ESRD. Codes for Black British (BlackBrit)
were identified by UK Biobank codes (4, 2001, 4001, 4002, 4003) and generally
South Asian (SouthAsian) UK Biobank codes (3001, 3002, 2003, 3003, 4). See
Table [ST] for details.
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Adjustment variable selection

We performed logistic regressions predicting diagnosis of chronic kidney disease
using pre-CKD hypertension, Type II Diabetes, Congestive Heart Failure, sex,
age, Black British status, South Asian status, and age of first CKD diagnosis
(Figure Tables [S2).

Analysis of population stratification effects are presented here. QQ plots
(Figures were prepared first for a shuffled set (all the demographic and clin-
ical data were shuffled in their. columns, Figure . For a random variate R,
define a cumulative distribution function F(r) = P(r/leR). Then define an r.v.
Q@ = F(R) so that P(¢/leQ) = P(r/leR) = F(r) = ¢, so () = F'(R) is uniformly
distributed. The logistic regression model should uniformly sample the shuffled
data, which is in fact seen in the figure. The next test was to establish the base-
line without considering population stratification. This included adjustments
for age, sex, hypertension diagnosis, type II diabetes diagnosis, and congestive
heart failure diagnosis all diagnosed prior to onset of CKD. Ideally, the hope is
for stronger single nucleotide polymorphisms with strong p-values that would
deviate from the shuffled uniform agreement. This resulting plot (Figure @
shows much higher associations throughout the range of SNPs than expected by
chance with an expansion factor of lambda = 2.157, suggesting that there are an-
cestrally linked deep associations with CKD among subpopulations in the UK
Biobank cohort. Population variables employed by the UK biobank (https:
//biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21000) is based on UK
governmental census and records systems designed to quantify benefits eligibility
required by law (https://www.ons.gov.uk/census/census2021dictionary),
which may not optimally represent ethnic lineages appropriate for genetic anal-
ysis. This question is expanded later in the analysis. Including adjustments
for UK Biobank Black British and South Asian categories as listed above, the
QQ plot (Figure [S9¢|) still shows significant deviation from the null model, but
much of the population based stratification was removed, with the expansion
factor now reduced to A = 1.663. This leaves the difficulty that other identified
populations may not reflect clinically relevant heritage classifications suitable
for adjustment or stratification. It is worth noting that the impact of Black
British and South Asian inclusion was disproportionate to the population sizes
represented in the cohort, with Back British showing 243 subjects in the re-
gression, and South Asians showing 2010. Overall, the Manhattan plot for
the population adjusted regression (Figure showed relatively high levels of
“noise” marking stronger p-values than would be expected by chance, echoing
the strong expansion factors. There were relatively few SNPs rising to Bonfer-
roni significance. Given these results, we sought a method that would focus on
CKD relevant genes. We therefore chose to filter SNPs according to membership
in Gene Ontology records with terms that included nephron, glomerulus, and
renal. This reduced the Bonferroni threshold, and focused on any SNVs that
were relevant to CKD, whether or not they were impacted by population lin-
eage stratification effects, and offered a measure of relevance for the composite
marker by enrichment.
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The Age of first CKD diagnosis feature was incompatible with the South
Asian feature; logistic regressions converged for CKD, but not for ESRD. CKD
and ESRD regressions are displayed in Figures and [S12b. Age is a risk
to CKD, but not as important for ESRD progression. Both South Asian and
Black British are risk factors for CKD, but while being Black British is also a
risk for progression to ESRD, being South Asian does not show a similar risk.
Being male was a risk for progression to ESRD, but being female was a risk for
CKD. The impact of hypertension, type II diabetes, and congestive heart failure
were consistent in spite of the other variations. Since we hoped to find relevant
Single Nucleotide Polymorphisms (SNPs) that may be ancestrally informative,
and the other variables may show relevant interactions with variants, we sought
to control only for HT, T2D, and CHF in the GWAS by inclusion as adjustment
variables.

We also sought to identify relevant impacts of pharmaceutical therapies to
test them as adjustment variables that impact progression. We therefore applied
survival analysis (Figure[S13), with Kaplan-Meier regression (Figure , and
Cox regression (Figure ﬁand Table 7 showing the Cox prediction for thi-
azides. Clinical practice guidelines [57] for diuretic therapies of CKD recom-
mend thiazides early in treatment. The data testing for time-dependent effects
included thiazides, and were applied to early CKD stages 1 and 2. The Kaplan-
Meier plot shows a tendency for early delay in progression to ESRD. However,
the statistical power was not enough to resolve a significant contribution in the
Cox regression hazard ratio model (Figure . Age of diagnosis significantly
increased the hazard ratio, while age significantly protected against disease pro-
gression to ESRD.

Genomic Quality Control and Record Selection

We performed genomic quality control (QC) on the UKBB imputed genotype
data of 113,939 samples and 44 million high quality imputed variants (INFO
> 0.3) using PLINK [58]. We removed missing samples and variants with 2%
missing values, minor allele frequency (MAF) < 0.05, Hardy-Weinberg Equi-
librium (HWE) < 107¢ and removed samples with gender discrepancy, more
than three standard deviations in heterozygosity rates along with closely re-
lated individuals (identity by descent) (7 > 0.125). We finally obtained 136,749
samples and 4.44 million variants after QC, from which 46,986 intersected with
the 49,744 patients having a CKD diagnosis. 55,896 participants with no CKD
history at all and used as controls for GWAS.

Genomic Analysis

We started by testing Chronic Kidney Disease (CKD) risk covariates, such as
Hypertension (HT), congestive heart failure (CHF), type II diabetes mellitus
(T2D), race, sex, age, and time of diagnosis, using the logistic regression pack-
age from Statsmodels [59], where HT, T2D, and CHF diagnoses prior to CKD
diagnoses were taken to exclude diagnoses possibly caused by CKD. We used
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“lifelines” [60] for Kaplan-Meier and Cox regression analysis to understand the
impact of phenotypes and variants on time to ESRD.

Significant predictors of CKD not including age, sex, or race, i.e hyperten-
sion, type II diabetes, and congestive heart failure, were included as adjustment
variables in the GWAS, computed using PLINK [58]. SNPs with 1 x 10~* sig-
nificance after Benjamini-Hochberg FDR adjustment were retained (see Table
S10) .

Resulting SNPs were assigned to genes using GeneLocator [61], assigning
SNPs within 10kb margins upstream and downstream. We tested Gene On-
tology (GO)-terms, using tables acquired through GOATools [62], associating
SNPs with GO-terms “kidney,” “nephron,” “glomerulus,” and “renal”. These
GO-terms were tested for enrichment predicting CKD. We identified active al-
leles, and coded these categories if any SNP mapping to the terms was het-
erozygous or homozygous in the active alleles, and applied logistic regressions
to these predicting CKD, and explored time to ESRD using COX regression for
these variates. We also explored the GO-terms of the SNPs with the strongest
(smallest p-value) associations with CKD, defined a category with heterozygous
or homozygous active alleles among assigned GO-terms, with logistic regressions
predicting CKD, and COX regressions for time to ESRD. For these regressions
sex, age of diagnosis, current age, and time to ESRD were also included.

We also sought to identify genomic features associated with kidney function
as defined by the clinical data and structure, using the radiomic imaging analysis
identifying kidney disease, that show predictive power in the progression to
ESRD. We applied GWAS adjusted by prior hypertension, type II diabetes,
and congestive heart failure. SNPs were mapped to genes, and the genes linked
to GO-terms as shown in Table [I] as well as Figure

GO enrichment, displayed in Table shows Fisher Exact Test p-values
and confusion matrix for gene categories comprised of associated GO terms that
contain the “Type” labels in the term as the exposure associating with CKD
SNPs with raw p-values < 1 x 10~%. While these SNPs are far from genome-
wide significant, they do tend to show highly significant association with kidney
function related GO-terms (see Table S10). Interestingly, pooling kidney and
renal classifications together (“kidney/renal”) reduced significance.

The false discovery rate was controlled for the resultant SNPs by use of
Benjamini and Hochberg’s algorithm. At the 1 x 10~* significance level after
Benjamini-Hochberg adjustment, 215 SNPs were identified as CKD significant
SNPs (see Table S10). However, no SNPs were significant in predicting progres-
sion to ESRD in this dataset, probably due to the small numbers of patients
in the outcome (n=210). The alleles that were protective vs. deleterious were
sorted out, and samples homozygous with deleterious alleles or which were het-
erozygous were identified as carrying a “CKD genotype” or CKDgeno.

We performed logistic regression (Table |S5|and Figure predicting CKD
(Table and Figure and progression to ESRD (Table @ and Figure
including the same covariates that were included in the phenotypic lo-
gistic regressions along with the “CKD genotype.” After inclusion of the other
covariates, CKDgeno was actually slightly protective against CKD. It therefore
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interacts with some of the other covariates. Progression to ESRD showed a
trending association with CKDgeno.

Survival analysis regressions [60] were displayed in Table |S6|and Figure
The Kaplan-Meier regression suggest the impact of CKDgeno on progression
is within bounds of the error bars (Figure , which is born out in the p-
values (Table and the error bar plot (Figure . After censoring, the
number of subjects in the UKBB who progressed to ESRD had relatively small
numbers, yielding relatively low power marked by wide error bars and large
p-values. With that caveat, there is a suggestion of a systematically higher rate
of conversion to ESRD for CKDgeno carrying subjects (Figure

In Table[S7]and Table[S8] are shown the enriched GO terms and the genes as-
sociated to the 215 relevant SNPs associated to CKD at p < 1x10~* significance
(see list of SNPs Table S10). Out of the top genes 20 genes, only 6 have been
previously reported. It is only when we lower the significance to the 0.05 level
after Benjamini-Hochberg control, that we identified among significant SNPs the
following previously published genes [63] [64] [65] 22| 21] PKD1, PKD2, OGG1,
VEGFA, MTHFR, TNF-o, COL4A5, COL4A4, COL4A3, NATS, SHROOMS,
DAB2, WDR37, WDR72, UMOD, TTR, LINC00923, HLA-DQA1, ICAM-
1, TGFB1, VAV3, DEFA, ITGAM, SLC22A2, CUBN, AFF3, CDCA7-SP3,
SCAF8, MYO16-IRS2, RGMA-MCTP2, PLA2R1, APOL1, CYP11B2, AGT,
SOD1, SOD2, CAT, GPX1, GPX3, GPX4, IL-1A, IL-4, IL-6, IL-10, ICAM-1.

Principal Component Analysis

We performed Principal Component Analysis (PCA) on the QC data after prun-
ing variants for linkage disequilibrium (r? > 0.25) with using TeraPCA [66] and
obtained the top fifty principal components (PCs). The results applied to the
cohort are shown in Figure The population structure is displayed in Figure
While the prevalence of CKD across the range of genetic variation is well
represented (Figure , the pooled CKD geno SNPs are not so evenly rep-
resented in minority populations (Figure . We applied logistic regression
to identify how the principal components predicted CKD, and to understand
whether CKD risk genotypes were biased in its representation across the PC
mapped variances (Figure and Table . We found that PCO was mildly
predictive of CKD (OR = 1.163, 95%CI: 1.147 - 1.179, p = 5.227 x 10~ 193; Table
and Figure. The question of whether CKD geno adequately represents
minority community genetic variations was tested with another logistic regres-
sion (Table @ and Figure . In this, PCO is strongly under-represented in
CKD geno SNPs (OR = 0.602, 95%CI: 0.580-0.626, p = 2.832 x 107147),

Image Data Analysis
UK Biobank MRI data

Subjects invited to neck-to-knee body MRI were recruited by letter from the
National Health Service and scanned at three different imaging centres in Great
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Britain with a Siemens Aera 1.5T device, using a dual-echo Dixon method [67].
The device acquired overlapping images in six stations covering the body from
neck to knee within about 6 minutes with TR = 6.69, TE = 2.39/4.77 ms,
and flip angle 10deg [68]. The reconstructed, volumetric station images encode
voxel-wise intensity values with a separate water, fat, in and opp signal (UK
Biobank field 20201). The head, arms, and lower legs extend outside of the
field of view and are often distorted near the image borders. The kidneys are
typically located in the second and third imaging stations, each of which were
acquired in a 17s breathhold with typical dimensions of (224 x 174 x 44) voxels
of (2.232 x 2.232 x 4.5) mm.

The MRI stations volumes for all sequences (water, fat, in and opp) were
extracted from a downloaded zip file from the UK Biobank servers. The station
numbering was determined by sorting the z axis physical coordinates. Volume
fusion and interpolation was done by using Langner et al. algorithm [69].

We created three types of models for the imaging data: radiomics image
processing model, CNN deep learning model, and a transformer deep learning
model. Each model revealed different features of the imaging data. For creat-
ing these models we used the FuseMedML open-source framework [70], image
analysis methods similar to [71] [72], and a proprietary package planned to be
published in the future.

Radiomics model

Radiomics is a quantitative approach to medical imaging. It’s goal is to find
associations between qualitative and quantitative information extracted from
clinical images and clinical data by using analysis methods from the field of
computer vision, information theory and statistics.

For any radiomic approach, it is critical to define the volume of interest (VOI)
in a three-dimensional (3D) volume from which the radiomics features will be
calculated. Kidney 3D segmentation to be used as VOI to extract radiomics
were generated by a pretrained segmentation model (2.5D U-net) from previous
research by Langner et al. [69]. The model failed to create segmentation for some
patients due to image artefacts in these two stations, such as water-fat swaps,
background noise, metal objects, but also non-standard poses, misalignment in
the scanner, and corrupted data were excluded after visual inspection of mean
intensity projections.

Radiomics image processing

MRI imaging modalities contain Gaussian and Rician noise and could benefit
from de-noising [73]. In addition, medical imaging sequences can be acquired
with different protocols, MRI machines and on different sites. As a result, imag-
ing datasets can include non-uniform pixel spacing, signal intensity ranges and
so forth. Prior studies have indicated that the robustness of radiomic features
is dependent on image processing settings, thus standardisation of the acquired
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dataset is required. Standard image processing will include interpolation to a
isotropic pixel-spacing, intensity range normalization, and discretization [74] [73].

The final image processing is feature extraction, where feature descriptors
are computed from the VOI. Zwanenburg et al. [73] proposed dividing radiomic
features into a number of feature-families such as morphological features, in-
tensity features, grey level features. Table shows the parameters that were
used for radiomics image processing.

All supported feature-families in pyradiomics python package [75] were ex-
tracted for each of the four MRI sequences separately.

Video-resnet CNIN and ViT deep learning models

In addition to the kidney segmentation and radiomics feature extraction pipeline,
a video-resnet [76] convolutional neural network (CNN) pipeline and a vision-
transformer (ViT) [77] pipeline were used to train the MRI images to predict
directly the clinical target using the Adam optimizer [78], and the network and
hyper-parameters described in Table

Imaging and clinical ensemble model

In the final stage, we created an ensemble of the three models based on imaging
data and two additional models based on clinical data, as kidney clinical data
analysis was proved to be significant [79]. The extracted features from each
imaging or clinical model were the input to a classical machine learning classifier
(logistic regression, random forest, xgboost) to predict our target. When the
number of input features was large, we first applied a feature selection method to
select the most significant features before applying the classifier. Supplementary
figure S1 depicts the ensemble method averaging the scores of all the 5 models
(3 imaging models and 2 clinical models).

EHR Analysis: Time to End-Stage Renal Disease (ESRD)

Mapping diagnosis features into higher level concepts

Using electronic health records (EHR), patients diagnosed with CKD were se-
lected from the UKBB database, excluding those with pregnancy. These EHR
data were, for some patients, encoded as ICD9 while for others were coded using
ICD10 codes; therefore, diagnosis codes were normalized by mapping the ICD
codes to AHRQ CCS (Agency for Healthcare Research and Quality - Clinical
Classifications Software) codes[80]. CCS are composed of diagnostic categories
organized in a hierarchical system consisting of four levels for diagnose Level
4 has 281 diagnosis codes, level 3 has 134 codes, level 2 has 18 codes, while
level 1 has only one code. The CCS codes in our cohort are the leaf nodes in
the hierarchy. To overcome the sparsity in the data, we mapped CCS diagnosis
codes (the leaf nodes) into higher levels (level 2) [34]. Mapping to level 2 of the

Lhttps://www.hcup-us.ahrq.gov/toolssoftware/ccs/ AppendixCMultiDX..txt
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CCS ontology helps to interpret the important features driving the progression
to ESRD.

Time-to-ESRD model

In our analysis, the objective of RankSVX]42], a time-to-event model, is to pre-
dict the risk and time of ESRD among subjects in stages 1 or 2 of CKD. Unlike
other time-to-event models, RankSVX optimizes two functions simultaneously,
one to rank subjects based on their risk to event, and the other to predict the
actual time to event for non-censored subjects.

For a patient ¢, let us assume that ¢; is the duration between the index event
(the onset of stage 1 or 2) and the outcome event (ESRD) for non-censored
patients or the duration between the index event and the last follow-up visit for
censored patients. x; is the feature vector for patient i. RankSVX optimizes
the following objective function:

o (2 - FTa) + (1 —a) (= X logo(87a; — 4 +1IAI” (1)

i€obs 1,j€E;

where 8 is the parameter of the linear predictor and « is a hyper-parameter
to weight each term. The first term optimizes the model to correctly predict
the actual time to ESRD for observed patients. The second term optimizes the
model to correctly rank the relative risks of two subjects, where ¢ is the sigmoid
function and &;; represents all pairs of subjects 7, j where subject ¢ observed the
event and subject j may or may not have observed the event and t; < t;. The
last term is a regularization term to prevent overfitting. More details about the
model can be found in a prior paper[42].

Identifying highly ranked features

After implementing the RankSVX model to predict the time to ESRD, we apply
SHAP analysis to identify the top important features [81]. SHAP (SHapley
Additive exPlanations) is a method to explain individual predictions, which is
based on the game theoretically optimal Shapley values. The goal of SHAP is
to explain the prediction of an instance by computing the contribution of each
feature to the prediction. The top important features extracted by SHAP are
considered as the driving or correlated features to the progression of CKD.

Stratification and validation

After identifying the top important features (diagnosis and drug codes), we
stratify patients based on whether they were assigned with these codes. To
model the interactions among features, we also stratified patients based on dif-
ferent combinations of the selected features. In our experiments, we chose the
top three features using the SHAP analysis and tested all subgroups of different
combination of selected features. Then, we used Kaplan-Meier to assess the
correlation of the selected subgroups to the progression of CKD to ESRD.
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Supplementary Tables

Table S1: Subject Characteristics

(a) Counts and frequencies

Quantity Counts  Frequencies (%)
sex 64637 47.27
T2D 15332 11.21
preT2D 11625 8.50
HT 53620 39.21
preHT 43720 31.97
CHF 6444 4.71
preCHF 3702 2.71
CKD 80853 59.13
t_age 122479 89.56
t_CKD_age 49345 36.08
ESRD 371 0.27
BlackBrit 1629 1.19
SouthAsian 2688 1.96
Has Genetics 130645 95.54

(b) Averages

Quantity Averages
age 71.1
CKD_age 61.3
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(a) CKD vs. phenotypes Logistic Regression

Feature OR  95CI- 95CI+ P-val
preHT 2.023 1.972 2.076  0.000E+400
preT2D 2.112  2.012 2.218 2.642E-198
preCHF 1.822 1.675 1.981 1.026E-44
t_age 1.530 1.476 1.586 8.506E-119
sex 0.852  0.833 0.871 8.306E-45

BlackBrit 2.048 1.822 2.301 2.038E-33
SouthAsian 2.837  2.570 3.132  7.974E-95

(b) ESRD vs. phenotypes Logistic Regression

Feature OR  95CI- 95CI+ P-val

preHT 2.273  1.800 2.870 5.134E-12
preT2D 2.090 1.640 2.665 2.685E-09
preCHF 1.706  1.209 2.405 2.337E-03

t_age 0.734  0.455 1.184 2.048E-01
t_CKD_age 2.946 2.304 3.767 T7.014E-18
sex 2.348 1.871 2.945 1.597E-13

BlackBrit 2.894 1.677 4991 1.337E-04

Table S2: ESRD vs. Phenotypes: Logistic Regression

Table S3: Cox regression phenotypic coefficients predicting time to ESRD

covariate exp(coef) exp(coef) lower 95%  exp(coef) upper 95% p

preHT 0.720 0.444 1.169 0.184
preT2D 1.508 0.937 2.429 0.091
preCHF 1.760 0.691 4.480 0.236
Thiazide 1.134 0.587 2.188 0.708
s_age 0.596 0.408 0.873 0.008
t_CKD_age 2.301 1.159 4.570 0.017
sex 1.072 0.657 1.748 0.782
BlackBrit 0.555 0.103 2.975 0.492

Table S4: GO Enrichment

Type Count ‘ DE xDE DxE xDxE Pval
Glomerulus 25 19 6007 18830 2300270 1.74E-06
Nephron 40 14 6237 18835 2300040 1.96E-09
Metanephric 56 18 4254 18831 2302023 0.002693
Kidney 142 85 19964 18764 2286313 2.49E-11
Renal 132 169 14304 18680 2291973 6.07E-06
Kidney/Renal 253 245 32557 18604 2273720 0.203546
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(a) CKD vs. the CKD genotype and phenotypes Logistic Regression
OR  95CI- 95CI+ P-val

preHT 2.013 1.961 2.067  0.000E+00
preT2D 2.095 1.992 2.203 6.848E-183
preCHF 1.805 1.657 1.966  8.387E-42
sex 0.854 0.835 0.873  4.628E-42
t_age 1.561 1.505 1.621 2.593E-122

BlackBrit 1.395 1.092 1.783  7.786E-03
SouthAsian 2.712 2.439 3.017  1.847E-75
CKDgeno 0.898 0.874 0.922 1.001E-15

(b) ESRD vs. CKD genotypes and phenotypes Logistic Regression

OR  95CI- 95CI+ P-val

preHT 2.290 1.801 2912 1.403E-11
preT2D 1.978 1.531 2.556 1.833E-07
preCHF 1.653 1.148 2.380 6.914E-03
t_age 0.502 0.292 0.863 1.261E-02

t_.CKD_age 4.313 3.165 5.878  2.146E-20
CKDgeno 1.239  0.975 1.575  7.921E-02
sex 2.423 1.910 3.073  2.990E-13
BlackBrit 1.456 0.202 10.491 7.090E-01
SouthAsian 1.221  0.644 2314  5.412E-01

Table S5: ESRD vs. CKD Genotypes and Phenotypes: Logistic Regression

Table S6: Cox regression phenotypic/genotypic coefficients predicting time to

ESRD

covariate exp(coef) exp(coef) lower 95%  exp(coef) upper 95% p

preHT 0.857 0.500 1.469 0.576
preT2D 1.368 0.842 2.221 0.206
preCHF 1.110 0.340 3.621 0.862
Thiazide 0.996 0.509 1.949  0.990
s_age 0.671 0.427 1.055 0.084
t_-CKD_age 2.054 0.811 5.204 0.129
sex 0.840 0.500 1.411 0.510
CKDgeno 1.510 0.896 2.546 0.122
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Table S7: GO-term SNP Counts > 10 of Benjamini-Hochberg SNPs significant

at 1 x 107%
GO-term Count
Protein binding 104
Nucleoplasm 61
Acid-thiol ligase activity 48
Fatty acid metabolic process [82] 48
Malonyl-CoA synthetase activity [83] 48
Long-chain fatty-acyl-CoA biosynthetic process [82] 48
Fatty acid biosynthetic process [82) 48
ATP binding 48
Malonate catabolic process 48
Mitochondrial matrix 48
Mitochondrion 48
Very long-chain fatty acid-CoA ligase activity [82] 48
Plasma membrane 44
Metal ion binding 29
Extracellular matrix organization [84] 29
G protein-coupled receptor activity 23
Lung connective tissue development 22
Parturition 22
Myofibroblast differentiation 22
Nipple morphogenesis 22
Hormone binding 22
Hormone-mediated signaling pathway 22
Cytosol 21
Membrane 19
miRNA-mediated gene silencing 10
Rndoplasmic reticulum membrane 10
Positive regulation of nuclear-transcribed mRNA poly(A) tail shortening 10
Extracellular region 10
P-body 10
RNA binding 10
miRNA-mediated gene silencing by inhibition of translation 10
Regulation of nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay 10
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Table S8: Gene SNP Counts of Benjamini-Hochberg significant SNPs at p <
1x1074

Gene Count
ACSF3 48
RXFP1 [85] 22
TNRC6C 10
LPCAT1 [36]
COL4A1 [87]
KCNQ2
LIMA1
TMOD1 [8§]
SPACA7
KLF3 [89]
TNNT3
ADGRA3
DLG2
AKRI1C1
GLI3
AFM
GRID2IP
NUP205 [90]
KCNH5
PLGRKT
TCP11
SLC16A11

Ne)

el e e e T e T e T S e G S S S NG ORI NGRSO |
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(a) CKD vs. PCA and phenotypes and CKD geno Logistic Regression

OR 95CI- 95CI+ P-val
preHT 2.077  2.024 2.132  0.000E-+00
preT2D  2.057 1.957 2.163 6.423E-175
preCHF  1.821 1.672 1.984  5.075E-43
PCOs 1.163  1.147 1.179  5.227E-103
PCl1s 0.969 0.958 0.981  6.046E-07
PC2s 0.983 0971 0.995  5.782E-03
CKDgeno 0.913 0.889 0.937  1.306E-11

(b) CKD geno vs. PCA and phenotypes Logistic Regression

OR  95CI- 95CI+ P-val
preHT  0.996 0.968 1.024  7.652E-01
preT2D 1.000 0.952 1.051  9.882E-01
preCHF 1.004 0.927 1.088  9.163E-01
PCOs 0.602  0.580 0.626 2.832E-147
PCls 1.106 1.080 1.131 1.964E-17
PC2s 0.969 0.946 0.994  1.338E-02

Table S9: PCA impacts on CKD and relation to CKD geno

Table S10: List of SNPs associated with CKD, Energy, Non-uniformity and
CVD (see attached file). ID is the SNP identification number, OR is Odds
Ratio, L95 is the value for the lower bound 5% Confidence interval, U95 is the
value for the upper bound 5% Confidence interval, P is the raw P-value, Pbh is
the Bonferroni corrected P-value, symbol is the symbol of the gene associated
with the SNP, i.e in the 10kb region.

Table S11: Radiomics image processing table

Parameter Value
normalizeScale 100
binWidth 5
preCrop True
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Table S12: Deep learning net hyper-parameters

Parameter Value
Learning arguments
learning rate le-4
weight decay le-5
batch size 4
Resnet arguments
first channel dim 32
first stride 2
stem kernel size 3, 3, 3]
stem stride 12, 2, 2]
layers 12, 2,2, 2]
Multilayer Perceptron arguments
dropout rate 0
encoder dropout rate 0
mlp hidden layers 2
mlp hidden dim 128
head hidden layers 1
head bias True
use batch normalization True
Vision Transformer (ViT) arguments
patch size [16, 16, 16]
token dim 512
dim head 64
mlp dim 256
depth 8
heads 8
dropout 0
emb dropout 0
num cls tokens 1
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Figure S1. General approach for modality integration.
For each of 3 data modalities and 5 models (Demographic, Clinical Codes, Image
Radiomics/CNN/Vit) features were selected and implemented in a XGBoost, Random Forest,
Logistic Regression classifier to predict 5-year outcome for ESRD. A voting scheme was used to

determine the final prediction.
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Fig. S10: Manhattan plot for CKD logistic regression including population ad-
justments. The x axis is the chromosomal location of SNP and the y axis the
strength of association -logl0(P value). Variants rs1383063 and rs12191777 are
represented by larger light blue and light green dots respectively. Line represents
the limit of significance with Bonferroni correction.
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Fig. S11: Logistic Regressions predicting CKD and CKD geno with leading
principal components, pre CKD hypertension, Type IT Diabetes, and Congestive
Heart Failure.
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Fig. S12: Logistic Regressions predicting CKD and ESRD with pre CKD hy-
pertension, Type II Diabetes, Congestive Heart Failure, sex, age, and Black
British status, South Asia status, and age of CKD diagnosis. t_age refers to
binary-threshold age of 60 years.
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Fig. S13: Hazard Ratio analysis of time to ESRD from CKD diagnosis. s_age
refers to centered and standard error scaled age.
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Fig. S14: Logistic Regressions predicting CKD and ESRD with CKD significant
SNPs, pre CKD hypertension, Type II Diabetes, Congestive Heart Failure, sex,
age, and Black British status, South Asia status, and age of CKD diagnosis.
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Fig. S15: Hazard Ratio analysis of time to ESRD from CKD Genotypes. Cen-
sored or patients with ESRD happening > 6000 days were excluded as also were

patients were CKDGeno was not defined or missing GO-term derived kidney
SNPs. 94 individuals were analyzed in total, 71 xCKDgeno and 23 CKDgeno.
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Fig. S16: PCA showing relationships between CKD and CKDgeno to population
stratification.
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Figure S17. Time to ESRD predictions a.CKD1&2 to ESRD prediction results of 5 fold cross-validation for
test data. Only clinical data was used for the cohort of 49,744 patients with CKD. The number of patients having
the top 3 features is indicated as well as the uncensored patients. Concordance Index (Cl) and Mean Average
Error (MAE) of prediction results are shown together with the average number of days to ESRD.b. SHAP results
with CCS Level 3 counts & Therapeutic group counts on CKD1&2. to ESRED predictions
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Figure S18. Kaplan Meier (KM) curves for survival predict

older (66-75) men with rs1383063_A have a higher risk.

ions from CKD stage 1 & 2to ESRD
predictions using clinical and genomic data. Each KM curve represents parent populations in
orange and subpopulations where the indicated feature is present (Sex, rs1383063_A and older
age). Significant P-values are shown in red. Men with rs1383063_A have high risk of ESRD. Then,
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Figure S19. Feature information and prediction results for clinical and genomic data
predictions of CKD 1&2 to ESRD time to event prediction. CKD12 results of 5cv for test data,

the number of patients havin
Concordance Index (Cl) and

he top 3 features is indicated as well as the uncensored patients.

t
%/Iean Average Error (MAE) of prediction results are shown together
with the average number of days to ESRD.
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Figure S20. USC@?\“me browser information on rs138306.
MAGI1 gene position is indicated in dark blue, rs138306 position is indicated by an arrow and vertical light blue line,
GWAS catalog SNPs are shown in green, putative enhancers from ENCODE are shown in yellow, red triangle
density indicates Topological Associated Domains as measured by microC. Scale is indicated above, as well as

chromosomal coordinates.
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