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Abstract 

Immune checkpoint inhibitors (ICIs) have been extensively used for the treatment of non-small cell lung 

cancer patients in recent years, providing a significant survival benefit. However, a major drawback of ICIs-

related immunotherapy is the risk of developing post-surgical pneumonitis. In this study, we propose a deep 

learning-embedded, multi-modality prediction approach to assess whether patients will develop ICI-

pneumonitis after receiving ICIs-based immunotherapy. This approach utilizes multi-modal data, including 

clinical data and pre-treatment lung screening computed tomography (CT) images. We extracted three 

types of features: 1) deep learning features from CT scans using a pretrained vision transformer, 2) radiomic 

features from CT scans using predefined radiomic algorithms, and 3) clinical features from patients’ clinical 

records. We then compared multiple machine learning algorithms for prediction based on these extracted 

features. Our results demonstrated a prediction accuracy of 0.823 and an area under the receiver operating 

characteristic curve of 0.895.  
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Introduction 

Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer death worldwide1. 

Non-small cell lung cancer (NSCLC) is the most common subtype, accounting for approximately 85% of all 

lung cancer cases2. Recently, immunotherapy, particularly immune checkpoint inhibitors (ICIs), has 

demonstrated superior outcomes in the treatment of NSCLC, significantly improving overall survival 

compared to chemotherapy3,4. ICIs provoke immune reactions against cancer cells by blocking inhibitory 

receptors such as programmed cell death protein-1 (PD-1), programmed death-ligand 1 (PD-L1), and 

cytotoxic T-lymphocyte antigen 4 (CTLA-4)5-7. However, ICIs can also induce autoimmune reactions that 

are harmful to healthy tissues by disrupting normal immune system homeostasis, resulting in immune-

related adverse events (irAEs)8. ICI-related pneumonitis (ICI-P) is a rare but life threatening irAE, with an 

overall incidence rate of 3-6% and a mortality rate of 22-33% for severe cases (grade 3-4)9-11. ICI-P can 

potentially cause significant morbidity, leading to the discontinuation of therapy and even mortality8. Clinical 

diagnosis of ICI-P is challenging due to its nonspecific symptoms and similarities to other pulmonary 

conditions12. There is no gold standard for clinical diagnosis, making it necessary to develop pretreatment 

ICI-P prediction methods. 
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Multiple studies have investigated the feasibility of predicting ICI-P before NSCLC patients receive 

immunotherapy. Risk factors such as tumor histologic type, ICIs selection, combination therapy, preexisting 

diseases (e.g. interstitial lung disease and extrathoracic metastasis), smoking history, and radiotherapy 

history are believed to influence the incidence rate of ICI-P10,13-19. Based on these findings, several 

prediction models have been developed. Jia et al. proposed a dynamic online hypertension nomogram to 

predict ICI-P for NSCLC patients20. Gong et al. developed a machine learning algorithm to identify and 

predict ICI-P based on eleven predictors21. Li and Xu both built risk assessment nomograms for ICI-P 

prediction22,23. Inaddition to using risk factors, researchers hypothesize that chest CT images contain 

discriminative information for ICI-P prediction. To validate this hypothesis, Colen et al. proposed a 

radiomics-based ICI-P prediction method, in extracting 1860 radiomic features from chest computed 

tomography (CT) images24. Mu et al. developed a radiomics nomogram to predict severe irAEs using 

fluorine-18 fluorodeoxyglucose positron emission tomography (PET) and CT images25. Cheng et al. created 

a deep learning embedded nomogram approach for ICI-P prediction, where a CT score, calculated from 

five radiology features extracted by a neural network, was input into a nomogram among with three other 

features for the final prediction26. Tan et al. constructed a multimodal deep learning model based on 3D CT 

images and clinical data, achieving an overall accuracy of 0.92 for ICI-P prediction through five-fold cross-

validation27. Additionally, chest CT images can help discriminate different types of pneumonitis. 

Tohidinezhad et al. explored the feasibility of establishing a prediction model to differentiate ICI-P from other 

types of pneumonitis in NSCLC patients undergoing immunotherapy28. Mallio et al. utilized a deep learning 

algorithm based on chest CT images to distinguish coronavirus disease 2019 (COVID-19) pneumonia from 

ICI-P29. 

Differing from existing studies, we propose a multimodal ICI-P prediction model utilizing three types of 

features: deep learning features, radiomic features, and clinical features. Deep learning features are 

extracted from a pretrained vision transformer (ViT), radiomic features are derived from predefined radiomic 

algorithms, and clinical features are obtained from patients’ clinical database. After feature selection, the 

selected features are input into the proposed ICI-P prediction model to predict the likelihood of ICI-P 

development following immunotherapy. 

 

Methodology 

Dataset 

We collected data from 1,254 NSCLC patients who received immunotherapy between 2005 and 2021 at 

Wake Forest Baptist Medical Center. Among these, 51 patients developed ICI-P and were included in the 

experimental group for this study. Conversely, we randomly selected 41 patients who didn’t have ICI-P after 

immunotherapy to serve as the control group. Table 1 presents the demographic information of the patients. 

For each patient, we collected both the most recent chest CT scan taken before the first immunotherapy 

session and the corresponding clinical data.  

Table 1. Patient demographic information 

 ICI-P Control 

Amount 51 41 

Gender F: 21, M: 30 F: 26, M: 15 

Age 62.310.9 68.711.4 

BMI 28.47.0 23.95.3 

 

Image processing 
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We first preprocessed the CT images to unify voxel resolution to 1x1x1 mm using nearest interpolation and 

cropped each image to a size of 512x512. At the same time, the pixel intensity was truncated to a range 

between -2100 and 100 Hounsfield units (HU). Lung segmentation was then implemented using three 

different networks: Lungmask30, nnUNet31, and Covid-19 MIScnn32. To achieve accurate lung segmentation, 

we developed a strategy that combines the results from these three networks. First, we created a union of 

the results from Lungmask, nnUNet, and Covid-19 MIScnn. Then, we manually checked each result from 

the previous step and corrected misclassified regions.  

 
Figure 1. Lung segmentation results. From left to right: CT images, Lungmask segmentation, Covid-19 
MIScnn, nnUNet, union results, and final results after manual correction. Blue arrows show false 
positive regions and yellow arrows demonstrate false negative regions. 

 

Vision transformer 

Given the huge success of transformers in natural language processing, ViT have recently been proposed 

as a competitive alternative to convolutional neural networks for various computer vision task, such as 

image classification, object detection, and semantic image segmentation33. In this study, we pretrained a 

ViT model to extract deep learning features from 3D CT images. A ViT-base model was pretrained with a 

hidden size of 768, 12 heads, and a depth of 12, following the strategy outlined by Niu et al.34.  

During deep learning feature extraction, the CT images were divided into multiple 4x16x16 patches and fed 

into the pretrained ViT model. Each input patch produced a vector with a dimension of 768, and the 

summation of all vectors was used as the final set of deep learning features. For each patient, there were 

768 deep learning features extracted. 

 

Radiomics 

We utilized the Python Pyradiomics library for radiomic feature extraction35. To enhance the utilization of 

information within CT images, wavelet transform was applied before the feature extraction process. For 

each patient, there were 863 radiomic features extracted, categorized into 8 major categories: first order 

statistics, shape-based (2D), shape-based (3D), gray level co-occurrence matrix, gray level run length 
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matrix, gray level size zone matrix, neighboring gray tone difference matrix, and gray level dependence 

matrix. 

 

Clinical data 

Ten clinical features were extracted from patients’ electronic health record: 1) pack years, 2) age, 3) body 

mass index (BMI), 4) baseline oxygen dependence, 5) whether received surgery prior to immunotherapy, 

6) whether received radiation prior to immunotherapy, 7) eastern cooperative oncology group performance 

status (ECOG PS) at the time of immunotherapy, 8) choice of immunotherapy, 9) whether immuno-oncology 

(IO) given concurrently with chemotherapy, and 10) total cycles of IO given. Since some clinical features 

are categorical and not represented numerically, we converted these features to one-hot encoding for 

prediction. 

 

Feature selection 

After feature extraction, we obtained a total of 768 deep learning features, 863 radiomic features, and 10 

clinical features. To remove redundant and non-relevant features, we performed feature selection using the 

Chi-square test and Student’s t-test. For deep learning and radiomic features, we retained only the 25 most 

significant features of each type. All 10 clinical features were kept. As a result, a total of 60 features were 

utilized for prediction after feature selection. 

 

Prediction model 

We utilized the Python Pycaret library to establish ICI-P models. Ten different prediction models were 

compared, including logistic regression, K neighbors classifier, support vector machine, gradient boosting 

classifier, ada boost classifier, decision tree classifier, light gradient boosting machine, extra trees classifier, 

naïve bayes, and random forest classifier.  

 

Experimental details 

We pretrained the ViT model on 2,000 chest CT scans collected by Wake Forest Baptist Medical Center 

between 2015 and 2021. The pretraining process was carried out for 100 epochs on an Nvidia A100 GPU. 

During pretraining, the original CT images were divided into multiple smaller patches of size 64 by 64 by 

64. When combining features extracted from different approaches, we first normalized each feature to 

standardize feature values, mitigating potential issues caused by mismatched feature value magnitudes. 

Clinical features were processed thorugh either one-hot encoding or manual labeling to convert discrete 

features into a continuous domain. When using PyCaret for ICI-P prediction, three-fold cross validation was 

employed. 

 

Results 

Patient characteristics 

A total of 92 NLCSC patients who received at least one cycle of immunotherapy at Wake Forest Baptist 

Medical Center were enrolled in this study. Among these patients, 51 developed ICI-P, with a median time 
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of 149 days between the initial immunotherapy date and ICI-P diagnosis date. Of the patients who 

developed ICI-P, 45% received Pembrolizumab, 31% received Nivolumab, 14% received Durvalumab, 4% 

received Atezolizumab, and the remaining received a combination of immune checkpoint inhibitors. All ICI-

P patients were diagnosed with pneumonitis of Grade 2 or higher: 44% had Grade 2, 44% had Grade 3, 7% 

had Grade 4, and 9% had Grand 5 pneumonitis. The 41 patients who didn’t develop ICI-P were used as 

the control group. Among them, 62% received Pembrolizumab, 17% received Nivolumab, 5% received 

Durvalumab, 14% received Atezolizumab, and 2% received Lenvatinib. 

When conducting Chi-square test and Student’s t-test for clinical feature selection, we identified four 

features, including total cycles of IO given, pack years, BMI at diagnosis, and age, that showed significantly 

differences between ICI-P and control groups, as shown in Table 2. A nomogram was constructed as a 

quantitative method to predict the risk of ICI-P in NSCLC patients, as show in Figure 2. 

Table 2. Identifying significant clinical features based on Chi-square test and Student’s t-test. 

Clinical features p-value 

Total cycles of IO given  <0.001 
Pack years  <0.001 
BMI at diagnosis  <0.001 
Age  <0.001 
Received radiation prior to immunotherapy Yes 0.035 
 No 0.072 
ECOG PS at the time of immunotherapy  0.054 
Choice of immunotherapy Pembrolizumab 0.178 
 Nivolumab 0.353 
 Durvalumab 0.078 
 Atezolizumab 0.453 
 Other 0.381 
Received surgery prior to immunotherapy Yes 0.099 
 No 0.402 
Baseline oxygen dependence Yes 0.130 
 No 0.769 
IO given concurrently with chemotherapy Yes 0.141 
 No 0.220 
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Figure 2. Nomogram of the ICI-P prediction model based on selected clinical features. 

 

ICI-pneumonitis prediction result based on all types of features 

Metrics such as accuracy, area under the receiver operating characteristic curve (AUC), recall, precision, 

and F1 score were utilized to evaluate the performance of the ICI-P prediction models. Table 3 presents a 

comparison of different prediction models generated using PyCaret based on all selected multi-modal 

features. It can be found that logistic regression achieved the best performance in terms of accuracy, AUC, 

recall, and F1 score. Meanwhile, support vector machines achieved the highest precision. 

Table 3. Comparison of different ICI-pneumonitis prediction models. 

Model Accuracy AUC Recall Precision F1 

Logistic regression 0.823 0.895 0.853 0.853 0.852 
K neighbor classifier 0.809 0.892 0.787 0.882 0.830 
Support vector machines 0.783 0.824 0.664 0.975 0.775 
Gradient boosting classifier 0.746 0.818 0.789 0.791 0.788 
Ada boost classifier 0.744 0.845 0.764 0.816 0.783 
Decision tree classifier 0.709 0.722 0.662 0.811 0.725 
Light gradient boosting machine 0.683 0.779 0.769 0.716 0.732 
Extra tree classifier 0.683 0.711 0.811 0.714 0.757 
Naïve Bayes 0.658 0.618 0.791 0.700 0.736 
Random forest 0.631 0.726 0.767 0.672 0.714 

 

Ablation study 

We conducted an ablation study to assess the contribution of each modality of features to the final prediction 

results and to demonstrate the effectiveness of the proposed method. A series of experiments were 

performed, building prediction models under four situations: using clinical features alone, deep learning 

features alone, radiomic features alone, and a combination of all features. As show in Table 4. The results 

indicate that using all three kinds of features together leads to higher accuracy and AUC scores compared 

to using each type of features individually. The only exception was the random forest model, which 

performed better when the prediction was based solely on clinical features. 
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Table 4. Comparison of multiple prediction models on different types of features. 

 accuracy AUC 

Model Clinical Radiomic Deep  All Clinical Radiomic Deep All 

LR 0.802 0.721 0.711 0.823 0.835 0.723 0.757 0.895 
KNN 0.790 0.691 0.655 0.809 0.826 0.712 0.671 0.892 
SVM 0.723 0.677 0.688 0.783 0.794 0.692 0.692 0.824 
GBC 0.727 0.661 0.644 0.746 0.792 0.712 0.677 0.818 
RF 0.713 0.555 0.577 0.631 0.760 0.679 0.685 0.726 

LR: linear regression, KNN: k neighbors classifier, SVM: support vector machines, GBC: gradient 
boosting classifier, RF: random forest. 

 

Discussion 

Immune checkpoint inhibitor immunotherapy is a revolutionary treatment for NSCLC that leverages the 

body’s immune system to target and destroy cancer cells. ICIs significantly improve outcomes for NSCLC 

patients, leading to longer overall survival and durable responses for some patients compared to traditional 

chemotherapy3,4. However, a major side effect of ICI-related immunotherapy is the potential development 

of irAEs, particularly ICI-P, which, although rare, can be life-threatening. In this paper, we propose a multi-

modal approach to predict the occurrence of ICI-P in patients undergoing ICI immunotherapy. The approach 

incorporates three types of features: clinical features from patients’ electronic health records and radiomic 

and deep learning features extracted from CT scans. Our study demonstrates that using all three types of 

features together yields the best predictive performance. 

In our ablation study, we found that clinical features contributed more to the final prediction results compared 

to radiomic and deep learning features. This is expected, as clinical features are directly related to the 

patients’ health conditions and their treatment processes. In contrast, radiomic and deep learning features, 

extracted from CT scans, provide only implicit information about patients’ health status. Our experiments 

showed that the best prediction results were achieved when all three types of features were combined. This 

suggests that CT scans provide additional valuable information beyond what is available in the patients’ 

electronic health records, and this information can be effectively extracted using radiomic and deep learning 

algorithms. 

Developing methods to predict ICI-P can lead to improved treatment outcomes. Accurate prediction of ICI-

P allows for the early identification of patients who are at a higher risk of developing pneumonitis. This 

enables proactive monitoring, early intervention, and potentially modifying or discontinuing treatment to 

prevent severe outcomes. Predicting ICI-P risk can also help oncologists personalize treatment regimens. 

For patients at high risk, alternative therapies, dose adjustments, or combination strategies that lower the 

risk may be considered. In addition, predicting and managing ICI-P early can help prevent unplanned 

treatment interruptions, ensuring patients can continue their cancer therapy as planned and potentially 

improve overall outcomes. 
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