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Abstract 

Background: Pulmonary embolism (PE) is a life-threatening condition that requires timely 

diagnosis to reduce mortality. Radiology reports, particularly the Impression sections, play a 

critical role in diagnosing PE. However, manually extracting this information from large volumes 

of reports is challenging. This study aims to develop an advanced natural language processing 

(NLP) system using GPT-4o to automatically extract PE diagnoses from radiology report 

impressions, enhancing clinical workflows and decision-making. 

Materials and Methods: We developed two text classification models: a fine-tuned Clinical 

Longformer (as a baseline model) and GPT-4o. Models were trained using 1,000 radiology report 

impressions and validated on 200 samples, with a post-deployment evaluation conducted using 

500 operational records. The primary dataset was sourced from an electronic medical record 

relational database, and key metrics such as sensitivity, specificity, and F1 score were used to 

evaluate model performance. 
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Results: GPT-4o achieved superior performance with 100% sensitivity, specificity, and F1 score, 

outperforming the Clinical Longformer. Post-deployment, GPT-4o continued to perform 

flawlessly, identifying all positive PE cases without false positives or false negatives. The model 

successfully streamlined the clinical workflow, reducing the burden of manual review and 

enhancing diagnostic accuracy. 

 

Keywords: pulmonary embolism, natural language processing, GPT-4o, Clinical Longformer, text 

classification, radiology reports 

 

1. Introduction 

Pulmonary embolism (PE) is a serious medical condition where a blood clot blocks one of the 

pulmonary arteries in the lungs, typically originating from a vein in the lower limbs [1], [2], [3]. 

This blockage can significantly impede blood flow, leading to reduced oxygen levels in the blood 

and potential lung tissue damage. PE is critical because it can cause sudden, life-threatening 

complications such as cardiac dysfunction and other acute admissions [4], [5]. Prompt diagnosis 

and treatment are crucial to improve outcomes and reduce the risk of mortality [6], [7]. 

Clinical imaging techniques commonly used for diagnosing pulmonary embolisms include 

pulmonary computed tomography angiography (CTA), combined CT venography and pulmonary 

angiography (CVPA), and multi-detector CT angiography (MDCTA) [8], [9], [10].  The analysis 

and outcomes of these modalities are recorded in radiology reports which describe the presence or 

absence of emboli, their location, size, and impact on pulmonary circulation. Radiology reports 

are structured documents that capture the conditions observed from radiology images [11], [12]. 

Typically, the most important parts of these reports are the Findings and Impression sections [13]. 
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The Impression section provides a clinically precise summary of the patient’s status, typically 

summarizing the key findings and diagnoses from the Findings section [14]. Therefore, the 

diagnosis of PE is highly likely to be mentioned in the Impression section. Early documentation 

of PE and its extraction in the (electronic medical record) EMR system, and consequently in 

clinical workflows, is crucial for improving patient outcomes. In this study, we aim to develop an 

advanced transformer-based text classification model to extract PE diagnoses from the Impression 

section of radiology reports, expediting structured data availability and enhancing quality of care 

through evidence-based practices. 

Natural Language Processing (NLP) techniques have been increasingly utilized in the field of 

radiology, particularly in extracting critical information from radiology reports such as 

diagnoses [15]. Studies have shown that NLP, combined with machine learning and deep learning 

algorithms, can effectively extract relevant information from radiology reports [16], [17], [18]. 

These techniques enable the automatic identification and extraction of critical findings such as 

pleural effusion, pulmonary infiltrate, and pneumonia, aiding in the classification of reports 

consistent with bacterial pneumonia [19]. Furthermore, NLP algorithms have been developed to 

detect specific findings like acute pulmonary embolism in radiology reports, showcasing the 

potential of NLP in enhancing diagnostic processes [20], [21]. 

The application of NLP in radiology reports extends to various medical conditions, including 

pulmonary embolism. Studies have demonstrated the effectiveness of NLP in structuring the 

content of radiology reports, thereby increasing their value and aiding in the classification of 

pulmonary oncology according to the TNM classification system, a standard for staging cancer 
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[22]. Additionally, NLP has been used to identify ureteric stones in radiology reports and to build 

cohorts for epidemiological studies, showcasing the versatility of NLP in medical research [23]. 

Recent studies have demonstrated the effectiveness of Clinical-Longformer in various clinical 

NLP tasks. For instance, it has been utilized to identify incarceration status from medical records, 

showcasing good sensitivity and specificity compared to traditional keyword-based methods [24]. 

Additionally, Clinical-Longformer has been successfully applied in the classification of clinical 

notes for automated ICD coding, where it outperformed other models in accuracy [25], [26]. This 

capability to accurately interpret and classify clinical text is crucial for improving healthcare 

delivery and ensuring proper coding for reimbursement purposes. 

On the other hand,  advanced versions of the GPT family like GPT-4 and GPT-4o, generative 

language model, has been recognized for their versatility in clinical applications, particularly in 

generating and summarizing clinical information [27], [28]. Its multimodal capabilities allow it to 

process not only text but also images and audio, enhancing its utility in diverse clinical settings 

[29]. GPT-4 has been employed in clinical trial matching, where it automates eligibility screening, 

thus streamlining the recruitment process for clinical studies [30].  

This study aims to develop an advanced NLP system to automatically extract pulmonary 

embolism diagnoses from radiology report impressions. The key contributions of this study are: 

• Enhance and accelerate clinical data availability to improve the quality of care through 

evidence-based approaches. 

• Develop an advanced NLP system tailored for clinical text, which examines two 

technologies: Clinical Longformer and GPT-4o.  

• Deploy the developed system as a cloud-based web application, addressing a gap often 

found in Clinical AI research. 
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• Evaluate the model both before and after deployment. 

 

2. Methodology  

In this section, we provide a comprehensive overview of the study’s methodology. 

Subsequently, we explore the text classification approach, followed by a detailed description of 

the dataset utilized. We then describe the models applied in this research. Additionally, we discuss 

the deployment pipeline of the selected model. Finally, we outline the evaluation metrics employed 

to assess the model’s performance. 

 

2.1. Overview  

The primary objective of this study is to develop and deploy an AI solution capable of 

extracting Pulmonary Embolism (PE) diagnoses from radiology report impressions. After defining 

this goal, the research proceeds through four distinct phases. In the first step, we determine the 

appropriate data sources, match the data fields to the clinical database, and extract them for further 

analysis. This is followed by preprocessing and transforming the data to make it suitable for model 

development. The second step involves creating and testing different models, then choosing the 

one with the best results to proceed. The selected model is then implemented during the third step. 

In the final step, we track the model’s performance in real-world conditions and evaluate how it 

affects operational outcomes. 
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2.2. Radiology impressions text classification 

 

 

Figure 1. Radiology impressions text classification. 

 

 Text classification is a fundamental task in natural language processing (NLP) that involves 

categorizing text into predefined labels based on its content. This task is widely used in 

applications such as sentiment analysis, spam detection, and medical report classification. Text 

classification models typically preprocess the data by tokenizing the text and transforming it into 

numerical representations suitable for machine learning. Various approaches, such as rule-based 

methods, machine learning algorithms, or deep learning models, are then employed to make 

predictions based on patterns in the text. 

Figure 1 illustrates the process of classifying radiology report impressions to identify PE 

cases, which is adopted in this study. The workflow begins with the extraction of radiology 

impressions from a clinical database. The impressions are preprocessed by consolidating line-wise 

text, removing unnecessary spaces, and applying labels to prepare the data for analysis. Following 

this, two different text classification models are employed: Approach 1 utilizes a Clinical 

Longformer Model, while Approach 2 involves GPT-4o, a large language model. Both models 
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classify the impressions into two categories: PE and Non-PE. The goal is to determine whether a 

diagnosis of PE is present in each radiology report impression. 

 

2.3. Data 

The data used in this study was sourced from the electronic medical record relational database, 

with the primary data element being the impressions of radiology reports. These impressions, 

which contain key diagnostic information, were consolidated from line-wise data and cleaned to 

remove extraneous spaces. This process ensured that the data was formatted appropriately for 

analysis and modeling. 

The training dataset consists of 1,000 samples, which were randomly selected from 

radiology reports generated between January 1, 2024, and June 30, 2024. For the validation dataset, 

200 samples were randomly drawn from radiology reports collected in July 2024. Additionally, a 

separate testing dataset, consisting of 500 observations, was sampled randomly from operational 

data received between August 1, 2024, and August 31, 2024. The characteristics of the training 

and validation datasets are outlined in Table 1. The testing dataset characteristics will be discussed 

in the following section. 

As shown in Table 1, the training dataset contains 1,000 observations, with an average of 

43.64 words (or 32.73 tokens, where a token is approximately three-fourths of a word) per report 

impression. The training data includes 235 occurrences of pulmonary embolism term, with 36 

positive cases for pulmonary embolism and 964 negative cases. The validation dataset, consisting 

of 200 observations, has a slightly lower average word count per report impression, at 40.18 words. 

There are 46 occurrences of pulmonary embolism term in the validation dataset. Also, there are 8 

positive cases and 192 negative cases. 
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Table 1. Training and Validation Data Characteristics. 

Metric Training 

Dataset 

Validation 

Dataset 

Number of observations 1,000 200 

Average number of words (a token is approximately 
3

4
 of a word) 43.64 40.18 

Average number of pulmonary emboli/embolism occurrences 235 46 

Average number of positive cases for pulmonary embolism  36 8 

Average number of negative cases for pulmonary embolism 964 192 

 

2.4. Fine-tuned Clinical Longformer classifier  

The Clinical Longformer is a specialized transformer model designed to handle long clinical 

documents, overcoming the typical limitations of standard transformer models such as BERT, 

which can process sequences up to 512 tokens [31]. Clinical Longformer incorporates a sparse 

attention mechanism that allows it to efficiently process sequences up to 4,096 tokens, making it 

ideal for handling lengthy clinical narratives. Pre-trained on large clinical datasets, it is particularly 

effective in capturing long-term dependencies in medical text. In this study, the Clinical 

Longformer is fine-tuned to classify radiology impressions for identifying pulmonary embolism, 

leveraging its ability to process comprehensive radiology reports impressions without truncating 

important contextual information. 

We fine-tuned the Clinical Longformer model on a GPU server with 48 GB of memory. The 

fine-tuning parameters were as follows: 

• Batch size: 4 
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• Gradient accumulation steps: 8 

• Learning rate: 2e-5 

• Number of epochs: 5 

• Optimizer: AdamW 

• Learning rate scheduler: Linear 

 

2.5. GPT-4o classifier  

The methodology for utilizing GPT-4o in the text classification of radiology impressions, 

specifically for PE diagnosis, is based on a combination of chain-of-thought (COT) reasoning and 

few-shot learning techniques. As outlined in Figure 2(a), the process begins by initializing an 

empty list to store the generated labels. GPT-4o is then prompted using a COT and few-shot 

learning template, where relevant examples of radiology impressions with their corresponding 

labels (PE or Non-PE) are presented to the model. The temperature parameter is set to zero to 

minimize randomness in the model’s predictions. For each radiology impression in the dataset, the 

system inserts the impression into the prompt, calls the GPT-4o API, and receives a response that 

indicates whether a PE diagnosis is present. The resulting labels are appended to the list for further 

analysis and validation. 

As shown in Figure 2(b), the prompt includes a persona where GPT-4o is defined as a 

clinical AI assistant proficient in radiology, capable of interpreting complex medical language. The 

prompt further provides detailed steps, starting with studying example impression-label pairs, 

followed by reading through the target impression to extract potential diagnoses. The model is 

tasked with determining whether PE is indicated in the impression and returns the output as a 

structured JSON object. This methodology leverages GPT-4o’s advanced language comprehension 
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capabilities to classify radiology reports efficiently, using both clinical reasoning and context 

learned from the few-shot examples. 

 

2.6. Deployment pipeline 

The deployment pipeline for the pulmonary embolism (PE) classification model, illustrated in 

Figure 3(a), integrates a combination of on-premises and Azure cloud services to create a 

streamlined and scalable system. The process begins with data being sourced from an on-premises 

SQL server, which stores radiology report impressions. These impressions are transferred to an 

Azure SQL database, where they are stored and prepared for further analysis. This architecture 

utilizes a direct interaction between Azure SQL, an Azure Web App, and the Azure OpenAI 

service. The Azure OpenAI service, hosting the GPT-4o model, is invoked by the Azure Web App 

to perform text classification on the radiology impressions and return pulmonary embolism 

classification results. These results are then stored back in the Azure SQL database. The web app 

fetches the results from Azure SQL and displays them for end users. 

As shown in Figure 3(b), the web app was built using Python Flask for the backend, along 

with HTML, CSS, and JavaScript for the frontend. The interface allows users to query the system 

by submitting a patient’s medical record number to retrieve the corresponding PE classification 

result. Users can also refresh the data or download the results for further analysis. The table on the 

right displays relevant patient information, including patient IDs, encounter IDs, admission times, 

and the PE classification results. This interface serves as a convenient tool for healthcare 

professionals to quickly identify patients with a PE diagnosis, improving clinical decision-making 

and patient outcomes by providing prompt, automated insights. 
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(a) 

 

(b) 

Figure 2. GPT-4o for radiology impressions classification. Extraction of pulmonary embolism 

diagnosis. 
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(a) 

 

(b) 

Figure 3. Deployment pipeline and consumption Web App. Only positive cases are displayed. 
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2.7. Evaluation metrics  

To evaluate the performance of the pulmonary embolism (PE) classification model, we 

employed several commonly used metrics: 

• Confusion Matrix: A table that summarizes the model’s predictions by showing the number 

of true positives (correctly predicted PE cases), true negatives (correctly predicted non-PE 

cases), false positives (non-PE cases incorrectly classified as PE), and false negatives (PE 

cases incorrectly classified as non-PE). This matrix provides a detailed view of model 

performance. 

• Sensitivity (Recall): The proportion of actual PE cases that the model correctly identified. 

It measures the model’s ability to detect positive cases (PE) and is defined as the ratio of 

true positives to the sum of true positives and false negatives. 

Specificity: The proportion of actual non-PE cases that the model correctly identified. It 

reflects the model’s ability to avoid false positives, calculated as the ratio of true negatives 

to the sum of true negatives and false positives. 

• Precision: The proportion of predicted PE cases that were correctly identified. It measures 

the accuracy of the model’s positive predictions and is calculated as the ratio of true 

positives to the sum of true positives and false positives. 

• F1 Score: A harmonic mean of precision and recall, which provides a balanced measure of 

the model’s performance, especially in cases of imbalanced data. It is particularly useful 

for evaluating the trade-off between precision and recall in the context of PE classification. 
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3. Results and Discussion  

This section presents the research findings. First, we evaluate the Clinical Longformer and 

GPT-4o models using the validation dataset during the development phase. Next, we assess the 

performance of the deployed model (GPT-4o) post-deployment. Lastly, we discuss the benefits 

and clinical implications of the pulmonary embolism classifier. 

 

3.1. Models evaluation  

Figure 4 illustrates the evaluation of two models, the fine-tuned Clinical Longformer and GPT-

4o, on the validation dataset for the task of pulmonary embolism extraction from radiology report 

impressions. Figure 4(a) and Figure 4(b) present the confusion matrices for each model, 

highlighting their classification performance. The Clinical Longformer (a) misclassified two 

positive cases as negative (false negatives), achieving a sensitivity of 75%. Meanwhile, GPT-4o 

(b) perfectly classified all cases, achieving a sensitivity of 100%. Both models demonstrated 

flawless classification of negative cases, with a specificity of 100%. These confusion matrices 

suggest that GPT-4o excels in capturing all positive instances of pulmonary embolism. 

In Figure 4(c), the performance metrics across both models are compared. The Clinical 

Longformer achieves an F1 score of 0.86, reflecting a balance between precision and recall, with 

its lower sensitivity (0.75) slightly lowering its overall performance. In contrast, GPT-4o’s F1 score 

is a perfect 1.0, indicating superior performance in identifying pulmonary embolism cases. The 

100% accuracy and perfect metrics across sensitivity, specificity, and F1 score suggest that GPT-

4o is more reliable in the critical task of detecting pulmonary embolisms from unstructured 

radiology reports – impressions section, minimizing the risk of missing positive cases and ensuring 

more comprehensive clinical decision support in a real-world setting. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.14.24315482doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.14.24315482
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

Table 2. Post-Deployment Testing Data Characteristics. A random sample of 500 records was 

taken from the operational dataset in August 2024 for post-deployment evaluation. 

Metric Value 

Number of observations 500 

Average number of words (a token is approximately 
3

4
 of a word) 43.76 

Average number of pulmonary emboli/embolism occurrences 106 

Average number of positive cases for pulmonary embolism  18 

Average number of negative cases for pulmonary embolism 482 
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(a) 

 

(b) 

 

(c) 

 

Figure 4. Evaluation of Models on the Validation Dataset (Pre-Deployment). (a) Confusion 

matrix for the fine-tuned Clinical Longformer. (b) Confusion matrix of GPT-4o. (c) Comparison 

of validation metrics across both models. 
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3.2. Post-deployment performance 

Based on GPT-4o’s exceptional performance during the validation phase, where it achieved 

perfect metrics across all categories, it was selected for deployment in the operational setting. The 

post-deployment evaluation of the GPT-4o model was conducted using a randomly selected dataset 

of 500 records from the operational data collected in August 2024. Table 2 provides a summary of 

the dataset characteristics, including 18 positive cases of pulmonary embolism and 482 negative 

cases. The dataset also contained 106 mentions of pulmonary embolism-related terms, reflecting 

the richness and complexity of the radiology reports used for evaluation. 

Figure 5 presents the post-deployment performance of GPT-4o. The confusion matrix in 

subfigure (a) shows that the model correctly classified all cases, with no false positives or false 

negatives. The model achieved perfect sensitivity (1.0), indicating that it successfully identified 

all 18 positive cases of pulmonary embolism. Likewise, the model’s specificity was also 1.0, as it 

correctly classified all 482 negative cases. 

The overall performance metrics of GPT-4o, as shown in subfigure (b), demonstrate the 

robustness of the model in the real-world setting. With an F1 score of 1.0, the model maintains an 

optimal balance between precision and recall, providing confidence that it can accurately detect 

pulmonary embolism cases in practice. These results indicate that GPT-4o continues to perform 

exceptionally well post-deployment, offering reliable support in the classification of pulmonary 

embolism from radiology reports (impressions), a critical task in the clinical setting. 
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(a) 

 

(b) 

Figure 5. Post-Deployment Evaluation of GPT-4o. (a) Confusion matrix of GPT-4o on the post-

deployment dataset. (b) Performance metrics of GPT-4o, including F1 score, sensitivity, and 

specificity. 
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3.3. Operational and clinical implications 

The post-deployment results of GPT-4o highlight several important operational and clinical 

implications. First, the model’s ability to maintain high sensitivity and specificity in a real-world 

setting ensures that it can reliably detect pulmonary embolism cases without missing any true 

positives or generating false alarms. This is critical in a clinical environment where missed cases 

of pulmonary embolism can lead to severe consequences for patient outcomes, while false 

positives can result in unnecessary follow-up tests or treatments. 

From an operational standpoint, the model’s flawless performance on both the validation and 

post-deployment datasets minimizes the need for manual review, streamlining the workflow for 

radiologists and other healthcare professionals. By accurately classifying cases, GPT-4o reduces 

the cognitive and time burden on clinicians, allowing them to focus their attention on more 

complex cases or other clinical tasks. Additionally, the model’s high precision ensures that 

healthcare resources are used more efficiently, reducing unnecessary interventions and improving 

overall patient care. 

Clinically, the deployment of GPT-4o enhances the decision support available to clinicians, 

providing a reliable tool for the timely detection of pulmonary embolism from radiology reports. 

This early identification can lead to faster diagnosis and treatment, improving patient outcomes 

and potentially reducing mortality. Furthermore, the consistent performance of GPT-4o in 

identifying pulmonary embolism across different datasets demonstrates its robustness and 

adaptability, making it a valuable asset in diverse clinical settings. 
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4. Conclusion  

In conclusion, this study presents an efficient approach to automating the extraction of 

pulmonary embolism (PE) diagnoses from radiology report impressions using advanced natural 

language processing (NLP) models. By comparing the performance of a fine-tuned Clinical 

Longformer and GPT-4o, we demonstrated that GPT-4o outperforms in terms of sensitivity, 

specificity, and overall accuracy, both pre- and post-deployment. The deployment of GPT-4o 

within a clinical setting offers significant operational and clinical advantages, including the 

reduction of manual review, enhanced clinical decision support, and the timely detection of PE 

cases. This model’s robustness in handling real-world clinical data suggests it can play a crucial 

role in improving patient outcomes by providing more accurate and faster diagnostic insights. 

Future work may explore expanding this approach to other medical conditions and further refining 

the integration of NLP-based models into clinical workflows to continue improving the quality 

and efficiency of healthcare delivery. 
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