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Abbreviations: AI = artificial intelligence, ACRIN = American College of Radiology Imaging Network, AUC = 

area under curve, BMI = body mass index, CI = confidence interval, FOV = field-of-view, HR = hazard ratio, IMAT 

= intramuscular adipose tissue, LDCT = low-dose computed tomography, Pittsburgh Lung Screening Study = PLuSS, 

NLST = National Lung Screening Trial, ROC = receiver operating characteristic, SAT = subcutaneous adipose tissue, 

SM = skeletal muscle, VAT = visceral adipose tissue 

Summary statement: 

Body composition assessed on LDCT is a significant predictor of lung cancer risk and could improve the 

effectiveness of LDCT lung cancer screening by optimizing the screening eligibility and frequency.  

Key Points:  

(1) This study unveils the significant associations between body tissues and lung cancer risk. 

(2) The prediction models based on body composition alone, as well as the combination of demographics and 

body composition features can effectively identify patients at higher risk of developing lung cancer.  
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ABSTRACT  

Purpose: To investigate if body composition is a biomarker for assessing the risk of developing lung cancer.  

Materials and Methods: Low-dose computed tomography (LDCT) scans from the Pittsburgh Lung Screening Study 

(PLuSS) (n=3,635, 22 follow-up years) and NLST-ACRIN (n=16,435, 8 follow-up years) cohorts were used in the 

study. Artificial intelligence (AI) algorithms were developed to automatically segment and quantify subcutaneous 

adipose tissue (SAT), visceral adipose tissue (VAT), intramuscular adipose tissue (IMAT), skeletal muscle (SM), and 

bone. Cause-specific Cox proportional hazards models were used to evaluate the hazard ratios (HRs). Standard time-

dependent receiver operating characteristic (ROC) analysis was used to evaluate the prognostic ability of different 

models over time.  

Results: The final composite models were formed by seven variables: age (HR=1.20), current smoking status 

(HR=1.59), bone volume (HR=1.79), SM density (HR=0.29), IMAT ratio (HR=0.33), IMAT density (HR=0.56), and 

SAT volume (HR=0.56). The models trained on the PLuSS cohort achieved a mean AUC of 0.76 (95% CI: 0.74-0.79) 

over 21 follow-up years and 0.70 (95% CI: 0.66-0.74) over the first 7 follow-up years for predicting lung cancer 

development within the PLuSS cohort. In contrast, models trained on the PLuSS cohort alone, as well as in 

combination with the NLST cohorts, achieved an AUC ranging from 0.61 to 0.68 in the NLST cohort over a 7-year 

follow-up period.  

Conclusion: Body composition assessed on LDCT is a significant predictor of lung cancer risk and could improve 

the effectiveness of LDCT lung cancer screening by optimizing the screening eligibility and frequency.  
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INTRODUCTION 

Lung cancer is the leading cause of cancer-related deaths worldwide1. Several large studies, such as the National 

Lung Screening Trial (NLST)2-4 and the NELSON study5, have confirmed that screening with low-dose computed 

tomography (LDCT) scans can significantly reduce lung cancer-related deaths compared to chest radiography. These 

outcomes ultimately led to the approval and reimbursement for lung cancer screening using LDCT scans. The current 

eligibility criteria for lung cancer screening with LDCT are primarily based on age and smoking history, specifically, 

adults aged 50–80 years with a 20-pack-year or more smoking history who either smoked or quit in the last 15 years6. 

Among the screening eligible populations, only a small percentage (<4%) of screened individuals have or will develop 

lung cancer2, 3. In the NLST, prevalent and first-incident lung cancers were detected in only 1.1 % and 0.7% of the 

patients screened, respectively, with positive predictive values being 3.8% and 2.4%, respectively 2, 3. Among the 

53,454 patients who smoke or previously smoked enrolled in NLST, only 3.85% (2,058 subjects) were diagnosed 

with lung cancer in the study period (2002–2010). Therefore, in the current lung cancer screening paradigm, a 

significant majority of the screened individuals will not develop lung cancer but may be unnecessarily exposed to 

potentially harmful radiation or other procedures (e.g., biopsy). Moreover, current lung cancer screening relies on the 

detection and evaluation of lung nodules 7-9. However, lung nodules are only detected in a modest percentage of 

screened individuals, and 96% of the screen-detected nodules are false positives (non-cancerous)2. Therefore, it is an 

unmet clinical need for improving lung cancer screening by identifying individuals at high risk of developing lung 

cancer using an approach that goes beyond the current eligibility criteria and does not solely rely on the presence of 

lung nodules.  For those at low risk of developing lung cancer, less frequent LDCT-based screening (e.g., every 2-3 

years rather than yearly) may be more appropriate.  

Available methods for assessing lung cancer risk primarily rely on clinical and demographic variables 10 11. Zhang et 

al.’s lung cancer risk model considered age, smoking status, lung functions, and hip/waist circumference. The 

CanPredict (lung) model developed by Liao et al. included sociodemographic, lifestyle, and medical history factors. 

Cassidy et al. 12 developed a model to estimate the 5-year probability of an individual developing lung cancer based 

on smoking duration, family history of lung cancer, prior diagnosis of pneumonia or other cancers, and occupational 

exposure to asbestos. Advancements in deep learning technologies have spurred interest in developing lung cancer 
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risk models based on LDCT scans.  Mikhael et al. 13 developed a model called Sybil to predict individual risk of 

developing lung cancer within six years based on LDCT, which relied on the presence of lung nodules and used 

bounding boxes to manually annotate the nodules.  Notably, Sybil’s performance declined significantly when nodules 

were not included. Robbins et al. 14 proposed a risk-tailored approach for managing lung cancer screening results by 

incorporating individual risk factors and LDCT image features. Their model used both nodule features and non-

nodule features (e.g., emphysema) to predict immediate and next-screen (1-year) lung cancer risks following both 

negative and abnormal LDCT results. 

This study aimed to identify novel image biomarkers from LDCT chest scans that might signal the risk of developing 

lung cancer. Five different types of tissue related to body composition were segmented on LDCT images, which 

included subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), intramuscular adipose tissue (IMAT), 

skeletal muscle (SM), and bone. Volume and density metrics were computed for each tissue. Competing risk time-

to-event analysis was used to identify body composition features significantly associated with the development of 

lung cancer and assess their hazard ratios. The underlying rationale for this approach is that body composition, which 

faithfully reflects an individual's long-term habits and lifestyle (e.g., physical activity, exercise, and diet), provides 

the conditions that may promote or diminish cancer development. Body composition itself may provide a fertile 

global environment for cancer development. A detailed and in-depth study of various body tissues may gain unique 

insights into the role of body composition in lung cancer development and progression. The significant body 

composition features were combined with patient demographics (e.g., age, gender, race) to create a computer model 

to predict an individual’s risk of developing lung cancer, which was independent of the presence of suspicious nodules.  

MATERIALS AND METHODS 

The Pittsburgh Lung Screening Study (PLuSS)15.  

PLuSS is a community-based research cohort that screened and followed 3,635 current and ex-smokers using LDCT 

scans starting in 200215 (Supplementary Table 1). Participants were enrolled between 2002 and 2005. The inclusion 

criteria were: (1) 50-79 years old and (2) current or ex-cigarette smokers with at least 12.5 pack-years at the time of 

enrollment. The exclusion criteria were: 1) quit smoking more than 10 years earlier, 2) had history of lung cancer 

diagnosis, or 3) had chest CT within one year prior to enrollment. Demographic, clinical, and smoking history data 
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were collected using structured interviews and questionnaires at baseline and at annual follow-up visits or contacts. 

Upon study entry, participants underwent spirometry and LDCT screening and provided a sputum sample and a blood 

sample. A detailed description of the LDCT acquisition protocols can be found elsewhere 15. The cohort consisted of 

1,869 men and 1,766 women, 94.1% of whom were white, 5.6% black, and 0.3% other non-white race. The mean 

age at enrollment was 59.1 years, and 60.2% were current smokers. Approximately 10% had a history of COPD and 

20.6% had a family history of lung cancer involving a parent or sibling. This study has obtained ethics approval from 

the University of Pittsburgh Institutional Review Board (IRB 21020128). 

As of February 2024, 1,463 (40.2%) participants in the PLuSS cohort died and 457 (12.6%) participants developed 

lung cancer, which included 340 patients who subsequently died. The follow-up time from the baseline ranges from 

0.03 to 21.9 years with a median of 19.4 years. Among 1,463 participants who died, 9.4% died within 4 years, 25.4% 

within 8 years, and 47.2% within 12 years. Among 457 participants who had developed lung cancer, 104 (22.8%) 

developed cancer within the first 4 years, 172 (37.6%) developed cancer after 12 years.  

NLST-American College of Radiology Imaging Network (NLST-ACRIN) cohort.  

The NLST-ACRIN cohort includes 18,714 participants enrolled at 23 different centers of which 9,357 participants 

were randomized to annual LDCT screening3, 16,17. The inclusion criteria were: (1) Age 55-74 years; (2) 30 or more 

pack-year smoking history; and (3) quit smoking within the previous 15 years. The exclusion criteria were: (1) history 

of lung or other cancer; (2) history of lung surgery; and (3) chest CT examination in the 18 months prior to eligibility 

assessment. More detailed information about the clinical trial can be found at clinicaltrials.gov17. We have requested 

and received a sub-cohort (n=16,435) from NLST-ACRIN participants in the LDCT arm with demographic, clinical, 

and lung function data (Supplementary Table 2). The NLST CT scans were acquired using different scanners and 

protocols. The NLST-ACRIN participants were followed for 8 years (from 2002 to 2009) after the baseline visit. 

Notably, significant difference in the field-of-view (FOV) was observed for chest imaging between the NLST-ACRIN 

and PLuSS cohorts. Specifically, as shown in Supplementary Figure 1, approximately 15.8% of the baseline CT scans 

in the NLST-ACRIN cohort capture the entire chest FOV, while about 66.8% of the baseline CT scans in the PLuSS 

cohort provide a complete chest FOV. Additionally, roughly 90% of the baseline CT scans in the PLuSS cohort cover 

almost the entire chest, missing only limited regions. Based on these observations, we identified the CT scans in the 
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NLST cohort with a complete chest FOV (n=2,604) as a separate test set (Supplementary Table 3) to evaluate the 

impact of chest FOV on the final performance. The criterion for determining whether the entire chest region is 

captured is to assess if the axial image slice containing the heart's center includes the full chest region. The extent of 

the FOV is measured by counting the number of pixels of the chest region located at the image boundaries, with a 

value of zero indicating that the entire chest region is fully captured. 

LDCT image features 

Artificial intelligence (AI) algorithms18 were used to automatically segment five types of tissues depicted on the 

LDCT in the PLuSS and NLST-ACRIN cohorts, including SAT, VAT, IMAT, SM, and bone. The volumes and 

densities (CT Hounsfield Unit) of the tissues were computed 19. Additionally, the ratios of each type of fat relative to 

the total body volume were computed.   

Statistical analysis and prediction modeling 

All participants of both PLuSS and NLST cohort were included in the statistical analysis. The LDCT series with the 

maximum number of image slices from the baseline scans were used for analysis, prediction modeling, and validation.  

The software “R” was used to analyze the risk from baseline LDCT scan to the diagnosis of lung cancer, accounting 

for death as a competing event. This competing risk time-to-event analysis was conducted to evaluate two groups of 

variables, including patient demographics and LDCT-derived body composition metrics, as predictors of future lung 

cancer. To ensure robustness, continuous parameters were standardized (mean zero, variance of one) for hazard ratio 

(HR) evaluation and effect comparison. A univariate analysis was performed first followed by joint modeling within 

each group. The final stage was a composite model integrating all variables from the two groups. HRs and their 95% 

confidence intervals (CIs) were computed to assess individual significance in univariate and combined models.  

Two strategies were used to develop and validate the composite prediction models. The first strategy trained the risk 

prediction model using the PLuSS cohort and validated it using the NLST-ACRIN cohort or "PLuSS Model". The 

second strategy trained the prediction model using 90% of both the PLuSS and NLST-ACRIN cohorts and validated 

it using the remaining 10% of each cohort or "MIX Model". To ensure the robustness and reliability of the evaluation, 

the 10-fold cross-validation method was used. Considering that the maximum follow-up time in the NLST cohort is 

only 8 years, we cut off the follow-up time of the PLuSS cohort to 8 years to match this. Based on the above two 
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training strategies, we trained another two models, namely “PLuSS_CUTOFF8 Model” and “MIX_CUTOFF8 

Model.” The area under the curve (AUC) for standard time-dependent receiver operating characteristic (ROC) 

analysis measured the prognostic ability of the PLuSS and MIX models over the considered time range. The risk 

thresholds corresponding to specific sensitivity and specificity levels on a 12-year ROC curve were used to define 

the risk strata by grouping those with risks lower than the threshold at sensitivity = 0.9 as “low risk”, those with risks 

higher than the threshold at specificity = 0.9 as “high risk”, and the remaining as “intermediate risk”. 

RESULTS 

Demographics 

Several demographic variables were significantly associated with lung cancer development in the univariate analysis 

(Table 1). Participants with active tobacco use (HR=1.73) and older participants (HR=1.57) had a significantly 

increased risk of developing lung cancer. Females (HR=0.75) and participants with a higher BMI (HR=0.84) had a 

significantly decreased risk of developing lung cancer. All univariately significant variables, except race, remained 

statistically significant in the demographic joint model. A model including gender, age, smoking status, and BMI 

achieved an AUC of 0.71 (95% CI: 0.67-0.74) for predicting the development of lung cancer within 12 years after 

the baseline CT scans (Fig. 1(a)). The performance of the demographic model to predict lung cancer development 

was reasonably consistent across the 21-year time period, except for the slight decrease in the beginning (Fig. 1(b)). 

The demographic joint model classified 933 (25.7%), 2,289 (63.0%), and 413 (11.4%) subjects into the low-risk, 

intermediate-risk, and high-risk strata, respectively (Table 2). Ninety-one high-risk subjects developed lung cancer 

within 12 years. The cumulative incidence of developing lung cancer for the three strata were clearly and evenly 

separated based on the demographic model (Fig. 2a). 

Body composition  

Nine body composition variables were significantly associated with the development of lung cancer (Table 1). Bone 

volume (HR=1.34), bone ratio (HR=1.30), SAT density (HR=1.12) were significantly and directly related to the 

development of lung cancer. While muscle density (HR=0.71), bone density (HR=0.68), SAT volume (HR=0.88), 

SAT ratio (HR=0.86), IMAT volume (HR=0.89), and IMAT ratio (HR=0.87) were significantly and inversely related 

to the development of lung cancer. SM density (HR=0.26, p<0.0001), bone volume (HR=1.85, p<0.0001), IMAT 
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ratio (HR=0.31, p<0.0001), IMAT density (HR=0.56, p<0.0001), and SAT volume (HR=0.51, p<0.0001) were 

significant variables in the joint model to predict lung cancer (Table 1). The joint model achieved a 12-year AUC of 

0.79 (95% CI: 0.76-0.82), which is significantly higher than the joint model based on demographics variables (Fig. 

1). IMAT density, which has non-significant effect univariately, became significantly predictive in the joint model. 

The body composition joint model classified 1,275 (35.1%), 1,865 (51.3%), and 495 (13.6%) subjects into the low-

risk, intermediate-risk, and high-risk strata, respectively (Table 2). Among high-risk subjects, 206 developed lung 

cancer in 12 years. The cumulative incidence of developing lung cancer for the three strata is illustrated in Figure 2. 

The cumulative incidence of developing lung cancer for the high-risk stratum clearly separated from the low and 

intermediate-risk strata using the body composition model (Fig. 2b). 

 

Composite model 

The final composite model included seven variables that were significantly associated with developing lung cancer: 

age (HR=1.20), current smoking status (HR=1.59), bone volume (HR=1.79), SM density (HR=0.29), IMAT ratio 

(HR=0.33), IMAT density (HR=0.56), and SAT volume (HR=0.56) (Table 3). The composite model classified 1,322 

(36.4%), 1,815 (49.9%), and 498 (13.7%) subjects into the low-risk, intermediate-risk, and high-risk strata, 

respectively, for developing lung cancer (Table 2). Among high-risk subjects, 203 developed lung cancer in 12 years. 

The cumulative incidence of developing lung cancer for high-risk stratum clearly separated from the low and 

intermediate-risk strata using the composite model (Fig. 2c). 

The PLuSS Model based on the seven variables achieved a 12-year AUC of 0.80 (95% CI: 0.77-0.83), which showed 

only a marginal improvement compared to the body composition model (AUC of 0.79, 95% CI: 0.76-0.82). The 

likelihood ratio test indicated a statistically significant difference between the two models. Both the PLuSS Model 

and the body composition model were statistically better than the demographic model (AUC of 0.71, 95% CI: 0.67-

0.74). The PLuSS Model achieved a mean AUC of 0.70 (95% CI: 0.66-0.74) on PLuSS data with 10-fold cross 

validation over the first 7 years. The mean AUC was 0.60 (95% CI: 0.59 - 0.61) over 7 years when validated on the 

baseline NLST LDCT scans, 0.64 (95% CI: 0.62-0.66) when validated on NLST scans with full chest FOV. The 

PLuSS_CUTOFF8 model achieved a mean AUC of 0.61 (95% CI: 0.60-0.62) when validated on all baseline NLST 

scans, and a mean AUC of 0.65 (95% CI: 0.64-0.67) when validated on baseline NLST scans with a full chest FOV. 
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In contrast, both the MIX Model and MIX_CUTOFF8 Model achieved a mean AUC of 0.65 (95% CI: 0.64-0.65) on 

all the cases in the NLST cohort over 7 years based on 10-fold cross-validation. The MIX Model achieved a mean 

AUC of 0.67 (95% CI: 0.66-0.69) on NLST scans with full chest FOV. The MIX_CUTOFF8 Model achieved a mean 

AUC of 0.68 (95% CI: 0.67-0.70) on NLST scans with full chest FOV.  

DISCUSSION 

The comprehensive analysis of the body composition revealed that both body composition and subject characteristics 

are associated with the risk of developing lung cancer. Our promising results from two LDCT screening cohorts 

demonstrate that body composition measures are significantly associated with lung cancer risk and can be used to 

stratify subjects into three risk strata. All types of tissues related to body composition analyzed (i.e., adipose, bone, 

and muscle) were significant predictors of lung cancer development and able to stratify subjects into three risk 

categories. Despite the significance of the demographic information in the model, their inclusion does not improve 

the performance of the model based on body composition very much in terms of AUC (Fig. 1 and Table 2), suggesting 

that the characteristics of body composition may imply patient information (e.g., age and gender). The ability to 

assess an individual’s risk of developing lung cancer can lead to a personalized lung cancer screening strategy. 

Individuals with a lower risk of developing lung cancer could undergo less frequent LDCT-based screening (e.g., 

every 2-3 years), while those at high risk would maintain annual screenings. A personalized screening strategy may 

substantially reduce unnecessary radiation exposure associated with LDCT imaging and other potentially harmful 

procedures (e.g., lung biopsies). Ultimately, these factors could help reduce the healthcare burden of lung cancer and 

enable the implementation of proactive preventative measures. 

The performance of the models for predicting lung cancer in the PLuSS cohort was promising and showed an upward 

trend over time (Fig. 1). In the first five years, the models' performance was relatively lower, with an AUC below 

0.70. However, the performance improved, reaching an AUC of 0.81 around 15 years, before starting to slightly 

decline around 16 years. When the PLuSS model was directly applied to cases in the NLST-ACRIN cohort, the 

prediction performance, measured by AUC over the 7 follow-up years, was approximately 0.60-0.61. This was 

consistent whether or not the follow-up period in the PLuSS cohort was truncated to match that of the NLST-ACRIN 
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cohort. Similarly, when the MIX model was applied to the NLST-ACRIN cohort, the AUC remained around 0.65, 

regardless of the follow-up period adjustment. Furthermore, when testing only cases with a full chest FOV in the 

NLST-ACRIN cohort, the prediction performance improved to 0.64-0.65 for the PLuSS model and 0.67-0.68 for the 

MIX model. In fact, this performance is similar to that of the PLuSS model for predicting lung cancer over the first 

7 years (Fig. 1). These results suggest that the chest FOV and potential imaging protocols significantly impact 

prediction accuracy. A complete FOV is associated with improved performance. Additionally, using a diverse dataset, 

as in the MIX model, is also linked to enhanced prediction accuracy. Nevertheless, considering that the PLuSS cohort 

was followed for around 22 years while the NLST-ACRIN cohort was followed for only 8 years, along with their 

differences in image acquisition protocols, these results strongly support the potential association between body 

composition and lung cancer risk.    

There has been significant interest in understanding the relationship between body composition and cancer, and a 

number of studies have been conducted to shed light on this topic20, 21. However, most of these studies have primarily 

focused on the use of BMI or waist circumference as measures of body composition. While some studies have found 

an inverse association between BMI and the development of lung cancer, there are also conflicting results. Some 

studies 22-27 have found an inverse association between BMI and lung cancer risk and some have found a positive 

association between waist circumference and lung cancer risk. Other studies28, 29 have failed to confirm this 

association and have even reported contradictory results30.BMI has been reported to be unrelated to lung cancer risk 

when limited to non-smokers31 32. Therefore, it is crucial to clarify the association between BMI and the risk of lung 

cancer, as it has important implications for public health. One potential reason for the conflicting results in the 

literature may be that the simple BMI assessment does not adequately capture an individual's body composition. BMI 

does not assess visceral fat, intramuscular fat, and bone density. These factors may differentially impact the 

development of lung cancer. 

Xu et al. 33 conducted a secondary body composition analysis of the NLST that included area and attenuation attributes 

of SM and SAT on LDCT scans. They observed that body composition measurements added predictive value for 

lung cancer death, cardiovascular disease death, and all-cause death, but not for lung cancer incidence in NLST. Their 

conclusion about lung cancer differs from ours. This discrepancy could be due to differences in the body composition 
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assessment. They only segmented SM and SAT on three CT image slices. Consequently, they quantified the area of 

these tissues instead of their volume, which reduced the “resolution” of the tissue assessment based on a limited 

number of images.  To our knowledge, most of studies primarily focused on BMI  22-27 or only evaluated a few types 

of tissues based on a limited number of images at specific anatomical location (e.g., T4 or L3 vertebra) 34-41. In contrast, 

our study utilized AI algorithms to identify five different body tissues and quantify their volumetric measures using 

all the images in a CT scan.  

At this time, we have not utilized chest CT scans directly as inputs to train a deep learning model for predictive 

purposes, despite extensive experience in this field  42-47. First, deep learning of this nature typically demands an 

extremely large dataset. While our cohorts are relatively large, they are insufficient to reliably train such a deep 

learning model due to the limited number of cancer cases and the inherent anatomical variability between individuals. 

Second, a deep learning model operates as a "black box," which complicates the interpretation of factors associated 

with lung cancer risk. In contrast, an AI model based on manually crafted CT-derived features offers greater 

interpretability regarding their connection to lung cancer risk, which is crucial for developing effective prevention 

strategies. 

CONCLUSION 

Lung cancer screening using LDCT has proven effective in reducing mortality from lung cancer. However, there are 

challenges to screening such as low incidence among screened individuals and false positive detections and the risks 

associated with radiation exposure and follow-up procedures. Current screening criteria based solely on age and 

smoking history can tend to overestimate an individual’s lung cancer risk, which can be an issue in any type of mass 

screening. There incidence of cancer is low in the general population, which results in mostly negative screening 

results. This study unveils the significant associations between body tissues and lung cancer risk, which can help 

classify individuals into different risk strata. Implementing risk-stratified screening strategies based on these models 

could improve screening efficacy by identifying low-risk individuals who may benefit from reduced screening 

intervals based on more personalized lung cancer screening. A more personalized screening approach may help 

reduce the frequency of screening exams and the number of potentially harmful follow-up procedures (e.g., radiation 

exposure from additional CT scans, invasive biopsies) associated with false positive screening results.  
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Table 1. Subject characteristics and body composition metrics’ association with lung cancer development 

(n=3,635) 

Variables 

Univariate Cox Analysis  Joint Model 

Hazard Ratio P Value Hazard Ratio P Value 

Demographics      

Gender (Female) 0.75 0.0025  0.71 0.0004 

Age 1.57 <.0001  1.63 <.0001 

Smoking status (Current) 1.73 <.0001  1.90 <.0001 

Race (White) 1.04 0.8548  - - 

BMI 0.84 0.0006  0.88 0.0160 

Body composition      

VAT volume 1.04 0.3756  - - 

VAT ratio 1.07 0.1453  - - 

VAT density 1.08 0.108  - - 

SAT volume 0.88 0.0096  0.51 <0.0001 

SAT ratio 0.86 0.0013  - - 

SAT density 1.12 0.0097  - - 

IMAT volume 0.89 0.0255  - - 

IMAT ratio 0.87 0.0047  0.31 <0.0001 

IMAT density 0.95 0.2715  0.56 <0.0001 

SM volume 1.07 0.1672  - - 

SM ratio 1.08 0.0806  - - 

SM density 0.71 <.0001  0.26 <0.0001 

Bone volume 1.34 <.0001  1.85 <0.0001 

Bone ratio 1.30 <.0001  - - 

Bone density 0.68 <.0001  - - 

Definition of abbreviations: BMI=body mass index; VAT=visceral adipose tissue; SAT=subcutaneous adipose 

tissue; IMAT=intramuscular adipose tissue; SM=skeletal muscle. 
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Table 2. Risk stratification of the baseline subjects in the PLuSS cohort (n=3,635) 

Variables 
Risk stratum 

Lung 

Cancers Deaths 

Total 

patients 

12-year risk 

estimate 95% CI 

Demographics 

Low risk 59 139 933 3.3% (2.3%, 4.6%) 

Intermediate 307 743 2289 8.0% (7.0%, 9.2%) 

High Risk 91 241 413 16% (13%, 20%) 

Total 457 1123 3635   

Body 

composition 

Low risk 69 313 1275 2.4% (1.7%, 3.4% 

Intermediate 182 642 1865 5.6 % (4.6%, 6.7%) 

High Risk 206 168 495 30 % (26%, 34%) 

Total 457 1123 3635   

Demographics 

and body 

composition 

Low risk 73 296 1322 2.4% (1.7%, 3.4% 

Intermediate 181 634 1815 5.8% (4.8%, 6.9%) 

High Risk 203 193 498 29% (25%, 33%) 

Total 457 1123 3635   
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Table 3. Subject characteristics and body composition variables included in the final composite models for predicting 

lung cancer (n=3,635).  

Variable Hazard Ratio P Value 

Age 1.20 0.0005 

Smoking status (Current) 1.59 <0.0001 

SAT volume 0.56 <0.0001 

IMAT ratio 0.33 <0.0001 

IMAT density 0.56 <0.0001 

SM density 0.29 <0.0001 

Bone volume 1.79 <0.0001 

Definition of abbreviations: VAT=visceral adipose tissue; SAT=subcutaneous adipose tissue; 

IMAT=intramuscular adipose tissue; SM=skeletal muscle. 
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Figure 1. (a) ROC curves of demographics joint model, body composition joint model, and composite model 

predicting the development of lung cancer at 12 years in the PLuSS cohort. (b) Time-dependent AUCs of the joint 

models based on demographic variables, body composition variables, and composite model based on variables from 

two groups over 21 years tested on the PLuSS cohort. 

 

Figure 2. Cumulative incidences of lung cancer from baseline CT scans in the PLuSS cohort, categorized by low, 

intermediate, and high-risk groups. Risk stratification based on: (a) demographics, (b) body composition, and (c) 

the combination of demographics and body composition. 
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Figure 3. Time-dependent ROC curves of the PLuSS Model and the MIX Model. (a) PLuSS and MIX models 

tested on the NLST cohort. (b) PLuSS and MIX models with an 8-year follow-up cutoff tested on the NLST cohort. 

(c) PLuSS and MIX models trained on full FOV NLST scans and tested on full FOV NLST scans (10-fold cross-

validation). (d) PLuSS and MIX models trained on full FOV NLST scans with an 8-year follow-up cutoff and 

tested on full FOV NLST scans. “MIX0” and “NLST0” refer to cases with a full chest FOV. 
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