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Summary Statement: 

We found that body composition were critical indicators for discriminating malignant nodules 
from benign ones and for evaluating the nodule growth in both males and females. 

 

Key Results: 

1. Univariate analysis revealed a significant association between body composition and nodule 
malignancy in both males and females. Multivariate analysis further demonstrated the predictive 
ability of body composition features. 

2. Feature importance analysis and causal graph analysis identified skeletal muscle density as one 
of the leading features associated with nodule malignancy. 

3. Skeletal muscle density and intramuscular adipose tissue density were identified as nodule 
growth indicators in both males and females.  
 

 

Abbreviations: 

AI: artificial intelligence 

BC: body composition 

CI: confidence interval 

LDCT: low-dose computed tomography 

LASSO: least absolute shrinkage and selection operator 

LR: logistic regression 

PI: permutation importance 

ROC-AUC: the area under the receiver operating characteristic curve  

RF: random forest 

SVM: support vector machine   
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Abstract 

Objective: This study investigated the association between body composition and pulmonary 

nodule malignancy and growth.  

Methods: A dataset of subjects with indeterminate pulmonary nodules (IPNs) was created from 

an internal (n=216) and external (n=162) cohort. Five different body tissues were automatically 

segmented and quantified from baseline and follow-up chest low-dose computed tomography 

(LDCT) scans using artificial intelligence (AI) algorithms. Logistic Regression (LR) analyses, t-

tests, and Person correlation analyses were performed to study the association between body 

tissues and nodule malignancy, as well as nodule changes such as density, size, and shape. 

Gender differences were investigated. The area under the receiver operating characteristic curve 

(ROC-AUC) was used to assess classifier performance. Average feature importance was 

evaluated using several machine learning models. Causal relationships were analyzed and 

visualized using a novel directed graph method.  

Results: Univariate analysis revealed a significant association between Skeletal muscle density 

and nodule malignancy in both genders (p<0.001). The multivariate model based on body 

composition yielded AUCs of 0.77 (95% CI: 0.71 – 0.84) and 0.63 (95% CI: 0.54 – 0.72) on the 

internal and external datasets, respectively. The composite model based on body composition 

and nodule features yielded AUCs of 0.87 (95% CI: 0.82 – 0.91) and 0.62 (95% CI: 0.53 – 0.72) 

on the internal and external datasets, respectively. Skeletal muscle and intermuscular adipose 

tissue features were highly ranked among tissue features, with skeletal muscle density retaining 

its highest rank even after adjusting for clinical and nodule features. The causal graph identified 

two nodule features and skeletal muscle density as directly linked to nodule malignancy. Skeletal 
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muscle density and intramuscular adipose tissue density were identified as nodule growth 

indicators in both genders. 

Conclusions: Body composition can serve as a potential biomarker for assessing nodule 

malignancy and evaluating nodule growth in both genders. 

 

Keywords: pulmonary nodules, body tissue composition, malignancy, machine learning 
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1. Introduction 

Lung cancer is the leading cause of cancer-related mortality worldwide [1], which highlights the 

need for efficient screening programs to ensure early detection. The American Cancer Society 

(ACS) recommends annual screening with low-dose computed tomography (LDCT) for at-risk 

adults [2]. The National Lung Screening Trial (NLST) has shown that LDCT can reduce lung 

cancer-related mortality by 20% compared to chest radiography (CXR) [3]. A crucial step in the 

screening process is determining the malignancy of lung nodules detected on LDCT scans. 

However, LDCT frequently detects lung nodules, 96.4% of which are benign or false positives 

[4]. This high false positive rate often leads to unnecessary follow-up procedures, including 

additional imaging and invasive procedures such as biopsies and surgeries, causing anxiety and 

potential complications for patients. 

To differentiate between benign and malignant nodules using CT images, nodule characteristics, 

such as size, solidness, shape, and density, are widely used by radiologists as the primary 

indicators of malignancy in clinical practice [5]. A radiologist’s performance heavily depends on 

their experience with these features, leading to high inter- and intra-reader variability [6]. 

Consequently, significant effort has been dedicated to developing computational approaches, 

which generally fall into two categories. The first approach employs traditional machine learning 

methods, such as support vector machines and random forests [7-9], to identify significant hand-

crafted radiographic features similar to those used by radiologists. These features are integrated 

with patients' clinical data, such as age and smoking history [7, 10], to classify nodules into 

different categories. The second approach is based on deep learning (DL) technologies, such as 

convolutional neural networks (CNN) [11]. DL models require large, diverse datasets with 

ground truth and lack interpretability because DL models implicitly learn intricate image textures 

and patterns, functioning as a “black box”. 
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Body composition has been explored as a potential biomarker for therapy response [12-14] and 

for predicting survival time and hospitalization [15-17]. However, its relationship with lung 

nodule malignancy has not been investigated. We believe that body composition could serve as 

an effective biomarker for assessing lung nodule malignancy and offer insights into the 

development and progression of lung nodules. The rationale is that body composition can create 

a conductive environment for tumor growth, which in turn can affect metabolism and, in turn, 

alter body composition. As the tumor progresses toward malignancy, these changes in body 

composition may become more pronounced [18]. 

In this study, we investigated the association between body composition and lung nodule 

malignancy, evaluating whether the inclusion of body composition features could improve the 

assessment of nodule malignancy when combined with nodule characteristics and clinical 

features. We also examined how body composition changes correlate with nodule growth, with 

particular attention to gender differences. Both statistical and machine learning approaches were 

employed to identify body composition features associated with nodule malignancy and growth. 

Additionally, state-of-the-art causal AI technology was utilized to uncover the underlying causal 

relationships between body composition, lung nodule characteristics, and nodule malignancy.  

2. Methods and Materials 

2.1.  Study datasets 

A dataset of 216 subjects (male: 113 (52.3%), Table 1) from the Pittsburgh Lung Cancer 

Screening Study (PLuSS) cohort [19] was selected for this study (Supplementary Figure 1). The 

selection criteria were: (1) the presence of an indeterminate pulmonary nodule on baseline CT 

scans, and (2) follow-up CT scans available. Cases with small nodules on the baseline CT scans 

that showed significant growth on the follow-up scans were also included in the study. Nodule 
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malignancy was confirmed either through biopsy or additional follow-up imaging. Follow-up 

times ranged from 0.30 to 13.19 years, with a median of 2.34 years and a mean of 4.25 years. For 

each subject, the largest nodule observed on the initial CT scans was involved in analyses. In the 

216 pairs of CT scans, nodules size ranged from 4.00 to 25.32 mm in diameter. This study was 

approved by the University of Pittsburgh Institutional Review Board (IRB 011171).  

An external validation dataset originated from the Vanderbilt University Medical Center 

(VUMC), denoted as the Vanderbilt dataset [20] (Supplementary Table 1). This dataset consisted 

of 162 patients (male: 94 (58.0%)) who were enrolled in the VUMC study between 2003 and 

2017. These subjects had lung nodules with the largest axial diameter ranging from 6.00 to 30.00 

mm. Diagnoses were confirmed through a biopsy or a 2-year longitudinal follow-up imaging 

showing no signs of growth for benign nodules.                 

2.2. Image acquisition 

The chest LDCT scans in PLuSS were acquired at an end-inspiration during a single-breath-hold 

using a helical technique at 20-40 mA and 120/140 kVp. These images were reconstructed with a 

high spatial frequency algorithm specifically for lung tissue. The images encompassed the entire 

lung field in a 512×512 pixel matrix with slice thickness ranging from 1.25 to 2.5 mm. The in-

plane pixel dimensions ranged from 0.55 to 0.83 mm. Radiologists reviewed the images using 

standard lung windows on an imaging workstation, adjusting window width and level as needed 

to detect nodules and assess mediastinal structures [19].  

2.3. CT image features 

In-house software was used to automatically segment five types of body tissues related to body 

composition depicted on chest LDCT images (Figure 1(g-j)) [21]. The five tissue types included 
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visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), intermuscular adipose tissue 

(IMAT), skeletal muscle (SM) and bones. Volume, mass, and density (i.e., average Hounsfield 

Unit (HU) value) were computed for each segmented tissue [22]. 

Lung nodules were automatically segmented and quantified on chest LDCT images using in-

house software [23] based on the following features: 1) volume, 2) mean density, 3) surface area, 

4) maximum diameter, 5) mean diameter, 6) mean diameter of the solid portion, 7) solidness, 8) 

calcification volume, 9) irregularity (Figure 1 (a-f)). Solidness was determined using a threshold 

of −300 HU. Calcification volume was computed as the volume in the nodule with a HU value 

greater than 200. Irregularity was computed as the ratio between nodule surface area and volume 

[24]. 

2.4. Statistical analyses 

Logistic regression (LR) was used to analyze the impact of body composition, nodule, and 

clinical features on lung nodule malignancy using baseline data (from the first CT scan). 

Univariate LR was implemented on unstandardized data and multivariate LR was implemented 

on standardized data to classify nodules as benign or malignant. Different multivariate LR 

models were developed based on body composition, nodule, and clinical features. These models 

included: (1) Body composition (BC) model, (2) Nodule model, (3) Clinical model, (4) BC + 

Clinical model, (5) BC + Nodule model, and (6) Composite (BC + Clinical + Nodule). To 

construct these models and mitigate potential overfitting, all features were initially included, and 

then a multi-strategy feature selection approach was applied. First, Least Absolute Shrinkage and 

Selection Operator (LASSO) regularization was utilized to select features by shrinking and 

reducing certain LASSO regression coefficients to zero. This procedure was performed using a 

10-fold cross-validation (CV) approach to fine-tune the optimal regularization parameter to 
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ensure robustness. Features with LASSO coefficients equating to zero were excluded. Then, 

variance inflation factor (VIF) selection and backward stepwise selection were applied iteratively. 

Specifically, features with a VIF larger than a threshold of 3.0 were further removed. This 

process continued until all remaining features exhibited a p-value less than 0.05. 

The performance of the classification models was evaluated in both the model development and 

external validation datasets using the area under (AUC) the receiver operating characteristic 

(ROC) curve with 95% confidence intervals (CIs). These CIs were computed using the 10-fold 

CV method. To compare the performance of two models, the DeLong test was used for 

independent models, while the likelihood ratio test (LRT) was used for nested models. All 

statistics were performed in Python 3.11.4 and RStudio 4.3.1. 

Body composition indicators associated with nodule growth were analyzed. Changes in body 

composition and nodules were quantified between baseline and last CT scans. Absolute changes 

in both body composition and lung nodule features were computed between these two scans. 

Paired t-tests were used to identify nodule features with significant changes (p < 0.05), and 

unpaired t-tests were used to compare body composition changes between malignant and benign 

groups. Pearson correlation analysis was employed to examine the correlation between changes 

in body composition and nodule features. Person correlation analysis was also used to examine 

the correlations between baseline body composition features and nodule malignancy univariately.  

2.5. Feature importance analysis 

Feature importance was evaluated using permutation importance (PI) and Shapley Additive 

Explanations (SHAP) [25]. To model classifiers for nodule malignancy, Support Vector Machine 

(SVM), Random Forest (RF) and Multi-layer Perceptron (MLP) were used in addition to LR. 

Feature importance scores provided by each method were standardized using min-max scaling, 
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and then average feature importance scores were calculated. The SVM classifier was developed 

using a linear kernel with a regularization parameter of 1.0. The RF classifier was constructed 

with 100 trees and used the Gini impurity criterion. The MLP classifier was trained with 100 

hidden layers, a constant learning rate of 0.001, and a maximum of 1,000 iterations until 

convergence.  

2.6. Causal relationship analysis  

To evaluate the statistical findings and reveal the underlying causal relationships between 

features, a novel causal discovery method called "Grouped Greedy Equivalence Search" (GGES) 

[26] was used to generate directed graphs. This allowed the visualization of the causal 

relationships between clinical features, CT image features, and nodule malignancy. Initially, all 

features were included in the causal discovery graph, after which only features that have paths 

leading to the node 'malignancy' were retained. Features directly connected to the node 

'malignancy' were identified as the most crucial predictive factors for nodule malignancy. 

3. Results 

3.1. Body composition at baseline CT scans and nodule malignancy 

There were 120 (55.56%) malignant and 96 benign nodules in the PLuSS training dataset. The 

mean age of the benign and malignant groups were 61.51 (± 7.47) and 63.20 (± 6.38) years, 

respectively. The results of univariate logistic regression analysis of clinical features, body 

tissues, and nodule features are presented in Tables 1 and 2. Among the clinical features, only 

Emphysema was found to be significant (p < 0.05). Subjects with emphysema had an increased 

odds of malignancy of 82.2% (Table 1). Regarding body composition features across all genders, 

VAT density, IMAT density, SM density, and Bone density, showed statistically significant 

negative associations with nodule malignancy (Table 2, Supplementary Figure 2). SM density 
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demonstrated the strongest correlation with nodule malignancy (Supplementary Figure 3). When 

considering gender differences, different body composition features were associated with 

malignancy (Figure 2; Supplementary Table 2, 3). Specifically, SM density maintained a strong 

negative correlation with malignancy in both males and females, while bone features were 

associated only in males and VAT features only in females. Nodule features, including Mean 

Intensity, Max Diameter, Mean Diameter, Solidness, and Irregularity, were significantly 

associated with nodule malignancy in males, females, and all subjects (Table 2, Supplementary 

Table 4, 5). Mean Intensity showed a negative correlation with malignancy, while the other 

features showed positive correlations. 

The multivariate logistic regression results of various integrative nodule malignancy models are 

illustrated in Table 3. The Composite model and the BC + Nodule model retained the same 

parameters — body composition features IMAT, SM, and SAT, and nodule features Irregularity 

and Mean Intensity — after feature selection and achieved the best discrimination performance 

with an AUC of 0.87 (95% CI: 0.82 – 0.91). The BC + Clinical model and the BC model also 

maintained the same parameters and exhibited suboptimal performance with an AUC of 0.77 (95% 

CI: 0.71 – 0.84), incorporating body composition features IMAT, SM, VAT, SAT. This was 

followed by the Nodule model, which had an AUC of 0.71 (95% CI: 0.64 – 0.78) (Figure 3a). 

Clinical features were not included in any of the models, and the Clinical model is not presented 

due to its low performance. 

The individual Nodule model did not exhibit a significant performance difference compared to 

BC model (DeLong test: p = 0.151). Additionally, combining body composition features and 

nodule features, the BC + Nodule model demonstrated superior performance compared to the 

Nodule model alone (Likelihood ratio test: p < 0.0001). 
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3.2. Feature importance 

The BC + Nodule/Composite model constructed using LR and RF methods achieved the highest 

performance, with an AUC of 0.87 (95% CI: 0.82 – 0.92), closely followed by SVM method 

with an AUC of 0.86 (95% CI: 0.81 – 0.91), and MLP method with an AUC of 0.81 (95% CI: 

0.76 – 0.87) (Figure 3b). Feature importance analysis was conducted based on these four well-

performing ML methods. 

Among all body composition features, SM density was identified as the most important indicator 

and retained its significance even with the inclusion of Nodule features (Supplementary Table 6). 

Another crucial body composition feature is IMAT (Intermuscular adipose tissue), including both 

its density and mass. It is noteworthy that feature selection methods were not applied to the BC 

(body composition) feature importance analysis.  

3.3. Causal analysis of body composition feature and lung nodule malignancy 

Three features — body composition SM density, nodule features Irregularity and Mean Intensity 

— were directly linked to ‘malignancy’ (Figure 4). These variables demonstrated statistical 

significance in both univariate and multivariate logistic regression models and were highlighted 

as key indicators of nodule malignancy in feature importance analysis. 

3.4. Body composition features and nodule changes 

Nodule growth metrics were evaluated by identifying nodule features with significant changes 

between the baseline and the last LDCT scan date (Supplementary Table 7). These features were 

then used to analyze body composition changes. The correlations between changes in body 

composition and the identified nodule features are demonstrated in Supplementary Figure 4 for 

males and Supplementary Figure 5 for females. Body composition indicators related to nodule 
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growth were identified for both genders (Table 4). Specifically, IMAT density and SM density 

were found to be important indicators of nodule growth in both males and females. Bone features 

were indicators of nodule growth in males. SAT features were identified as indicators in females. 

Comparing the body composition changes from baseline to the last LDCT scans between 

malignant and benign groups (Supplementary Table 8), IMAT and SM features showed 

significant differences between the two groups in females. In males, all 3 IMAT features, VAT 

density, and Bone density were significantly different. 

3.5. External validation  

VUMC validation dataset included 112 (69.14%) malignant and 50 benign nodules, showing a 

higher malignancy rate than the 55.56% observed in the training dataset. Patients with malignant 

nodules in the external dataset were older, with an average age of 69.84 (± 8.41) years, compared 

to 63.20 (± 6.38) years in the training dataset. The average age of patients with benign nodules 

was similar across both datasets. While smoking status in the external dataset did not show a 

significant association with nodule malignancy, the number of cigarettes smoked per year 

showed a significant association. 

Standardizing the external dataset using the same scales as the training dataset, we validated the 

trained baseline multivariate LR prediction models (Table 3) — including the individual BC 

model, Nodule model, and integrative BC + Nodule model — on the external dataset. All three 

models achieved very similar discrimination performance with AUCs of 0.64 (95% CI: 0.54 – 

0.74), 0.63 (95% CI: 0.54 – 0.72), and 0.62 (95% CI: 0.53 – 0.72), respectively (Figure 3c). The 

performance of the three models was not significantly different (p > 0.05).  

4. Discussion 
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A comprehensive study was conducted to investigate the associations between nodule 

malignancy, growth, and various image-based body composition features. Several critical body 

composition features were found to be associated with nodule malignancy and growth. Our main 

findings were validated on an external VUMC dataset and showed a lower but reasonable 

performance. To our knowledge, this is the first study to explore the potential relationships 

between body composition and nodule malignancy and growth using radiomic data, with a 

particular emphasis on gender differences. 

We employed a robust feature selection procedure that combined LASSO regularization with 

iterative VIF selection and backward stepwise selection. This approach enhances predictive 

accuracy and mitigates overfitting issues, thereby improving model explainability. We validated 

this feature selection method through comprehensive feature importance analyses of body 

composition features without a pre-selection procedure (Supplementary Table 6). This strategy 

ensures the reliability of our procedure for feature selection. Additionally, we utilized a causal 

graph to analyze and visualize the causal relationships between body composition features and 

malignancy. 

The CT-derived body composition features were consistently and significantly associated with 

nodule malignancy in all analyses. Most notably, the loss of SM (Skeletal muscle) and IMAT 

(Intramuscular adipose tissue) were highlighted. Muscle wasting (sarcopenia) is recognized as a 

prominent phenotype in lung cancer patients [12, 27]. However, previous research has either 

characterized muscle loss by comparing lung cancer and non-lung cancer groups or studied its 

association with the overall survival of lung cancer patients. Our study suggests that muscle 

wasting is crucial for indicating a lung nodule’s malignancy on LDCT scans. 

Clinical and CT-derived nodule features are widely studied and acknowledged biomarkers for 
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nodule malignancy [7]. Key clinical features, such as age, sex, smoking history, and nodule 

features, especially nodule size, are commonly utilized in lung cancer prediction models [7]. 

However, in our analysis, only Emphysema was found to be significant univariately (Table 1). 

None of the clinical features were retained in the integrative models after feature selection (Table 

3). Potential reasons for this could be: (1) the models retained body tissue features over age 

because the aging process is often paralleled by decreases in muscle and increases in fat mass 

[28]; (2) gender, age, BMI, and smoking history was balanced between the malignant and benign 

groups in our dataset, which could reduce the bias and effects of these features on malignancy 

assessment. Additionally, previous studies [29, 30] have suggested that the existence of 

emphysema could help predict lung cancer risk among smokers. In our study, after the inclusion 

of body tissue features (Table 3), emphysema was excluded because tissue features were more 

significant for nodule classification. Multiple nodule features were found to be associated with 

nodule malignancy both univariately and multivariately. The causal graph (Figure 4) underscored 

the significance of skeletal muscle density, as nodule features serve as direct indicators of nodule 

malignancy. The graph links two nodule features, Irregularity and Mean Intensity, along with 

SM density, directly to node ‘malignancy’.  

The performance of the Nodule and BC models did not show a significant performance 

difference, whereas the BC + Nodule model demonstrated superior performance over the Nodule 

model. These findings suggest: (1) body composition can serve as a novel biomarker of nodule 

malignancy assessment; and (2) combining body composition with nodule features could 

enhance nodule malignancy assessment. The first finding was validated in an external dataset. 

Despite the BC model not achieving high performance, its performance was comparable to that 

of the Nodule model, indicating the classification ability of body composition features based on 
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LDCT image data. The relatively low performance in the VUMC dataset could be attributed to 

the variations in image protocols and patient characteristics between the two datasets. 

Specifically, the PLuSS training dataset had more balanced clinical characteristics compared to 

the VUMC validation dataset (Table 1, Supplementary Table 1). 

Body composition differs significantly between males and females, prompting the need for 

gender-specific analyses in lung cancer studies [12, 14, 15]. Our study similarly accounted for 

these gender differences to ensure a more accurate assessment. Specifically, in the analysis of 

malignancy, SM density remained a malignancy indicator for both males and females, while 

Bone features were significant only for males and VAT, IMAT features only for females. In the 

analysis of nodule growth indicators (Table 4, Supplementary Table 8), the significance of IMAT 

and SM features was highlighted again for both genders. Additionally, Bone features (bone loss) 

were identified as an indicator of nodule growth in males, given that males tend to have higher 

bone density than females [31]. We observed that SM density (Skeletal muscle density) change 

was negatively correlated with nodule Mean intensity in males but positively correlated in 

females. Two possible explanations: (1) different body composition in males and females, such 

as denser muscles with more intramuscular fat in males than in females, might influence these 

correlations; and (2) although nodule Mean intensity can provide important clues about the 

likelihood of malignancy (Table 2) and nodule growth (Supplementary Table 7), it is important 

to note that a sole change in nodule density does not necessarily indicate malignant nodule 

growth. For example, a nodule density increase can indicate either calcification [32] (a benign 

process) or malignant nodules growing from partly solid to more solid [33], while a nodule 

density decrease can indicate either inflammation of benign nodules [34] or cavitation of 

malignant nodules [35] as they grow. When considering nodule malignancy, it is necessary to 
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combine nodule density with other features, such as nodule size and irregularity (Table 3). 

Overall, nodule density change is still an important indicator of nodule growth. 

The primary limitation of this study is the inability to validate the relationship between body 

composition and nodule growth in the external dataset. This limitation arises from the lack of 

follow-up CT scans in the external dataset. Additionally, although our models revealed a 

potential relationship between body composition and nodule malignancy on the external dataset, 

the prediction performance was relatively lower compared to the internal dataset. This 

discrepancy may be due to variations in CT acquisition protocol, participant enrollment criteria, 

and population characteristics. Nonetheless, our results indicate a strong connection between 

body composition and nodule malignancy, as well as their changes over time.  

5. Conclusion 

We performed a comprehensive investigation of the body composition as a potential biomarker 

for assessing pulmonary nodule malignancy and growth. We found that body composition, 

especially skeletal muscle density and intermuscular adipose tissue density, were critical 

indicators for discriminating malignant nodules from benign ones and for evaluating the nodule 

growth in both males and females. These findings can help significantly improve lung cancer 

screening by improving the assessment of the malignancy of screen-detected lung nodules. 

Given the high prevalence of false positive nodule detections during lung cancer screening, our 

findings have significant clinical implications. Additionally, our findings can help evaluate 

nodule progression or stability, leading to more accurate prognoses and personalized 

management strategies. 
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Figure 1. An example illustrating the automated segmentations of lung nodules and five tissues 

depicted on a LDCT scan with an image thickness of 2.5 mm. (a)-(c): the lung nodule at the 

baseline CT scan. (d)-(f): the lung nodule at the most recent CT scan. (c), (f): 3-D visualization 

of the nodules and its surrounding vessels. (g)-(j): tissue segmentation.  
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Figure 2. Correlation visualization between baseline body composition and nodule malignancy 

(Male=113, Female=103). Correlations marked with a cross are statistically insignificant (p-

value > 0.05). 
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Figure 3. Cross-validated (10-fold) ROC-AUCs of (a) logistic regression integrative models 

(based on body composition and nodule features) using the internal dataset; (b) the best-

performing BC + Nodule (Composite) model with different ML approaches; (c) integrative 

models on the external dataset. 
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Figure 4. Graph-based causal relationship modeling among the variables. Only features with 

paths leading to the node ‘malignancy’ were retained in the graph. Two nodule features and body 

composition feature skeletal muscle density were linked to ‘malignancy’. 
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Table 1. Subject demographic and clinical characteristics of the PLuSS training dataset 

(n=216).  

Variable Malignant (n=120) Benign (n=96) Coefficient (95% CI) P-value 
Age (year) 63.20 (6.38) 61.51 (7.47) 0.04 (0.00, 0.08) 0.076 
Gender      

 Male 61 52 -0.17 (-0.70, 0.37) 0.543 

Female 59 44   

Race      

 Non-white 7 5 0.12 (-1.06, 1.30) 0.842 

 White 113 91   

BMI  27.47 (4.07) 27.67 (4.35)  -0.01 (-0.08, 0.05) 0.726 

BMI category   \ 0.874 

 < 20.0 0 2   

 20.0 to 24.9 34 27   

 25.0 to 29.9 55 40   

 ≥ 30.0 31 27   

Smoking Status      

 Current  87 59 0.50 (-0.07, 1.08) 0.086 

Former 33 37   

Cigarette (day) 25.50 (8.49) 25.21 (8.91) 0.00 (-0.03, 0.03) 0.805 

Pack (year) 57.88 (21.93) 53.51 (22.38) 0.01 (0.00, 0.02) 0.152 

Emphysema     
 Yes 83 53 0.60 (0.04, 1.16) 0.036* 

 No 37 43   
Mean (Standard deviation (SD)) and Count for continuous and categorical variables respectively. 
Coefficient and p-value from univariate logistic regression model on unstandardized data. 
*, indicates p-value < 0.05. 

Values of 0.00 are non-zero but are truncated due to rounding. 
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Table 2. Summary statistics of CT-derived body composition and nodule features in lung 

cancer and non-cancer groups and their univariate logistic regression results.  

Variable Malignant (n=120) Benign (n=96) Coefficient (95% CI) P-value 

Body composition features 
VAT volume (L) 1.14 (0.81) 1.05 (0.66) 0.16 (-0.21, 0.53) 0.389 

VAT density (HU) -90.24 (5.96) -88.49 (5.4) -0.05 (-0.10, -0.01) 0.028* 

VAT mass (kg) 1.17 (0.83) 1.08 (0.68) 0.15 (-0.20, 0.51) 0.399 

SAT volume (L) 4.03 (1.66) 4.17 (1.79) -0.05 (-0.20, 0.11) 0.573 

SAT density (HU) -89.48 (10) -87.14 (8.65) -0.03 (-0.06, 0.00) 0.074 

SAT mass (kg) 4.17 (1.69) 4.32 (1.83) -0.05 (-0.20, 0.11) 0.536 
IMAT volume (L) 0.46 (0.24) 0.46 (0.24) 0.00 (-1.12, 1.12) 0.998 

IMAT density (HU) -90.1 (12.12) -86.49 (13.12) -0.02 (-0.05, 0.00) 0.040* 

IMAT mass (kg) 0.47 (0.25) 0.47 (0.24) -0.04 (-1.14, 1.06) 0.944 
SM volume (L) 4.16 (1.15) 4.4 (1.17) -0.18 (-0.41, 0.05) 0.131 

SM density (HU) 28.98 (7.2) 34.27 (6.05) -0.12 (-0.16, -0.07) 0.000*** 

SM mass (kg) 4.87 (1.35) 5.17 (1.38) -0.17 (-0.36, 0.03) 0.102 
Bone volume (L) 1.56 (0.37) 1.5 (0.33) 0.49 (-0.29, 1.26) 0.217 

Bone density (HU) 272.63 (35.65) 287.21 (45.51) -0.01 (-0.02, 0.00) 0.010* 

Bone mass (kg) 2.24 (0.52) 2.18 (0.48) 0.24 (-0.30, 0.78) 0.383 

Nodule features 
Volume (ml) 0.54 (1.17) 0.37 (1.23) 0.13 (-0.13, 0.39) 0.328 

Mean intensity (HU) -373.33 (188.3) -261.42 (249.42) -0.00 (-0.00, -0.00) 0.001** 
Surface area (cm2) 3.23 (4.25) 2.18 (4.45) 0.07 (-0.01, 0.15) 0.097 

Max diameter (mm) 10.08 (5.97) 7.56 (4.78) 0.01 (0.00, 0.02) 0.002* 

Mean diameter (mm) 7.43 (4.14) 5.99 (3.40) 0.11 (0.03, 0.19) 0.009* 
Mean diameter (Solid) 6.60 (14.75) 4.63 (3.31) 0.05 (-0.02, 0.13) 0.190 

Solidness 0.07 (0.13) 0.01 (0.04) 10.27 (4.41, 16.13) 0.001** 
Calcification volume 44.53 (189.32) 56.39 (284.17) -0.00 (-0.00, 0.00) 0.715 

Irregularity (%) 0.34 (0.28) 0.16 (0.18) 3.64 (2.16, 5.11) 0.000*** 

Mean (Standard deviation (SD)) for continuous variables. 
Coefficient and p-value from univariate logistic regression model on unstandardized data. 
*, **, ***, indicate p-value < 0.05, < 0.001, < 0.0001. 

Values of 0.00 are non-zero but are truncated due to rounding. 

VAT: visceral adipose tissue, SAT: subcutaneous adipose tissue, IMAT: intermuscular adipose tissue,  

SM: skeletal muscle. 
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Table 3. Multivariate logistic regression results of the integrative prediction models to 

discriminate benign and malignant nodules.  

Model Variables included Coefficient P-value 

Nodule 
Solidness 0.60 0.037* 
Irregularity 0.88 0.000*** 
Calcification volume -0.32 0.045* 

 Clinical none / / 

BC 

(BC + Clinical) 
BC 

IMAT density -0.47 0.023* 

SM density -1.49 0.000*** 

VAT density -0.50 0.029* 

IMAT mass -0.84 0.000** 

SAT mass -0.64 0.003* 

 Clinical none / / 

BC + Nodule 

(Composite) 

BC 

 

IMAT density -0.79 0.001* 

SM density -2.18 0.000*** 

IMAT mass -1.32 0.000** 

SAT mass -0.49 0.042* 

SM mass 0.77 0.003* 

Nodule Irregularity 1.29 0.000*** 

Mean intensity -0.79 0.000** 

BC — Body Composition model; Composite — BC + Clinical + Nodule model.  
Clinical model is not presented due to its low performance. 

After feature selection, Clinical features were not included in any models; BC and BC + Clinical model, 

BC+ Nodule and Composite model retained the same features.  

Coefficient and p-value from multivariate logistic regression model on standardized data. 
*, **, ***, indicate p-value < 0.05, < 0.001, < 0.0001. 

VAT: visceral adipose tissue, SAT: subcutaneous adipose tissue, IMAT: intermuscular adipose tissue,  

SM: skeletal muscle. 
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Table 4. Identified nodule growth indicators. 

Gender Nodule Body Tissue Composition 

Male 
Irregularity Bone mass (-), Bone volume (-) 

Mean diameter, Mean diameter (Solid) IMAT mass (+), IMAT density (+) 

Mean intensity SM density (-) 

Female 
Irregularity, Surface area, Max diameter IMAT density (+) 

Mean diameter SAT mass (+), SAT volume (+) 

Mean intensity SM density (+) 

A sign (+)/ (-) indicates positive/negative correlations between Body Composition and Nodule features. 

SAT: subcutaneous adipose tissue, IMAT: intermuscular adipose tissue, SM: skeletal muscle. 
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