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ABSTRACT 
ASD (Autism Spectrum Disorders) are NDDs (Neurodevelopmental Disorders) with complex 
etiology including multiple genetic and environmental factors. Non-coding mutations 
contribute to the multifactorial etiology of ASD by influencing gene activity through various 
regulatory mechanisms. Advances in genomic technologies, such as whole-genome 
sequencing (WGS) and chromatin interaction studies, have highlighted the role of non-coding 
regions in ASD genetics. Identifying these non-coding variants enhances our understanding of 
the underlying complex genetic landscape ASD. 
 This study aims to analyze the impact of non-coding mutations within regulatory regions in 
Autism Spectrum Disorder (ASD). The research builds upon a cohort of 360 Spanish ASD 
trios, from which 200 trios were selected after excluding cases with known copy number 
variants (CNVs) and whole-exome sequencing (WES) mutations. The selection process 
intentionally enhanced the sample for undiscovered non-coding risk variants by excluding 
cases with de novo loss-of-function mutations or large de novo CNVs. To identify regulatory 
regions of interest, the study employed targeting sequencing of a selection of  candidate cis-
regulatory elements (cCREs) from ENCODE v2. De novo variation and rare inherited 
variation were studied using different bioinformatic pipelines and their impact on regulatory 
activities was assessed using a deep-learning approach (Sei framework). Additional analysis 
including candidate gene elucidation using ATAC-seq and PLAC-seq  data in neuronal cells, 
variant prioritization, protein-protein interaction (PPI) network, Transcription Factor (TF) 
enrichment, presence in topologically associated domains (TADs) were also carried out. Sex 
bias in regulatory variation within ASD was also explored in our analysis. 
We discovered that 28% of de novo variants and 25% of inherited variants with high 
regulatory potential were found in patients with negative results from whole-exome 
sequencing (WES) and microarray analyses, as assessed by Sei. By integrating PLAC-Seq 
data, we functionally annotated approximately 80% of de novo variants and 85% of inherited 
variants. While resources like ENCODE provide valuable insights into genomic regulatory 
elements, it is crucial to be cautious when prioritizing specific regulatory elements based on 
initial hypotheses regarding their impact on gene regulation: many sequence classes 
associated with ASD in this study did not show significant enrichment in any particular cCRE 
signature. Notably, the most important observation in this study is the implication of a global 
dysregulation of CTCF suggesting a potential mechanistic impact on the chromatin 
architecture. In addition,We have found that the  most high-impact regulatory variants—
whether de novo or inherited—are linked to genes not previously associated with ASD. 
Nevertheless, gene ontology (GO) enrichments indicate that both coding and non-coding 
variations likely interact within already characterized ASD pathways. 
 
 
 
 
 
 
 
 
 
 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.14.24315434doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.14.24315434


 

 
 
 
INTRODUCTION 

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder (NDD) 
characterized by challenges in social interaction, communication, and repetitive behaviors. 
While significant progress has been made in identifying genetic risk factors for ASD, recent 
research has highlighted the crucial role of non-coding regions of the genome in its etiology. 
These non-coding elements, which constitute approximately 99% of the human genome, have 
emerged as important contributors to the genetic landscape of ASD. 

Advances in whole-genome sequencing (WGS) technologies and computational methods 
have enabled researchers to explore the impact of non-coding mutations on ASD risk. Studies 
have revealed that ASD probands harbor de novo mutations (DNMs) in non-coding regions 
that disrupt both transcriptional and post-transcriptional regulation, with significantly higher 
functional impact compared to those found in unaffected siblings. While there is no question 
that non-coding variation plays a role in ASD, initial WGS studies were limited in scope to 
less than 100 parent-child trios1,2 and it was only 5 years ago that WGS studies significantly 
expanded, encompassing larger cohorts ranging from 200 to 500 families3–6. 

Considering the expectation that non-coding mutations may vary widely in functional 
impact, with only a small fraction likely to exhibit strong effect sizes, detecting associations 
has proven challenging7,8. Under this rationale, power calculations indicate that identifying 
such signals would necessitate a very large cohort7,9. To overcome this, most published 
studies have restricted to “candidate” non-coding elements, which involves a priori prediction 
of which regulatory elements of the non-coding genome are important for disease risk1,10. In 
analogy to candidate gene studies, which have consistently struggled to produce robust and 
replicable results, the selection of candidate regulatory regions is anticipated to yield similar 
outcomes, due to the multitude of possible combinations involving annotations, cell types, 
brain regions, and developmental stages11. 

Conversely, other studies have demonstrated that the overall contribution of de novo non-
coding mutations is comparable to that of loss-of-function (LoF) coding mutations and 
missense mutations, although not all ASD proband will have impactful non-coding 
variation12. However, a major challenge has been the definition of functional elements and the 
interpretation of mutational effects. 

We aim to explore the role of de novo and inherited rare and ultra-rare non-coding 
mutations in ASD using an unbiased methodology, in which candidate non-coding regulatory 
elements were chosen solely based on their activity in tissues relevant to ASD, specifically the 
brain and gastrointestinal (GI) tissues, based on the growing evidence of a gut-brain 
connection in ASD. The selection of active cCRES (cis-Regulatory Elements) in brain and GI 
tissue was done from ENCODE project, a catalog which includes  926,535 active elements  
with different regulatory signatures.  200 trios ASD (600 samples) were selected on the basis 
of previous negative results for microarray or whole-exome sequencing (WES), a widely 
discussed approach known for significantly enhancing the diagnostic yield in WGS13. 

Following targeted sequencing of the designated regions, de novo and rare inherited 
mutations within the selected regulatory elements were identifed and  prioritized using Sei, a 
recently developed framework for systematically forecasting sequence regulatory activities 
(see Material and Methods section). The objective was to analyze the mutational burden of 
probands not merely based on the count of mutations, which are susceptible to both statistical 
power challenges and confounding factors, such as the rise in mutation counts with parental 
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age. Instead, the focus was on evaluating the functional impact of mutations, enabling an 
assessment of their relevance and potential association with ASD. 

Moreover, in order to gain a deeper insight into how these variants may influence disease 
risk, we performed several approaches. To functionally assign a target gene for the variants, 
PLAC-seq data from neurons, oligodendrocytes and microglia (human brain) previously 
published by  ,were selected. This is particularly interesting because gene annotations do not 
always correspond to the nearby gene to the regulatory region. In addition, gene prioritization 
(based on previous literature) and biological in silico characterization of possible effects were 
carried out. 
In conclusion, this study  aims to elucidate novel non-coding mutations in ASD risk, and 
potentially identifying novel regulatory mechanisms. By focusing on tissue-specific 
regulatory elements and employing advanced computational methods, our study contributes to 
ASD research in non-coding regions employing a targeting sequencing focusing solely on 
active  regulatory elements. 

 
 

MATERIAL AND METHODS 
1.1   Sample selection 
1.1.1 Cohort description 
The analysis described herein builds upon the complete sample set examined in Alonso 

Gonzalez et al.14, which explored the biological roles of postzygotic and germinal coding 
mutations in ASD. 

DNA extraction from the Spanish ASD samples, consisting of 360 trios, was performed 
using the GentraPuregene blood kit (Qiagen Inc., Valencia, CA, USA) from peripheral blood. 

Participants from Santiago (n = 136) were recruited from the Complexo Hospitalario 
Universitario de Santiago de Compostela and Galician ASD organizations. Meanwhile, 
subjects from Madrid (n = 224) were enrolled through the AMITEA program at the Child and 
Adolescent Department of Psychiatry, Hospital General Universitario Gregorio Marañón.  

Inclusion criteria stipulated that only individuals aged 3 years or older were included in 
the study. 

Enrolled participants received a clinical diagnosis of ASD from trained pediatric 
neurologists or psychiatrists, following the criteria outlined in both the DSM Fourth Edition 
Text Revision (DSM-IV-TR) and Fifth Edition (DSM-5). Additionally, when deemed 
necessary, the Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic 
Interview-Revised (ADI-R) were administered. 

All participants, along with their parents or legal representatives, provided written 
informed consent, and the study was conducted in accordance with the principles outlined in 
the Declaration of Helsinki. 

Ninety trios from the Spanish cohort were already analyzed by Lim et al.15. The entire 
Spanish cohort was included in Satterstrom et al.16 as part of the Autism Sequencing 
Consortium (ASC), a large-scale international genomic consortium integrating ASD cohorts 
and sequencing data from over one hundred investigators. All data generated as part of the 
ASC were transferred to dbGaP with Study Accession: phs000298.v4.p3. 
 

1.1.2 Sample selection 
Out of the 360 trios with complete phenotype information, microarray and exome 

sequencing data, we selected cases with negative results for copy number variants (CNVs) 
and WES (mutations classified as benign, likely benign or VOUS (variant of uncertain 
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significance)). By selecting cases on the basis of the absence of de novo LoF mutations or 
large de novo CNVs in prior WES and microarray data, we are intentionally enhancing the 
sample for undiscovered non-coding risk variants.  

After this exclusion, individuals with a syndromic form of ASD were also discarded, in 
order to avoid ascertainment biases. 

Following this, samples were randomly selected, leading to a total sample size of 200 
trios (100 from Santiago, 100 from Madrid), including data for 39 female probands and 161 
male probands.  

Among the most prevalent comorbidities in our cohort, the following stand out: 41.5% of 
our patients exhibit ID, 7% have ADHD, and 6.5% experience epilepsy. 

 
1.2 Selection of the regulatory regions of interest 

For the selection of the regulatory regions of interest, we employed the candidate cis-
regulatory elements (cCREs) Registry from ENCODE17,18 (version 2, https://screen-
v2.wenglab.org/). 

Brain and GI tissues with DNAse-Seq data available were selected, both from adult (n = 
14) and embryonic tissue (n = 59). For each tissue, cCREs labeled as “Low-Dnase” were 
excluded, as they are inactive in the given tissue17. 

From the total of 926,535 human cCREs, we selected those that exhibit activity in a 
greater number of the interrogated tissues. Thus, we selected cCREs that were active in 36 or 
more tissues (n = 85,394 cCREs). (See Additional Supplementary Material) 

 
1.2.1 Targeted sequencing  
Selected regions were sequenced at the National Center for Genomic Analysis (CNAG) 

using the KAPA HyperChoice Target Enrichment custom probes. 
Samples with sex discrepancies when compared to reported pedigrees were dropped and 

replaced, along with all other samples from the same trio. Moreover, samples which failed 
CNAG’s quality control (DNA <100 ng / critical degradation (genomic quality number 
(GQN) < 3.3) were also removed and consequently substituted, leaving 71 trios from Santiago 
and 129 from Madrid. 

Sequencing reads were aligned to GRCh38/hg38 using the Burrows-Wheeler Aligner19. 
Single-nucleotide variants (SNVs) and small insertions-deletions (indels) (< 50 bp) were 
discovered using the Genome Analysis Toolkit (GATK)20 HaplotypeCaller package version 
3.4 (https://github.com/broadinstitute/gatk). 

 
1.3 Data processing 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.14.24315434doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.14.24315434


 

1.3.1 Joint genotyping 
Raw results were downloaded as single-sample gVCFs (genomic variant call format). All 

individual gVCFs were combined into one multisample gVCF using GATK version 
4.2.2.0.Then, SNVs and indels were jointly called across all samples producing a final multi-
sample VCF file (format VCFv4.2).  

 
1.3.2 Variant quality score recalibration (VQSR) 
Variant call accuracy was estimated using the GATK Variant Quality Score Recalibration 

(VQSR) method, following the recommendations provided in the GATK4 Best Practice 
Workflow for SNP and Indel calling21.  

 
1.3.3 Dataset analysis 
A summary of the quality control and data cleaning procedure is depicted in Figure 1. 
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Figure 1. Workflow for variant quality control (QC) and filtering and variant/gene 
prioritization. AB, allele balance; AF, allele frequency; bp, base pairs; DP, depth of 
coverage; GQ, genome quality; PAR, pseudoautosomal regions; PL, phred-scaled likelihood. 
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For variant and genotype quality control (QC), as well as optimization of de novo variant 
discovery, we utilized the filtering process established by Satterstrom et al.16. This process 
was previously optimized and implemented in an ASD cohort, and we adapted it for our 
dataset. For inherited variant discovery, we implemented the pipeline defined in Wilfert et 
al.22. 

 
1.3.3.1 Dataset Quality Control  

The final VCF file, containing SNVs and indels for the 200 trios (600 samples), was 
loaded into Hail 0.2 (https:// hail.is/; https://github.com/hail-is/hail). Then, multiallelic sites 
were split into biallelic sites (resulting in 719,209 unique variants). 

To verify the accuracy of the provided pedigree information, relatedness was assessed 
between each pair of samples using Hail's ibd() function. The relatedness values were 
manually checked, and inferred pedigree structures were compared to reported pedigrees to 
search for discrepancies. Duplicate samples were identified by using an identity value higher 
than 0.8 (pi-hat > 0.8) and related samples were identified by using an identity value higher 
than 0.4 (pi-hat > 0.4)23.  

No obvious errors in reporting were detected.  
 

1.3.3.2 Variant-level quality control  
After filtering the VCF file for the selected coordinates of interest to eliminate off-targets 

or amplified regions outside the cCREs, low-complexity regions and variants that failed 
VQSR were excluded. Indels were required to have a variant quality score logs odds 
(VQSLOD) of ≥ -0.6549, while SNVs were required to possess a VQSLOD of ≥ 5.2528. 

Following these steps, a total of 268,900 unique variants remained. 
 

1.3.3.3 Genotype-level quality control 
To ensure the quality of genotypes, various filters were implemented during the genotype 

quality control process.  
Initially, we excluded calls with a depth of coverage (DP) < 10 or > 1,000 (as per the 

distribution of DP values). Moreover, we omitted any call if the GQ was < 25. 
For homozygous reference calls, genotypes were then filtered if they had < 90% of the 

read depth supporting the reference allele. 
Homozygous variant calls underwent filtering for genotypes with < 90% of the read 

depth supporting the alternate allele or a Phred-scaled likelihood (PL) of being homozygous 
reference < 25. 

Heterozygous calls were filtered based on genotypes with < 90% of the read depth 
supporting either the reference or alternate allele, a PL of being homozygous reference < 25, 
< 25% of the read depth supporting the alternate allele (i.e., an allele balance (AB) < 0.25), or 
a probability of the AB (calculated from a binomial distribution centered on 0.5) < 1 x 109. 

We additionally omitted any heterozygous call in the X or Y non pseudoautosomal (PAR) 
regions (in a sample that was imputed as male). 

Following the implementation of these filters, variants with a call rate < 10% or a Hardy-
Weinberg equilibrium (HWE) p-value <1 x 1012 were excluded.  

Following the application of these filters and the exclusion of sites that were no longer 
variants, the dataset comprised 267,157 distinct variants in 200 ASD trios. This dataset was 
then used as the starting point for the de novo and inherited workflows. 

 
1.3.4 De novo variant detection 
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De novo variants were identified within the previously described 600-sample dataset. 
Variant calling for DNVs utilized the de_novo() function implemented in Hail 0.2. To 

establish population allele frequencies for all the variants in our dataset, data were sourced 
from the non-psychiatric subset of gnomAD (https://gnomad.broadinstitute.org/), which 
includes samples not ascertained for neurological or psychiatric phenotypes (non-neuro 
subset). Subsequently, these frequencies were utilized as input priors. 

Additional criteria for variant calling included the following: (i) homozygous reference 
genotypes in parents should exhibit no more than 3% of reads supporting the alternate allele, 
(ii) children's heterozygous calls were required to have a minimum of 30% of reads 
supporting the alternate allele, and (iii) the ratio of child DP to parental DP needed to be at 
least 0.3. This procedure resulted in the identification of 11,311 putative de novo variants. 

To ensure the quality of de novo variants, we retained variants that were classified as high 
confidence by Hail or were of medium confidence and represented singletons in the dataset 
(resulting in the inclusion of 10,383 putative de novo variants). Subsequently, any variant 
with an allele frequency exceeding 0.1% across the samples in our dataset (of note, any 
variant yielded such frequency) or in the non-neuro subset of gnomAD was excluded (leading 
to the exclusion of 9,739 putative de novo variants). 

Moreover, samples were excluded if they had more than 5 de novo variants (3 samples 
excluded with 206, 171 and 101 de novo variants, respectively), based on z-scores ((data 
value-mean)/ standard deviation) ε 3. 

Additionally, we filtered out variants that were less than 20 base pairs apart from each 
other to mitigate the likelihood of false positives (resulting in the exclusion of 2 putative de 
novo variants). 

After applying these filters, the resultant list of high confidence de novo variants included 
164 de novo variants from 103 probands. 

 
1.3.5 Rare inherited variation  

As with de novo variation, we used the dataset of 600 samples and 267,157 unique 
variants described above as a starting point to identify high confidence ultra-rare transmitted 
variants. For this purpose, we employed the pipeline described by Wilfert et al.22 
(https://github.com/EichlerLab/ultra_rare_transmitted).  

Initially, all sites that were heterozygous and observed only once in the parent population 
(parental frequency ≤ 2.5×10−3) were designated as candidate ultra-rare private variants. 
Subsequently, only variants which did not violate the rules of Mendelian inheritance were 
kept, resulting in a total of 84,311 variants. Then, only informative sites were retained, 
leaving 55,903 variants.  

After excluding one outlier family with 2,880 transmitted variants (z-score = 13.19), a 
final set of 53,023 variants was identified in 199 ASD probands. 

 
1.3.6 Regulatory impact prediction 

De novo and inherited variants were evaluated to determine their impact on regulatory 
activities using the Sei framework18 (https://github.com/FunctionLab/sei-framework). 

Sei provides a comprehensive mapping of any given sequence to regulatory activities, 
classified in 40 distinct sequence classes. It further provides quantitative scores that represent 
changes in regulatory activities18. Within this context, the Sei framework was utilized to 
acquire sequence class score predictions for the final call set of de novo/inherited variants. 
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For every mutation, we predicted the sequence class scores for both the reference and 
alternate alleles and computed the sequence class-level variant effect as the predicted scores 
for the alternate allele subtracting the scores for the reference allele. 

For mutations with a strong effect in a different sequence class than the originally 
assigned sequence class (absolute value higher than the original sequence class by > 1.1 
difference) we reassigned the mutation to the sequence class with the strongest effect.  

Moreover, variants were annotated in terms of positive effect predictions (increase in the 
assigned activity of a sequence) or negative effect predictions (decrease in the activity).  

These filtering yielded 47 de novo variants, in 44 ASD probands with changes in 
sequence class activity and 13,258 ultra-rare inherited variants in 198 probands. 

 
1.3.7 Candidate gene elucidation 

After applying the prioritization criteria for their impact on regulatory activities, we 
aimed to perform a candidate gene selection. For this purpose, we leveraged brain cell-type 
specific interactome maps to further confirm our non-coding regulatory regions and pinpoint 
genes likely to be regulated by these non-coding variants24. 

In their work, Nott and colleagues24 characterized the enhancer-promoter interactome of 
three different human brain cell types (namely neurons, microglia and oligodendrocytes) in 
vivo. In brief, they defined open regions of chromatin with ATAC-seq and identified active 
chromatin regions and promoters with ChIP-seq analysis of the H3K27ac and H3K4me3 
epigenetic marks, respectively. Following this rationale, they defined putative active 
promoters (ATAC-seq and H3K4me3 enrichment overlapping H3K27ac peaks within 2,000 
bp to a nearest TSS) and enhancers (ATAC-seq plus H3K27ac enrichment in a region outside 
H3K4me3 peaks) in each cell type. Moreover, they established the relationship between 
promoters and distal regulatory regions through the application of PLAC-seq. In this method, 
proximity ligation precedes the enrichment for active promoters using H3K4me3 ChIP-seq. 
This allowed for the characterization of chromatin loops between active promoters and distal 
enhancer/superenhancers (i.e., clusters of multiple enhancers). 

To better understand the likely functional consequences of our variant call set, we defined 
putative ASD-risk genes according to whether they exhibit active promoters overlapping with 
any variant in the call set and/or are linked to active promoters through PLAC-seq defined 
chromatin interactions. 

Initially, the analysis involved determining if each variant intersected with an active 
promoter in each cell type. Variants that did overlap an active putative promoter were 
assigned to the corresponding gene, designating these as “genes containing promoters 
harboring ASD regulatory variants” (from now on, PARV genes).  

Subsequently, each variant was extended by 2,500 bp upstream/downstream to 
correspond with the PLAC-seq bin size of 5,000 bp. These variant-extended regions were then 
intersected with PLAC-seq bins in each cell type. If a region overlapped one or more PLAC-
seq bins distally linked to an active promoter, that region was then assigned to the 
corresponding “gene containing a promoter PLAC-linked to ASD regulatory variants” (from 
now on, PLARV genes). 

 
1.3.8 Variant prioritization 

We applied additional criteria to prioritize non-coding variants that were already 
categorized as having a significant regulatory effect, in regard to the putative ASD gene they 
are regulating, with the aim of considering them as potential causative factors for each 
affected individual. 
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For this purpose, we first curated a consensus list of known ASD risk genes from 
different sources. We collected 291 known ASD genes from the following sources: (i) high-
confidence (score = 1) ASD genes collected in SFARI (accessed the 11/2023), (ii) dominant 
ASD genes reported in recent literature and included in the SPARK genes list (11/2023), (iii) 
unique genes from recent large ASD genetic studies with an FDR <0.1 (these included 
references 16,25,26), and (iv) autosomal genes with exome-wide significance (p <2.5 × 10-6) 
after combining p-values from enrichment of all de novo variants, transmission disequilibrium 
test (TDT) of rare, inherited LoFs from unaffected parents to affected offspring, and increased 
rate of LoFs in cases vs population controls12. 

We then cross-referenced the final dataset of PLARV genes with the custom list of ASD-
risk genes and selected those variants where the corresponding PLARV gene was present in 
the list.  

The rationale for excluding PARV genes linked to the variants, as we will delve into 
later, is that, in certain instances, risk variants were associated with more distant active 
promoters rather than the nearest gene promoter. A connection with the gene was deemed 
validated only under functional evidence (i.e., PLAC interactions with PLARV genes) and not 
genomic localization (variants nearby a PARV gene’s TSS). 

 
1.3.9 Protein-protein interaction (PPI) network 

We conducted PPI network analyses and computed network statistics using Cytoscape 
v.3.7.2 (https://cytoscape.org/). 

We employed the multiple protein input option of the STRING database v.11. with 
default settings, except that we restricted interactions to those of high confidence (0.70). 
STRING constitutes a biological database encompassing both known and predicted protein-
protein interactions. Its implementation is accessible within Cytoscape. 

 
1.3.10 Enrichment analysis: Cluster profiler 

ClusterProfiler (https://github.com/YuLab-SMU/clusterProfiler)27 was utilized to 
perform GO over-representation tests. 

The package org.Hs.eg.db, provided by Bioconductor, was used as the genome wide 
annotation for humans.  

GO enrichment analysis was performed with specific significance thresholds (p-
valueCutoff = 0.01, q-valueCutoff = 0.05) adjusted by the Benjamini-Hochberg procedure. 
Highly similar GO terms (e.g., > 0.25) were removed by applying the “simplify” function to 
retain the most representative terms (i.e., the most significant) with parameters: cutoff = 0.25, 
by = “p.adjust” and select_fun = min.  

In order to perform a biological theme comparison between the three cell types, we used 
the “compareCluster” function, which calculates enriched functional profiles of each gene list 
and aggregates the results into a single object. For visualization purposes, the 
“showCategory” parameter, indicating the display of the topmost significant categories, was 
set to 5. 

 
1.3.11 Transcription factors (TF) enrichment 

The analysis of TFs with enriched binding sites in the base positions affected by de novo 
and inherited high regulatory impact variants was conducted using the Enrichment Analysis 
tool in ChIP-Atlas (https://chip-atlas.org/enrichment_analysis). The specified parameters and 
input files were as follows: Cell type Class = Neural, Experiment type = ChIP: TFs and 
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others, Threshold for Significance = 50, Dataset A = BED file of the positions of the variants, 
Dataset B = random permutations of dataset A (x 1000). 

 
1.3.12 Presence in topologically associated domains (TADs) 

The interval list of TADs in human tissues and cells (BED format, hg19), was acquired 
from iPSC-derived neurons. This information was sourced from the Gene Expression 
Omnibus (GEO) database under the accession number GSE79965 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79965). 

To identify potential associations, prioritized variants were cross-referenced with TAD 
boundaries. This process aimed to detect instances where multiple variants occurred within 
the same TAD, providing insights into the spatial organization of genomic elements in the 
context of these prioritized genetic variations. 
 
RESULTS 
2.1 Dataset 

We analyzed targeted sequencing data in a cohort of 200 ASD trios, with a ratio of ∼4:1 
male probands to females (161 males, 39 females; male-to-female ratio = 4.13), in line with 
previous estimates28. 

Based on the evidence of GI and brain tissues playing a role in ASD’s etiology29, regions 
were selected according to their activity in these tissues. This yielded a total of 85,394 cCRES 
active in 25 brain-tissue samples and 48 GI-tissue samples, spanning a total of 21.35 Mb of 
the genome (i.e., 0,68% from the total length, 0,70% from the non-coding length)30. 

The vast majority of selected cCREs corresponded to the ENCODE classification of 
distal/proximal enhancer-like signature (n = 61,822; 72.40%) whereas promoters were 
represented to a lesser extent (n = 20,306; 23.78%) (Figure 2), as expected in the basis of the 
one-to many relationship between promoters and enhancers24. 

 

Figure 2. Pie chart depicting the classification of cCREs. Panel A illustrates the 
distribution of cCREs in the ENCODE registry, while Panel B displays the percentages within 
our dataset's selection. 

 
2.2 De novo variants 

From the trio-based data, we identified 164 rare de novo
-

 = 
1.59 ± 0.84 variants/child). These variants were present inside an ELS cCRE (both distal and 
proximal) in 67.08% of the instances, whereas 31.10% were harbored in PLS. The remaining 
variants were located inside a CTCF-only cCRE (1.22%) and DNAse-H3K4me3 cCREs 
(0.61%) (Figure 3A). 
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2.3 Inherited variants 

To study ultra-rare inheritance, we included variants with an allele frequency ≤ 2.5×10−3 

in the parent population and selected those transmitted to the child. After removing one outlier 
family with inconsistencie

 = 266.45 ± 68.93 variants/child). These 
variants were present inside an ELS cCRE in 67.02% of the instances, whereas 29.45% were 
harbored in PLS cCREs. The remaining variants were located inside a CTCF-only cCRE 
(2.39%) and DNAse-H3K4me3 cCREs (1.14%) (Figure 3B). 

Of note, we observed 26,960 informative sites with a mother-proband inheritance, and 
26,063 informative sites with a father-proband inheritance (50.85% versus 49.15% of the 
instances, respectively). The observed differences between these two inheritance patterns 
were statistically significant (p = 9.97 x 10-5; two-sided binomial exact test), consistent with 
the maternal transmission bias observed for large and small CNVs and inherited private 
truncating SNVs1,31–33. This bias remained significant even when restricting to autosomal 
chromosomes (p = 7.8 x 10-3, two-sided binomial exact test). 

Additionally, when restricted to the X chromosome, most of the variants were maternally 
inherited (97.98% with maternal inheritance pattern versus 2.02% with paternal inheritance 
pattern), as would be expected. Intriguingly, all variants exhibiting an X-linked maternal 
inheritance pattern were consistently transmitted to an affected son (p = 2.2 x 10-16; two-sided 
binomial exact test) and in any case, to a daughter. 

 

Figure 3. Pie chart representation of de novo and inherited variants based on 
cCREs’ classification. Panel A illustrates the classification for de novo variants, while Panel 
B depicts the classification for inherited variants. 

 
2.4 Variant enrichment in cCREs (candidate cis-Regulatory Elements) 

To assess potential statistical enrichments or depletions in the number of de novo and 
inherited variants per cCRE category, we conducted two-sample proportions tests.  

Comparative analysis with the proportion of each cCRE in the original selection (Figure 2 
B) revealed an enrichment of de novo and inherited variants in PLS cCREs (p-value for 
proportion test = 0.02 and < 2.2 x 10-16, respectively) (Table 1). Additionally, inherited 
variants were depleted in CTCF cCREs (p-value = 1.46 x 10-3 for the proportion test) and 
enriched in pELS cCREs (p-value = < 2.2 x 10-16 for the proportion test). 

 
Table 1. Enrichment of cCREs in de novo and inherited variants. 
cCRE Original selection De novo p-value Inherited p-value 
dELS 31,023 52 0.25 19,027 0.09 
pELS 30,799 58 0.92 16,510 <2.2 x 10-16 
PLS 20,306 51 0.02 15,616 <2.2 x 10-16 
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CTCF 2,260 2 0.37 1,265 1.46 x 10-3 
DNase-H3K4me3 1,006 1 0.75 605 0.55 

 
 
2.5 Effect of genetic variants in gene regulation 
In order to prioritize variants for their potential impact on gene regulatory activities, we 

used Sei, a new deep learning sequence model that enables the interpretation of genetic 
variants. 

 
2.5.1 De novo variants 
De novo variant class scores ranged from 0.07 to 6.68, with 28.66% (n = 47) of the 

variants yielding absolute differences higher than the stipulated class score > 1.1 difference to 
consider a variant of high regulatory impact (Supplementary Table 1). These variants were 
assigned to 10 different regulatory classes in Sei. 

 = 1.07 ± 0.25 de novo variants/child). 
Half of these variants (53.19%) represented the class CTCF, which demarcates 

topological loop boundaries34. Out of the 25 variants assigned to the regulatory class “CTCF 
CTCF-Cohesin”, 24 were classified in ENCODE as PLS/dELS/pELS-CTCF bound, and one 
variant was categorized as CTCF-only. 

For the other regulatory classes, variants were inside ENCODE cCREs defined as 
PLS/dELS/pELS (CTCF bound or not) without following any apparent trend (i.e., no 
regulatory class was significantly correlated with a specific type of cCRE) (data not shown). 

 

 
Figure 4. Counts of de novo variants assigned to each regulatory class. Regulatory 

effect scores are categorized into positive and negative scores. No significant differences in 
positive / negative scores were detected. 

 
2.5.2 Inherited variants 
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Inherited variant class scores ranged from 0.006 to 41.41, with 25.00% (n = 13,258) of 
the variants yielding absolute differences higher than > 1.1 (Supplementary Table 2) in 30 
different regulatory classes. 

 = 66.96 ± 17.41, and the maximum 
observed number of inherited variants in a proband was 182. 

The CTCF class was the most widely represented in our dataset (40.62% of the variants). 
In line with the results from de novo variants, only 162 variants were present in a CTCF-only 
cCRE, while the rest were classified in ENCODE as PLS/dELS/pELS/DNase-H3K4me3 
CTCF bound or not. Moreover, there were no specific correlations between ENCODE’s 
cCRE classification restricted to any Sei-assigned class groups, except for CTCF-only cCREs 
(p-value = 1.79 x 10-6 for the proportion test) (Supplementary Table 3). 

 

Figure 5. Counts of inherited variants assigned to each regulatory class. Regulatory 
effect scores are categorized into positive and negative scores. *Significant differences in the 
number of variants with positive or negative scores (two-sided binomial test). 

 
    2.5.3 Differences in gene regulation for inherited and de novo variants 

De novo variants did not yield any significant differences in terms of positive / 
negative scores neither for the CTCF category (10 variants gained affinity for CTCF binding, 
and 15 lost this affinity; p-value = 0.42, two-sided binomial test), nor for the rest (Table 2, 
Figure 4).  

For inherited variants, however, we found a significant enrichment in negative scores 
within the CTCF regulatory class (i.e., a significant decrease in the affinity for CTCF; p-value 
= 1.55 x 10-8, one-sided binomial test) (Table 2, Figure 5). Besides the CTCF class, 6 
additional regulatory classes yielded a significant enrichment in negative scores (Table 2). 
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Table 2. Enrichment of variant scores within each of the regulatory classes, divided 

in positive and negative effects. 

Regulatory class 
De novo 

p-value 
Inherited 

p-value 
+ - + - 

CTCF CTCF Cohesin 10 15 0.42 2489 2896 1.55 x 10-8 

E4 Multi-tissue 5 3 0.73 1413 1930 <2.2 x 10-16 

E5 B cell like 2 1 1.00 445 599 1.05 x 10-6 

E12 Erythroblast like 2 1 1.00 430 588 4.11 x 10-7 

P Promoter 2 0 0.50 246 455 1.24 x 10-15 

TF3 FOXA1 / AR / ESR1 1 0 1.00 312 378 6.64 x 10-3 
E6 Weak epithelial - - - 97 107 0.53 
TF5 AR 1 1 1.00 85 69 0.23 
L5 Low signal - - - 74 54 0.09 

E7 Monocyte / Macrophage - - - 65 62 0.86 

E11 T cell - - - 44 39 0.66 

E9 Liver / Intestine 0 1 1.00 15 44 1.02 x 10-4 
PC4 Polycomb / Bivalent 
stem cell Enhancer 

- - - 29 36 0.46 

E1 Stem cell 1 0 1.00 28 33 0.61 
TF2 CEBPB 1 0 1.00 20 26 0.46 
E2 Multi-tissue - - - 19 23 0.64 
TF4 OTX2 - - - 21 12 0.16 
E10 Brain - - - 4 10 0.18 

E8 Weak multi-tissue - - - 4 7 0.55 

TN1 Transcription - - - 5 4 1.00 
TN3 Transcription - - - 5 3 0.73 

E3 Brain / Melanocyte - - - 4 4 1.00 

PC1 Polycomb / 
Heterochromatin - - - 4 2 0.69 

HET4 Heterochromatin - - - 2 3 1.00 

TN4 Transcription - - - 2 3 1.00 

PC2 Weak Polycomb - - - 2 2 1.00 

PC3 Polycomb - - - 2 0 0.50 
HET5 Centromere - - - 0 1 1.00 

HET1 Heterochromatin - - - 1 0 1.00 

TN2 Transcription - - - 0 1 1.00 
 
2.6 Candidate gene association 
To assess the enrichment of genetic variations linked to complex traits within cell type-

specific regulatory regions, Nott and collaborators conducted a linkage disequilibrium score 
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(LDSC) regression analysis of heritability. In their LDSC approach, employing GWAS 
summary statistics from Grove et al.35, they revealed that the SNP heritability of ASD was 
significantly enriched in regulatory elements specific to neurons, particularly in neuronal 
enhancers. In light of these results, our analysis will predominantly be centered on neuronal-
specific regulatory regions.  

 
2.6.1 De novo 
From the total of 47 high regulatory impact de novo variants, 29 fell inside a putative 

promoter (61.70% of the instances), all of them corresponding to a different PARV gene 
(Figure 6).  

We further defined PLAC interactions between active promoters and de novo variants 
and identified 69 PLARV genes linked to these variants across the three cell types. Forty-one 
of the total number of PLARV genes were identified in neurons, of which 18 were not 
detected in any other cell type (Figure 6 B). 

When comparing PLARV and PARV genes, we found that in most instances (63.3%) 
genes with promoters harboring ASD regulatory variants were PLAC-connected to a region 
affecting the same gene. In other words, the gene influenced by the regulatory variant is often 
the “closest gene” in proximity to that variant. However, in the reimaining 36.7% of the 
instances they did not overlap, which means that the “closest gene” is not compulsory the 
variant-regulated gene (Figure 6 A). 

 
 
Figure 6. Venn diagram for de novo PARV and PLARV genes. (a) Variants falling 

inside a promoter (n = 29) are here represented in terms of the associated PARV and/or 
PLARV gene. Genes containing promoters harboring ASD regulatory variants are represented 
in the “PARV genes” category. Genes that are PLAC-linked to ASD regulatory variants are 
represented in the “PLARV gene” categories, one for each cell type analyzed here (neuron, 
oligodendrocytes, and microglia). Note that the purpose of this graph is to represent the 
overlap between PARV and PLARV genes, and thus, PLARV genes that do not overlap with 
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PARV genes are here excluded. (b) PLARV genes ascribed to variants falling, or not, inside a 
promoter in each of the three different cell types. 

 
 
Moreover, out of the 18 variants falling outside promoters, 14 were PLAC-linked to a 

promoter, and thus assigned to the corresponding PLARV gene (77.78% of the instances) 
(Supplementary Table 1). 

This yields a total of 43 variants (91.49%, out of the final list of high regulatory impact 
de novo variants) located within promoters and/or within regulatory regions PLAC-linked to 
promoters, and 39 variants with at least one PLARV associated gene (82.98%). 

 
2.6.2 Inherited 
From the total of 13,258 high regulatory impact ultra-rare inherited variants, 6,315 

fell inside a putative promoter (47.63% of the instances), corresponding to 4,500 different 
PARV genes (Figure 7 A; Supplementary Table 2). In 71,18% of the instances, PARV genes 
were identified by a unique high regulatory impact variant inside their promoters. However, 
some PARV genes harbored up to 8 different variants in their promoters (namely, RNF152
and MIDN). 

We further defined PLAC interactions between active promoters and ultra-rare inherited 
variants and identified 5,798 PLARV genes linked to these variants across the three cell types. 
Out of the total number of PLARV genes, 3,172 were identified in microglia, of which 1,389 
were not detected in any other cell type (Figure 7 B). In regard to neurons, we identified more 
PLARV genes (n = 3,176) but only 1,191 were neuron specific. 

When comparing PLARV and PARV genes, we found that in some instances (79.10%) 
genes with promoters harboring ASD regulatory variants were PLAC-connected to a region 
influencing the same gene. However, we found that they did not overlap in 20.90% of the 
instances (Figure 7 A). 

 

Figure 7. Venn diagram for inherited PARV and PLARV genes. (a) Variants falling 
inside a promoter (n = 6,315) are here represented in terms of the associated PARV and/or 
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PLARV gene. (b) PLARV genes ascribed to variants falling, or not, inside a promoter in each 
of the three different cell types. For further explanation see caption in Figure 6. 

 
Moreover, out of the 6,943 variants falling outside promoters, 5,510 were PLAC-linked 

to a promoter in at least one cell type, and thus assigned to the corresponding PLARV gene 
(i.e., 79.36% of the variants without a PARV gene were associated with a PLARV gene) 
(Supplementary Table 2).  

This yields a total of 11,825 variants (89.19%, out of the final list of high regulatory 
impact inherited variants) located within promoters and/or within regulatory regions PLAC-
linked to promoters, and 11,203 with at least one PLARV associated gene (84,50%). 

 
 

2.6.3 Gene function 
When analyzing 68 PLARV genes associated with the final list of de novo high 

regulatory impact variants, we did not get any significant enrichment for any GO category. 
However, top BP (based on the gene ratio) included regulation of protein stability, dendrite 
development and chromatin remodeling, in line with previous evidence. 

Nonetheless, when focusing on the final list of PLARV genes associated with the 
inherited variants, we did find significant enrichments in MF categories relevant for ASD 
such as ubiquitin protein ligase binding (q-value = 1.12 x 10-9), DNA-binding transcription 
factor binding (q-value = 6.51 x 10-8) and transcription coactivator activity (q-value = 2.21 x 
10-5), that remained significant even when independently assessed in each cell type. The same 
observation was noted for CC categories like nuclear envelope (q-value = 1.13 x 10-14), 
ubiquitin ligase complex (q-value = 8.61 x 10-9), neuron to neuron synapse (q-value = 3.12 x 
10-8) and spliceosomal complex (q-value = 3.19 x 10-6). 

Furthermore, we found significant enrichments in BP categories relevant for ASD such as 
RNA splicing (q-value = 4.33 x 10-10), regulation of neuron projection development (q-value 
= 1.67 x 10-7), axonogenesis (q-value = 1.67 x 10-7), and histone modification (q-value = 1.52 
x 10-6). Top enriched terms remained significant even when analyzing the three cell types 
separately (Figure 7). 
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Figure 8. Biological processes significantly enriched within PLARV genes from the 

inherited variant list across the three cell types. The graphic depicts top 5 enriched terms 
for each gene cluster (i.e., PLARV genes in each cell type). Circles represent the number of 
genes, with larger circles including 160 genes and smaller ones including 71.  

 
2.9 TF enrichment 
Given the enrichment in categories related to TF binding in the GO analysis, and the fact 

that the most represented sequence class in our dataset pertains to CTCF binding, we aimed to 
characterize further enrichment in TF binding in our final list of de novo and inherited 
variants (Supplementary Tables 4, 5). Of note, at the time this analysis was performed, the 
ENCODE version 2 browser was inaccessible due to the release of ENCODE version 3. 
Consequently, TF enrichment data was obtained from alternative sources. (see Methods). 

As anticipated, CTCF demonstrated a significant association, and thus, our previous 
findings were corroborated. 

 
2.10 Variant prioritization and diagnostic yield 
Although the primary aim of this chapter was not to provide a clinical diagnosis, limited 

by the incapability to robustly establish a genotype-phenotype relationship in the 
methodology discussed here, we sought to leverage the information from variants ascribed to 
PLARV genes. 

To avoid a huge burden of interpretation, under emerging recommendations for clinical 
interpretation of the non-coding genome13, we have focused on variants located in non-coding 
regions of the genome only if (i) they are within regulatory elements with functionally 
validated connections to target genes as proven by the Hi-C analysis here leveraged, and (ii) 
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those genes are known to be associated with ASD risk, as compiled in our custom ASD risk 
gene list (Supplementary Table 6).  

By following this approach, we found: one patient with a de novo variant PLAC-linked to 
PSMD1 specifically in neuron and one patient with a de novo variant harbored in POGZ’s 
promoter (Supplementary Table 1). Both patients have a co-diagnosis of ID. 

Moreover, we found 489 inherited variants with interactions to 124 different PLARV 
genes included in our custom list of ASD-associated genes. These were present in 185 
different patients, with an average of 2.64 ± 1.69 variants per child (Supplementary Table 6).  

Interestingly, we found one patient who harbored 10 different variants (which was the 
maximum observed number of variants per patient) and had one affected sibling (who has not 
been sequenced). All 10 variants were present in different TADs and corresponded to 10 
different PLARV genes (most of them were detected specifically in neuron (Supplementary 
Table 6).  

Additionally, one patient with a Tourette’s syndrome diagnosis harbored 9 inherited 
variants across various genes. Moreover, one patient harbored 8 variants, while four other 
patients harbored 7 variants. Among these five patients, three were diagnosed with ADHD, 
and one had ID. All variants harbored in each patient were present in different TADs. 

 
 

DISCUSSION 
In this chapter, we have scrutinized targeted sequencing data from 200 ASD trios, where 

de novo LGD mutations and large CNVs, crucial in regulation of gene expression, had eluded 
detection in prior WES and microarray analyses. Moreover, we have applied the Sei 
framework, which is the most comprehensive chromatin-level sequence model to date. To our 
knowledge, this is the first time it has been applied to an ASD cohort, and we anticipate that 
further fruitful findings will result from larger cohorts. 

Discussions about the limitations in deciphering the non-coding genome have been 
presented in earlier sections. Specifically, the absence of a non-coding counterpart to the 
triplet code, found in protein coding regions, has been a crucial obstacle for predicting the 
impact of mutations on gene function within the non-coding genome. Nevertheless, in this 
study, we have integrated data from ATAC-Seq and PLAC-Seq (which incorporates ChIP-
Seq) to annotate variants based on four non-coding annotations: (i) regions of open chromatin, 
where DNA is exposed, thus allowing protein binding; (ii) regions of active chromatin, where 
epigenetic marks suggest transcription of a nearby gene; (iii) transcription factor binding sites, 
and (iv) prediction of the regulatory gene target using proximity to the variant and/or physical 
interactions genome-wide.  

Importantly, in terms of general conclusions: we have identified that 28% of de novo 
variants and 25% of inherited variants exhibit a high regulatory potential in patients with 
negative results from WES and microarray analysis, as assessed by Sei.  

By incorporating PLAC-Seq data, we were able to functionally assign a gene for 
∼80%/85% of de novo and inherited variants, respectively. Notably, when a variant was in 
close genomic proximity to a PARV gene, these associations were not corroborated by 
functional annotations in as much as 36.7% of the instances, in line with previous findings36 
(i.e., PARV and PLARV genes did not overlap, as illustrated in Figures 6A and 7A).  

Finally, while initiatives like ENCODE provide invaluable insights into defining 
regulatory elements of the genome, caution should be exercised when attempting to prioritize 
a specific type of regulatory element based on a priori hypotheses of heightened influence on 
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gene regulation: many of the sequence classes found to be affected in ASD in this study were 
not significantly enriched in a specific type of cCRE signature (Supplementary Table 3). 

 
3.1 Exploring the sex bias in regulatory variation within ASD 
In our cohort, the male-to-female ratio was 4.0, consistent with previous findings28. This 

ratio persisted even when prioritizing high-impact regulatory variants, with a ratio of 3.7 
within de novo variants and 4.03 within inherited variants. 

However, in evaluating transmission bias for ultra-rare inherited variants, we detected a 
statistically significant transmission bias favoring inheritance from the mother that remained 
significant even when the analysis was limited to autosomes (Supplementary Table 2).  

The debate surrounding the excess of germline DNMs arising on the maternal 
chromosome and the transmission bias favoring maternal inheritance has been a longstanding 
and essential aspect of ASD etiology4,31,37,38. Theoretically, if females exhibit reduced 
vulnerability to ASD, as evidenced by the consistently observed female-to-male ratio of 4:1 in 
this and most ASD studies, and individuals with ASD experience reduced fecundity, basic 
genetic principles predict that mothers are more likely sources of risk alleles than fathers. 

Initial observations relating to the observed sex bias indicated a trend of excess maternal 
de novo CNVs, although the pattern did not achieve statistical significance. Notably, females 
with ASD exhibited a higher number of de novo CNVs compared to males, and these genomic 
imbalances were both larger and impacted a greater number of genes39. Later, some of the 
first statistically significant genetic evidence of a transmission bias from mothers to their sons 
was observed for protein-coding SNVs in the study conducted by Krumm et al.40.  

On the contrary, one study identified a significant paternal-origin effect for CRE-SVs4. 
One possible explanation offered for the observation that mutations in regulatory regions 
follow an opposite pattern to what is predominantly seen in coding mutations, is that 
paternally inherited regulatory mutations, due to their less damaging impact, may require a 
greater number to manifest in disease. Crucially, this has given rise to an alternative 
hypothesis, suggesting that regulatory mutations may adhere to distinct principles compared 
to coding mutations. 

Nevertheless, in line with our results, instances of the transmission of non-coding 
putative regulatory DNA from the mother to the male proband have been noted in genes such 
as DSCAM and TRIO, and both of them have been observed to be disrupted in ASD1. 

Taken together, our results represent, to the best of our knowledge, the first 
demonstration, in a non-biased global study of the non-coding genome, that parent-of-origin 
effects may follow similar rules as coding variation. However, these results should be 
cautiously interpreted and the comprehensive contribution of a gender bias in non-coding 
variation to ASD needs to be determined through much larger studies. Still, this underscores 
that influences of sex bias on genetic risk for ASD are more intricate than previously 
understood, and the allelic spectrum of variants varies between the maternal and paternal 
genomes. 

-Sequence class dysregulation 
Probably, the most important observation in this study is the implication of a global 

dysregulation of CTCF.  
CTCF is reported as a high confidence gene (score = 1S) in SFARI, associated with 

Tourette syndrome41, ID42, and, more recently, with ASD31,37,43. In fact, it was identified by 
Zhou et al.44 as a gene reaching exome-wide significance in their analysis of rare de novo and 
inherited coding variants in 42,607 ASD cases, (p < 2.5 x 10-6) and thus included in our list of 
high risk ASD genes (Supplementary Table 6). 
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Interestingly, in our random selection of cCREs, only 2.6% were classified as CTCF in 
ENCODE (Figure 2 B), and this proportion drastically decreased when we filtered for de novo 
and inherited mutations. Moreover, we observed a significant depletion of CTCF cCREs in 
the final list of inherited variants (Table 2).  

However, when prioritizing variants with a high regulatory impact, not only did their 
proportion increase, but they became the regulatory class most represented amongst the 
detected mutations. Specifically, an increased number of mutations was associated with a 
reduction (and not an increment) in the CTCF regulatory score, and this difference attained 
statistical significance for inherited variants (p = 3.11 x 10-8) (Table 2). Although de novo 
variants, constrained by a limited statistical power in terms of numbers, did not reach 
significance, they showed a similar trend.  

Furthermore, these results were corroborated from the TF enrichment analysis 
(Supplementary Tables 4, 5). 

With this regard, it is important to note that the targeted sequencing approach followed in 
this chapter only covers 0.70% of the genome. Moreover, the selection of regulatory elements 
was performed in an arbitrary fashion, as it did not involve a priori hypotheses about which 
elements were most likely to influence gene expression. We solely restricted the regulatory 
elements to those active in tissues relevant to ASD. Thus, if we were to follow a WGS 
strategy, the results presented here suggest that we would likely obtain the same outcomes, 
supported with greater statistical power.  

As further evidence, if we consider the top 10% of mutations with the highest class 
scores, they exclusively belong to the CTCF class, both for inherited and for de novo variants 
(Supplementary Tables 4, 5).  

Moreover, CTCF was one of the most frequently disrupted TF motifs in ASD cases 
versus controls in a single-cell analysis of gene expression and chromatin accessibility34, and 
in this study. This suggested a potential mechanistic impact on the chromatin architecture: 
deletion of CTCF binding sites or lost on CTCF binding affinity can lead to formation of new 
TADs, which can cause genes to contact enhancers normally spatially too far away to do so (a 
process known as “enhancer hijacking”)34.  

Of note, while writing this discussion, Nakamura et al.45, published an analysis of 
promoter DNV from WGS data in a cohort of 5,044 ASD patients and 4,095 siblings. 
Interestingly, among the findings in their analyses, they specifically identified the enrichment 
of ASD-gene TAD promoters at CTCF-bound regions, further corroborating our results. 

In addition, Nakamura et al.45, found a specific association of DNV in TADs containing 
ASD risk genes and identified specific TADs with enrichment of promoter DNVs. Thus, we 
aimed to assess whether the variants in each of the patients with elevated numbers of high 
impact inherited variants were located within the same and/or adjacent TADs. If this were to 
be corroborated, we could hypothesize that the loss of CTCF binding affinity in TADs 
relevant to ASD might collectively contribute to disease risk by simultaneously affecting the 
expression of pertinent genes. On the contrary, we found that these variants were present in 
different TADs. Still, these findings prove interesting as they offer mechanistic insights into 
how non-coding regulatory variation may be influencing ASD risk. 

Overall, it seems reasonable to assume that a substantial part of the non-coding genome 
in ASD is dysregulated in terms of its 3D-structure, and that further characterization of 
chromatin loop alterations (for example, by Hi-C analysis) will prove fruitful in further 
unraveling the missing heritability in ASD.  

Yet, it has been reported that CTCF contributes not only to the formation of TAD 
boundaries but also to the stabilization of promoter-enhancer interactions. Thus, it may also 
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be possible that TAD boundaries remain unaffected, but changes in promoter targeting by 
enhancers (which is influenced by CTCF-binding) are responsible for the changes in gene 
expression leading to disease46,47. 

 
3.2 Biological, molecular, and cellular consequences of regulatory variants 
The determination that non-coding variants predominantly target the same functional 

processes as protein-coding genes associated with ASD strongly supports the idea that non-
coding variants may have causal roles in ASD development12,37. We thus sought to assess 
whether this holds true within our variant dataset. To do so, we conducted a burden analysis 
across all the gene sets listed in Gene Ontology. This analysis aimed to identify gene 
pathways enriched in genes affected by high-impact regulatory variants. 

We found a significant enrichment of variants in pathways involved in “chromatin 
organization”, “RNA processing translation” and “synaptic transmission” among others, 
which is largely consistent with previous findings (Figure 8). The association signal for the 
identified genes originates from rare inherited variation. While not achieving statistical 
significance for de novo variants, our results indicate that these variants impact BP in a 
manner consistent with those influenced by rare inherited variation. Additionally, both de 
novo and inherited genes contribute to a shared protein-protein interaction network with a 
total of 1,163 interconnected protein products, enriched for expression in the central nervous 
system (p < 1 x 10-6) (data not shown). 

However, the key question remains as follows: whether variation found in the non-coding 
genome is targeting the same set of genes that have been implicated in ASD by WES and 
CNV studies or a unique group of genes missed by previous efforts. When contrasted to our 
custom list of high-risk ASD genes, we have found that the majority of high-impact 
regulatory variants, whether de novo or inherited, are PLAC-linked to genes not previously 
associated with ASD. Still, GO enrichments point to a scenario where coding and non-coding 
variation synergize in already characterized ASD relevant pathways. This aligns with recent 
observations indicating that rare inherited variation predominantly affects previously 
unknown risk genes impacting similar pathways to those influenced by known genes22,26,44,48. 

Overall, this convergence supports the idea of a causal contribution of non-coding 
regulatory mutations to ASD etiology. 

 
3.3 Preliminary genotype-phenotype associations 
Although it was not the primary aim of this study, we find it beneficial to highlight the 

following scenarios in regard to theoretical genotype-phenotype correlations. Nonetheless, we 
acknowledge limitations in our conclusions, as functional characterization of the evidence 
discussed in this section will be necessary to robustly establish evident interactions between 
non-coding variation and phenotype consequences. 

Firstly, when analyzing high-impact inherited regulatory variations, and before 
prioritizing variants associated with PLARV genes already established to have a functional 
link to ASD, we identified two genes, RNF152 and MIDN, each with eight different variants 
(Supplementary Table 2). Moreover, all these variants were also PLAC-linked to the 
corresponding gene, and we further characterize 3 variants outside MIDN’s promoter but 
PLAC-linked to the gene. 

RNF152 has been characterized to catalyze the ubiquitination of Rheb, a small GTPase 
enriched on the lysosomal membrane, where it activates mTORC signaling49. The 
ubiquitination of Rheb suppresses mTORC1 activation, which, in turn, has been found to be 
aberrantly activated in ASD patients50. In this regard, we hypothesize that the elevated 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.14.24315434doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.14.24315434


 

number of regulatory variants, collectively affecting RNF152 gene expression, leads to 
reduced levels of its protein product, thereby resulting in overactivation of the mTOR 
signaling pathway. 

MIDN, on the other hand, has been linked to Parkinson’s disease and regulates neurite 
outgrowth51. Moreover, it has been associated with female ASD in a WES52. Although most 
of our variants are found in male patients, these evidence points to a probable true association 
with ASD. 

While these two genes are not currently listed in the SFARI database, we present 
additional evidence supporting their potential implications in ASD etiology. 

Furthermore, several lines of evidence point to more severe phenotypes relating to higher 
burdens of genomic load. In particular, earlier studies have identified an inverse correlation 
between the IQ of individuals with ASD and the burden of specific regulatory variants12.  

In this light, it is interesting that our analysis uncovered a patient with 10 distinct high-
impact regulatory variants with PLARV genes included in our list of ASD-risk genes 
(Supplementary Table 6). This individual stands out as the sole case within our sample cohort 
who has a documented sibling with ASD. Considering that multiplex families often carry an 
elevated burden of inherited mutations and given the negative results for both exome and 
microarray analyses in this family, we propose that there is a slight possibility that the 
cumulative effects of the high-risk inherited variants described here are influencing disease 
risk and contributing to the observed recurrence in this family.  

However, cautiousness should be taken when interpreting these results. First, it would be 
ideal to confirm, by sequencing methodologies, that these variants are also present in the 
affected sibling, and they are absent in a suitable control cohort. If so, functional assays 
should be performed in order to properly define their mode of action. Given that they are 
situated within different TADs, the likelihood of disrupted promoter-enhancer interactions 
within a specific genomic region, as observed elsewhere45, and thus the possibility of them 
collectively functioning as a mutational hotspot, is ruled out. 

Moreover, the second patient with the highest number of variants in PLARV genes which 
are known ASD-risk genes, harbors two different variants PLAC-linked to FAM98C 
(Appendix 10.2, Supplementary Table 10). FAM98C is classified with SFARI score 2. 
Initially, the identification of a PTV in the gene linked it to ASD53. Furthermore, a recent 
TADA analysis definitively identified FAM98C as an ASD candidate gene with a FDR < 0.16. 
Our analysis provides further evidence to associate the gene with disease risk. 

 
3.4 Limitations and future perspectives 
The primary limitation in this study is the absence of a sibling/control cohort. Future 

perspectives involve retrieving additional data from a control cohort to address this. Ideally, 
access to larger cohorts of ASD patients would enhance statistical power, allowing for the 
expansion of current conclusions drawn from inherited variants to DNVs, which have been 
limited in number. 

Moreover, the main conclusions gathered were made possible thanks to the utilization of 
PLAC-Seq data from key brain cell subpopulations. However, our initial selection of cCREs 
was based on activity in the brain, as well as in GI tissue. While we could not draw any 
conclusions regarding the latter, major goals will be to extend these approaches to all diseased 
tissues when data becomes accessible.   

 
While we were working on this research, Shin et al, 2024 study was published in Cell 

Genomics, representing a significant development in the field of non coding genome in 
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ASD54. Findings are particularly noteworthy despite the differences in cohort and research 
design between both studies. The have focused on evolutionary signatures of selection in 
humans, such as Human Accelerated Regions (HARs) that are emerging as potentially 
significant in ASD. HARs are mostly found in non-coding regions, and research has shown 
that rare, inherited mutations in HARs are more prevalent in individuals with ASD, a finding 
supported by our analysis of active regulatory elements from the ENCODE database. 

In the future, there are several important areas that require more research:i) Increasing the 
scope of non -coding genome studies with larger selection of active regulatory regions from in 
vivo and in vitro specific functional studies to enhance statistical power and  applicability of 
results, ii) Advancing the development of multi-omic bioinfomatic tools to predict the 
functional consequences of non-coding variations from larger WGS studies, iv) Exploration 
of how non-coding variants may contribute to the heterogeneity of ASD phenotypes. 
In conclusion, our study contributes to the growing body of evidence suggesting that non-
coding regions play a crucial role in ASD genetics.  By adopting an unbiased, tissue-specific 
approach and leveraging advanced computational methods, we have provided new insights 
into the complex genetic architecture of ASD. As the field continues to evolve, the study of 
non-coding variants is becoming an increasingly field of ASD research, potentially leading in 
the near future, to improved diagnostic and therapeutic strategies for individuals with this 
complex neurodevelopmental disorder. 
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