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Abstract

Predicting complex disease risks based on individual genomic profiles is an
advancing field in human genetics.? However, most genetic studies have
focused on European populations, creating a global imbalance in precision
medicine and underscoring the need for genomic research in non-European
groups®#. The Taiwan Precision Medicine Initiative (TPMI) recruited over half a
million Taiwanese residents, providing the largest dataset of genetic profiles
and electronic medical record data for the Han Chinese. Using extensive
phenotypic data, we conducted the largest genomic analyses of Han Chinese
across the medical phenome. These analyses identified population-specific
genetic risk variants and novel findings on the genetic architecture of complex
traits. We developed polygenic risk scores, demonstrating strong predictive
performance for conditions such as cardiometabolic diseases, autoimmune
disorders, cancers, and infectious diseases. We observed consistent findings
in an independent sample from our Biobank and among East Asians in the UK
Biobank and the All of Us Project. The identified genetic risks accounted for up
to 9.1% of the disease burden variance in Taiwan. Our approach of
characterizing the phenome-wide genomic landscape, developing population-
specific risk prediction models, assessing their performance, and identifying the
genetic impact on health, serves as a model for similar studies in other diverse

study populations.
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Introduction

A major promise of modern genetics is the ability to predict complex disease
risk based on a person’s genetic profile. If successful, health management
strategies can be developed to mitigate the risk (disease prevention) and to
optimize care (early diagnosis and effective treatment). Large-scale studies in
Europeans, such as those conducted with data from the UK Biobank (UKB) and
Electronic Medical Records and Genomics (eMERGE) Network, show that risk
prediction based on genetics holds promise and several countries are exploring
ways to implement risk-based management in clinical practice’?. Using
polygenic risk scores (PRS) to predict disease risk and identify individuals at
high risk is an emerging “precision medicine” approach to leverage individual
genetic findings in clinical practice. However, a significant limitation of current
PRS models is that they are predominantly based on genome-wide association
studies (GWAS) comprising particpants from European populations*®, often
leading to reduced predictive performance in non-European groups®’. To fully
realize the potential of precision medicine for diverse global populations,
population specific phenome wide genomic discovery must be perfomed at
scale and clinically applicable polygenic risk models must be optimized within
and across populations. To fill this major research gap in an East Asian
population, we characterized the complex genetic architecture of the Han
Chinese phenome wide, developed population-specific PRS, and assesed the
external validity of the models across populations with varying degrees of

genetic similarity.

Populations with East Asian (EAS) ancestry represent nearly a quarter of the
global population, but they account for only 3.95% of the participants in
previously published GWAS3. Although several biobanks have been built to
recruit subjects from East Asia, they have moderate sample size (72K - 212K)
and many focus on specific conditions®'?. In contrast, biobanks with
predominantly European ancestry participants'>'®, have significantly larger
sample sizes (224K — 635K) and access to more comprehensive clinical data.
The moderate sample size and limited phenotypes in existing EAS biobanks
hamper discovery of unique genetic effcts and preclude the development of
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robust and clinically useful PRS models for EAS.

We have assembled the largest non European cohort to date, the Taiwan
Precision Medicine Initiative (TPMI). From 2019 to 2023, TPMI enrolled and
genotyped over half a million participants across sixteen medical centers in
Taiwan. All the participants, who are overwhelmingly of Han Chinese ancestry,
contributed DNA samples for genetic profiling with a custom-designed
genotyping array and consented to provide their longitudinal electronic medical
record (EMR) data from 5 years prior to enrollment and into the future. The
EMR dataset includes rich and accurate health-related phenotypes, including
medical diagnoses and biochemical examinations'’. In this paper, we present
the results of comprehensive genomic analyses of extensive genetic and
medical data derived from the Han Chinese population, including phenome-
wide GWAS and PRS model development. We identified numerous population-
specific risk variants/genes, observed evidence of genetic pleiotropy, and
pinpointed clusters of traits that shared similar genetic etiology. We developed
and validated PRS prediction models for numerous conditions against external
datasets including those from the Taiwan Biobank (TWB), the UKB, and the All
of Us Project. Our results reveal the benefits of leveraging large cohort from
understudied population to identify unique genetic underpinnings of the human
phenome, interpret causal effects via fine mapping and colocalization, and
improve the performance of population-specific PRS models, which together,
better illuminate the clinical implications of genetic risk. The lack of
representation of diverse populations in genetic research will result in
inequitable access to precision medicine for those with the highest burden of
disease. Thus, continued, large scale genome-wide efforts in diverse
populations will be required to maximize genetic discovery and reduce health
disparities.

Results
Dichotomized Phenotype (Phecodes) and Quantitative Traits in TPMI

We performed comprehensive genomic analyses, including GWAS, heritability
estimation, and PRS model building and evaluation, across a wide range of
diseases and quantitative traits using data from TPMI. We examined 700
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dichotomized phenotypes (phecode, case n > 2,000) and 24 quantitative traits
(sample size > 100,000), spanning numerous disease categories, such as
neoplasms, metabolic disorders, circulatory conditions, autoimmune diseases,
and more (Fig. 1). The phecodes, derived from International Classification of
Diseases (ICD) codes'®'9, alongside quantitative traits such as blood pressure,
BMI, liver enzymes, and lipid levels, provide a robust dataset for exploring
genetic contributions to human health (Table S1 and S2). The log-transformed
case proportion identified from EMR showed a significant correlation with the
log-transformed 5-year disease prevalence from National Health Insurance
Research Database in Taiwan? (r = 0.64, p-value = 4.4x10-33) (Fig. 1A), which
suggests that TPMI represented the Taiwanese population well. Fig. 1B
displays the sample sizes for 24 quantitative traits in the TPMI cohort and
highlights sample size variation across traits, which is crucial for determining
the power and precision of association analyses within the cohort.

Genome-Wide Association Studies, Fine-Mapping, and Novel Finding

Our GWAS identified at least one significant locus (p-value < 5x108) for 265
phecodes and 24 quantitative traits. The high replication rate of 74.4% for
reported disease loci from EAS GWAS highlights the robustness of the TPMI
data, particularly for endocrine/metabolic and hematopoietic diseases (88.68%
and 84.62%, respectively) (Extended Data Fig. 1 and Table S3). Lower
replication rates for respiratory and psychiatric disorders (27.78% and 19.81%)
may reflect limited case numbers, other untyped genetic variants, such as rare

variant, copy number variation and structure variants, or recruitment bias.

Our GWAS revealed 1,139 independent association signals for phecodes and
1,305 signals for quantitative traits via fine-mapping. Notably, 77 novel
associations were identified across 44 phecodes and 7 quantitative traits that
had not been previously reported in nearby regions (+1Mb), and 307 novel hits
from reported regions (Table S4 and S5). Some of our novel findings are
biologically relevant to the corresponding phenotypes. For example, the SNP
rs17089782, a missense variant in the PIBF1 (p.R405Q) gene on chromosome
13 is significantly associated with thyroid cancer (p = 2.8x107°). PIBF1 is

essential for immune regulation, especially during pregnancy, and is relevant
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to autoimmune diseases and cancer?'. Another novel variant from the known
region associated with BMI found in PHOX2B (rs761018157, p-value =
7.6x107°). This gene, highly expressed in the nervous system, had previously
been linked to obesity hypoventilation syndrome in a small study (n = 30)?? and
associated with bone mineral density?3. Moreover, among the 22 identified
independent loci for hepatitis B, 16 fine-mappped loci have not been previously
linked to hepatitis B in the GWAS Catalog (Extended Data Fig. 2). Notably, 15
of these 16 loci were found to be associated with liver function or diseases
(Table S5). These novel associations highlight the uniqueness of certain
disease loci in the TPMI cohort, presenting opportunities for developing
population-specific therapeutic interventions and advancing precision medicine.
We summarized these identified independent associations in Fig. 2. The
identification of the major histocompatibility complex (MHC) region as a
significant hotspot on chromosome 6 underscores its extensive involvement in
immune-related diseases across multiple categories. Similarly, the short arm of
chromosome 11 also affect various traits, including metabolic, endocrine, and
genitourinary diseases. These hotspots of trait-relevant variants implied the
shared genetic mechanism among diseases and genes’ pleiotropy.

Genome- and Gene-level Heritability, and Colocalization

Linkage disequilibrium score regression analysis®* showed strong liability-
scaled SNP-heritability for conditions such as alcoholism (h? = 0.242), open-
angle glaucoma (h? = 0.171), and retention of urine (h? = 0.173). In terms of
quantitative traits, body height (h? = 0.323), BMI (h? = 0.218), and high-density
lipoprotein cholesterol (h? = 0.191) exhibited the highest heritability estimates
(Table S6), highlighting the significant role of genetics in these traits. These
results have far-reaching implications for precision medicine, as higher
heritability signals suggest the potential for more accurate genetic risk

prediction models that could improve personalized disease risk assessments.

We then partitioned the heritability to gene level and identified 368 unique
genes contributing significantly to phenotypic variation (h? > 0.1% and z-score
> 1.64), and 51 of them affected more than one category, including key genes
such as APOE, APOC1, TOMM40, ABCG2, and KCNQ1 (Fig. 3 and Table S7).
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We also conducted a colocalization analysis to elucidate the potential molecular
function of identified GWAS signals (Fig. 3 and Table S8). Our results identified
335 unique genes that might mediate the outcome through their expression
(posterior probability > 0.9), including GBAP1 which colocalized with five
different traits (uric acid, serum creatinine, hematocrit, hypertension, and gout).
These findings highlight the pleiotropic effects of these genes and present
potential avenues for cross-disease therapeutic strategies, where targeting one
gene could influence multiple related disorders. Understanding these shared
genetic effects is crucial for devising broader precision medicine approaches,
particularly for managing comorbidities.

Genetic Correlation and Clusters

Pairwise genetic correlation analysis revealed three major phenotype clusters:
cardiometabolic traits, autoimmune and infectious diseases, and kidney-related
traits (Fig. 4 and Extended Data Fig. 3). The cardiometabolic cluster, which
includes type 2 diabetes, hypertension, and BMI, reinforces the interconnected
genetic architecture of cardiovascular and metabolic diseases. The cluster of
autoimmune and infectious diseases, which includes viral hepatitis B, psoriasis,
and systemic lupus erythematosus, highlights shared immune system
pathways and potential gene-pathogen interaction. The kidney-related cluster
involved gout, chronic kidney disease, calculus of kidney and ureter, ankylosing
spondylitis, and measures of urea nitrogen, creatinine, and uric acid. These
findings are significant for clinical applications, suggesting that shared genetic
risks across diseases could enable earlier detection of comorbidities and
prevention strategies based on an individual's genetic profile. The shared
genetic architecture also implied that we may leverage the genetic risk of
correlated traits while developing the PRS model.

Cross-Population Comparison Based on GWAS

Cross-population comparisons?® with the Europeans from UKB showed varying
degrees of genetic correlation, with strong correlations for traits like
cholelithiasis (pge > 0.999), type 2 diabetes (pge= 0.829), and ischemic heart
disease (pge= 0.756), but moderate correlations for gout (pge= 0.616) and
psoriasis (pge= 0.418) (Table S6). These findings demonstrate the importance
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of population-specific genetic studies, as differences in genetic architectures
between populations can significantly affect the accuracy of PRS models.

Polygenic Risk Score (PRS) Development

Building on these insights, we developed and validated PRS models that
demonstrated strong predictive performance for a wide range of diseases.
Although we used five PRS tools, including , LDpred2?6, Lassosum2?’, PRS-
CS?%8, SBayesR?°, and MegaPRS*® (Tables S9-S13), we found that LDpred?2
outperformed the others for most traits. Therefore, we took the results of
LDpred2 for further comparisons. Out of the 289 PRS models, AUC values
surpassed 0.55 for 106 dichotomized phecodes, while all 24 models for
quantitative traits accounted for more than 3% of the phenotypic variance.
(Table S9 and Extended Data Fig. 4). The top-performing PRS models included
well-known heritable traits such as ankylosing spondylitis (AUC = 0.812+0.016),
psoriasis (0.710+£0.016), atrial fibrillation (0.702+0.014), prostate cancer
(0.696+0.018), systemic lupus erythematosus (0.695+0.015), rheumatoid
arthritis (0.649+0.011), type 2 diabetes (0.642+0.005), female breast cancer
(0.610£0.010), and hypertension (0.610+£0.004). Interestingly, the PRS for
hepatitis B also demonstrated genetic predictability (0.655+0.008). Comparing
these results with heritability, which serves as the theoretical upper bound of
PRS explained variance (r?), we found that 27 phecodes and 10 quantitative
traits explained over 60% of their heritability, including prostate cancer, type 2
diabetes, female breast cancer, HDLC, triglycerides, and red blood cell count
(Fig. S2).

Leveraging the identified clusters, we performed a multi-trait PRS training,
PRSmix+3', for the traits within each cluster (Fig 5 and Table S14). Notably,
multi-trait PRS models improved prediction accuracy for the cardiometabolic
cluster with a 3.9% increase in AUC and a 1.70-fold improvement in phenotypic
variance explained (r?). The performances of autoimmune and kidney-related
clusters were also enhanced, with AUC improvements of 2.1% and 0.8%,
respectively, and 1.44- and 1.32-fold improvements in variance explained (r?).
The significant enhancement of multi-trait PRS (comparing r? of LDpred2 and

PRSmix+ with paired t-test, p=1.1x10°) highlights the potential of leveraging
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shared genetic architecture to enhance disease prediction. Fig. 5 demonstrated
the performance of single and multi-trait PRS across three disease clusters,
and the differing effectiveness of PRS in predicting genetic risk across various

disease categories.
External Validation and Comparison of PRS Models

To evaluate the robustness of the clinical implications of these findings, we
performed the external validation of these PRS models (hypertension, type 2
diabetes, viral hepatitis B, gout, calculus of kidney from PRSmix+ and others
from LDpred2) in Taiwan Biobank (TWB), UKB, and All of Us and confirmed
their robustness and generalizability in EAS across different biobanks (Fig. 6).
Although the TWB questionnaire did not contain specific details on hepatitis B
status, we used anti-hepatitis B core total antibodies (Anti-HBc) as an indicator
of infection or past infection and hepatitis B e-antigen (HBeAg) as a marker of
active viral replication. Intriguingly, the AUC for HBeAg was 0.678+0.012, and
for Anti-HBc, 0.531+0.002. These results suggest that the PRS for hepatitis B
is predicting for the symptoms or severity of the disease.

TPMI-derived PRS models also consistently outperformed UKB European-
derived models when applied to EAS (Fig. 6). These results suggest that
population-specific PRS models could play a pivotal role in precision medicine,
allowing for more accurate risk stratification and enabling personalized
healthcare interventions. Additionally, we assessed the performance of TPMI-
derived PRS across various ancestry groups, including European, African,
Admixed American, and South Asian populations from the UK Biobank and All
of Us cohorts (Extended Data Fig. 5). The performance varied by diseases, but
consistent results were observed for female breast cancer and glaucoma

across populations.
Impact of Genetic Risks on Overall Disease Burden

Although overall health is hard to define with a few metrics, herein, we used the
count of clinical visits and duration of hospitalization to roughly describe
individuals’ overall disease burden. We found the 128 well-performed PRS
models (PRSmix+ and LDpred2 model with AUC > 0.55 for phecodes and r? >
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0.03 for continuous traits) shown to influence overall health indices, explaining
8.06% of the variation in clinical visit frequency (p-value = 5.7x10-'3) and 9.07%
of the variation in hospitalization duration (p-value = 1.4x102%, Table 1). Among
the identified clusters, cardiometabolic cluster contributed the most to the
indices, accounting for 1.14% of clinical visits and 3.22% of hospitalizations. In
short, we quantified the proportion of the developed polygenic risk of various
diseases and traits on human health, and the results underlined the importance

of genomic impact and necessary for precision health development.
Discussion

This study represents the largest GWAS conducted to date in the Han Chinese
population, utilizing data of around 500,000 individuals recruited from 16
medical centers across Taiwan. We investigated the genetic architecture of 700
dichotomized phecodes and 24 quantitative traits, identifying 2,444
independent variant-trait associations and showed that population-specific
genetic risk-prediction PRS models for a wide range of diseases performed well
in the population. Indeed, for the 128 traits where there is sufficient sample size
in the cohort, the PRS performance (AUC > 0.55 for dichotomized phecodes
and r?2 > 0.03 for quantitative traits) rival those developed for Europeans using
UKB data. These findings show that population-specific PRS models can be
developed successfully for non-European populations and our project serves
as a model for large-scale genetic studies in non-European populations.

Recent large-scale projects that emphasize ancestral diversity in human
genetic studies have discovered new findings with the inclusion of non-
European subjects. MVP conducted multi-ancestry GWAS on 635,000
participants, identifying over 2,000 signals unique to non-European
populations'®. With the TPMI dataset, we performed the largest-ever GWAS in
the Han Chinese for several traits. For instance, the previous largest meta-
analysis for type 2 diabetes included 77,418 cases from EAS populations, of
which 20,573 were Han Chinese®. In contrast, our GWAS included 59,289
cases of type 2 diabetes, almost tripling the number of cases ever tested, and
identified eight unreported T2D SNPs from known regions, demonstrating the

power of TPMI sample size. Identification of new and population-specific risk
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variants may lead to further understanding of their molecular mechanism and
underline the need for population-specific weightings in PRS models. Moreover,
population-specific findings also explain better performance of population-
specific PRS model in the population in question. In short, our Han Chinese
specific genomic profiles for comprehensive phenotypes provide a solid
foundation for population-specific PRS development and precision medicine

implementation.

Our understanding of how the genetic factors influencing Hepatitis B, an
epidemic infectious disease in Taiwan with an estimated hepatitis B virus carrier
rate of 15-20%, also benefited from the large dataset. With 23,618 cases, a
significant increase from prior studies of only a few thousand cases, we
identified novel loci and demonstrated that host genome may determine the
severity and symptoms of this infectious disease. This is similar to that
previously reported in COVID-19 and pneumonia, where genetic factors have
been shown to influence disease outcomes?3-36, Our unexpected success of
GWAS and PRS for hepatitis B not only demonstrate the power of the large
sample size of TPMI, but also reveal the necessity of population-specific
genetic study for population-unique diseases.

In addition, the comprehensive phenotypic data allows us to leverage the
genetic correlation of multiple traits to improve the performance of PRS models.
Three large clusters of correlated traits were identified from pairwise genetic
correlation analysis. Including the correlated traits in PRS model development
improved performance, resulting in an average 1.53-fold increase in the
explained percentage of phenotypic variation. Although previous studies have
proven the utility of multi-traits on target diseases®'-37:38, we are first to use this
approach at a phenome-wide level and demonstrate the improvement across
different types of traits. As a result, we produced well-performed PRS for
various categories of diseases, including cardiometabolic diseases,

autoimmune disorders, and infectious diseases.

We evaluated our PRS models across several large cohorts, including the TWB,
UK Biobank, and All of Us. The TPMI-derived PRS models consistently

outperformed those developed from European populations when applied to
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diseases in EAS from the three large cohorts. When comparing with European-
derived PRS models, we also observed better performance across several
traits in EAS, particularly for cardiometabolic and autoimmune diseases. By
integrating these well-developed PRS models, we estimate that genetics
account for 9.1% of the disease burden in Taiwan. As Taiwan has an aging
(and soon to be super-aging) population, implementing genetic risk-based
health management strategies may decrease the disease burden while

extending health-span significantly.

As with other large-scale studies, our study has several commonly found
limitations. First, the TPMI cohort size is not sufficiently large to study some of
the severe subtypes of many (common or rare) diseases, such as diabetes
insipidus and neurofibromatosis. Second, we attempted to use eQTLs to
elucidate the molecular mechanism of diseases, but the underrepresentation of
EAS in current eQTL datasets, such as GTEXx, poses challenges®. Gene
expression regulation varies across ancestries*®#', and differences in LD
structures further complicate colocalization analyses. Therefore, ancestral
diversity is an urgent need not only in genomic data but also in transcriptomic,
proteomic, metabolomic, and epigenomic datasets. Third, the EMR of the
participants are incomplete, as some participants receive care from multiple
health providers, but the TPMI only has access to EMRs from their enrollment
hospitals. Furthermore, the current project retrieved EMRs from an average of
5 years prior to enroliment, so some important data such as age of disease
onset for the older participants are not available. Incomplete EMR leads to less
precise case definition of some participants. Fourth, some of the younger
participants have high-risk genetic profiles but are disease free for those
diseases. The duration of the project is too short to determine whether they will
eventually develop those diseases.

Effort is underway to gain access to the complete EMRs of the TPMI
participants and to recruit additional participants with severe subtypes of
common diseases. The high-risk participants who are symptom-free are being
followed to monitor disease development. Future studies are being planned to

study the high-risk individuals who escape disease development to identify
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genetic and non-genetic factors that mitigate their disease risk.

This study formally validates the common belief that population-specific risk-
prediction models perform well in that population, pointing to the need to build
these models in the major populations across the world. As the PRSs we
developed perform well in EAS, the implementation of genetic findings is now
available to an additional 25% of the world’s population. It is hopeful that if all
EAS obtain their genetic profiles and determine their risk for major diseases,
many diseases can be prevented or their onset can be delayed significantly,
thereby fulfilling the promise of modern genetics.

We also found notable evidence that, for certain diseases, e.g. female breast
cancer and glaucoma, PRS models developed from one population can perform
equally well in other populations, suggesting a shared genetic etiology for those
conditions. This raises the possibility of creating universal PRS models that
could be effective across diverse populations for at least some diseases.

In conclusion, we used a large-scale Han Chinese dataset produced by the
TPMI to conduct pheno-wide genetic analyses and leverage these genetic
findings to train risk prediction models for multiple diseases and traits. The
developed models are validated in EAS of different biobanks and demonstrate
a consistent performance that bodes well for their use in the general Han
Chinese/EAS population. Our approach can serve as a template for developing
PRS models in populations currently without such resources, anticipating the
time when all populations around the world can benefit from risk-based health
management as part of the precision health movement.

Methods
Study Population and Phenotyping

We utilized the Taiwan Precision Medicine Initiative (TPMI) dataset, which links
extensive electronic medical records (EMR) with genotypic data for 486,956
individuals. Dichotomized disease status was defined by phecodes, which were
based on information extracted from the EMR using International Classification
of Diseases (ICD) codes'®'®. To ensure robustness, cases were defined by
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having the diagnosis of the relevant condition on two or more clinical visits. We
also extracted quantitative traits from the EMR, including anthropometric, vital
sign and laboratory measurements, and we excluded the extreme outliers and
removed or adjusted the treated and/or medicated measures based on previous
research, and the median value was kept if the participant had multiple qualified
measures*’. (Supplementary methods) In this study, we focused on 702
dichotomized phenotypes (phecodes) that had at least 2,000 cases and 24
quantitative traits that were measured in at least 100,000 individuals. These
phecodes spanned 17 disease categories, including but not limited to infectious
diseases, neoplasms, endocrine/metabolic disorders, and circulatory system
diseases. The 24 quantitative traits were categorized into anthropometric,
circulatory, hematological, kidney-related, liver-related, and metabolic

measurements.
Genotyping and Quality Control

Genotyping was performed using two customized high-density Axiom SNP
arrays produced by Thermo Fisher (Waltham, MA, USA), TPM1 and TPM2. The
genotyping experiments were conducted in six genotyping centers in Taiwan'.
The raw genotypic data underwent quality control measures, and the genetic
variants were excluded when they had call rate <0.02, minor allele frequency
(MAF) <0.01, Hardy-Weinberg equilibrium test p-value <1x10%. We also
excluded individuals with overall call rate <0.95, failed heterozygosity check, or
inconsistent documented versus genetically determined sex. For this study, we
only included the genetic variants found on both genotyping arrays and
excluded variants with a significant batch effect in GWAS. The proportion of
genetic ancestry was determined by ADMIXTURE#3, and the projected principal
component scores with 1000 Genome as reference panel were applied to
determine individuals’ ancestry**. As a result, 401,710 genetic variants and
463,447 Han Chinese participants passed all quality control measures and
were used in the subsequent studies. Details are found in supplementary
methods and GitHub (https://github.com/TPMI-Taiwan/tpmi-qc).

Phasing and Imputation

Phasing was conducted on QC-passed genotype data with SHAPEIT5%.


https://doi.org/10.1101/2024.10.14.24315279

medRxiv preprint doi: https://doi.org/10.1101/2024.10.14.24315279; this version posted October 15, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
All rights reserved. No reuse allowed without permission.

Genome imputation was carried out with IMPUTES using a reference panel of
1,498 whole genome sequenced Taiwan Biobank subjects'?46. We also
conducted post-imputation quality control with exclusion criteria INFO score <
0.7 and MAF <0.01. In addition, we also performed a chip-GWAS for minimizing
the bias from different chips, resulting in a dataset of 8,046,864 well-imputed

common genetic variants.
Population Structure and Relatedness Estimation

We performed a principal component analysis (PCA) based on genotyped
variants to capture the effect of population structure. To diminish the effect of
close relatives, the main PCA was conducted in a genetically unrelated subset,
and other subjects were projected with the calculated PC weightings. And then,
these PCA scores were leveraged to accurately quantify the proportion of
identity-by-decent (IBD) and degree of relatedness. The maximum unrelated
set was determined based on these estimated degrees of relatedness. PC-AIR
and PC-Relate were used for PCA and relatedness estimation and PRIMUS
was used for identifying the maximum unrelated set with the third degree as
threshold*7-4°.

Genome-Wide Association Study (GWAS)

To train and validate the proposed PRS models, we left 100,000 unrelated
subjects out of GWAS. To maximize the statistical power, we used a mixed-
effect regression model to examine the association between genotype and
outcome of interest, logistic regression for dichotomized phecode, and linear
regression for quantitative traits. The quantile-normalization was applied to
quantitative traits to ensure the normal distribution. The mixed-effect model
accounted for relatedness among individuals by including a random effect for
pairwise kinship. The model also adjusted for key covariates, including age, sex,
age?, interactions between age/age? and sex, genotyping chip, enrollment
hospital, and 10 genetic principal components to control for population
stratification. SAIGE was applied for the mixed effect model GWAS®C. In
addition, we also performed a generalized linear model from PLINK2 for GWAS
among the unrelated subset (n = 248,754)%", and these statistics were used for
heritability and genetic correlation estimation.


https://doi.org/10.1101/2024.10.14.24315279

medRxiv preprint doi: https://doi.org/10.1101/2024.10.14.24315279; this version posted October 15, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
All rights reserved. No reuse allowed without permission.

Replication Evaluation

To systematically evaluate the performance of our GWAS, we leveraged a pre-
summarized phenotype-genotype reference map®?, which collected 5,879
genetic associations for 149 unique phecodes from 523 published GWAS and
1,215 associations from EAS. We calculate the overall and power-adjusted
replication rates and actual over expected ratio for each available phecode and
categories respectively. For measuring the quality of biobank data through

replication an R package PGRM was used®2.
Fine-mapping

We performed fine-mapping to identify the independent GWAS signals in all
genomic regions containing any variant with a p-value < 5x10® and +1.5 Mb of
the regional lead variant', except the major histocompatibility complex region
(MHC region, chr6: 25,391,792-33,424,245) due to its complex LD structure.
We used the reported 95% credible set to determine the independent signals,
and up to ten signals were allowed for each region. The genome-wide
significant threshold was applied for defining a credible set as an independent
hit, and an additional requirement of log Bayes factor (BF) > 2 was applied for
the second hit. For the failed fine-mapping regions and MHC region, we used
the lead SNP as the hit of each significant region. SuSiE was conducted for this
summary statistics-based fine-mapping with LD derived from our imputation

reference panel®3.
Novel Association Identification

We comprehensively compared our GWAS results with reported significant
signals on the NHGRI-EBI GWAS Catalog®, download at 2024-03-11. The
mapping of phecodes and quantitative traits to GWAS catalog phenotypes is
summarized in Table S15. We classified a gene or region as novel if the fine-
mapped independent signal was not located within 1 Mb of any reported
genome-wide significant association (p-value < 5x10%) for the corresponding
phenotype®®. Additionally, a variant was considered a novel hit if the highest
linkage disequilibrium (LD) r*> was less than 0.1 with any reported significant

association. Associations derived from uncertain and umbrella phecodes were
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excluded, and for duplicated genetic variants or regions, we only reported the
association with the smaller p-value or from the phecode with the more specific
definition. Finally, we used ANNOVAR to annotate the novel variants with data
from the RefSeq Gene database (2020-08-17 updated)®®-57.

Heritability, Genetic Correlation, and Clustering

To quantify the genomic contribution of the specific traits, we applied linkage
disequilibrium score regression to estimate the SNP-based heritability with
LDSC?*. The GWAS summary statistics and the pre-calculated LD score from
EAS superpopulation of 1000 Genome were used**. For the dichotomized traits,
we performed a liability-scaled transformation on the observed heritability using
the 5-years population prevalence from the National Health Insurance
dataset??%8. Additionally, we conducted LDSC to obtain pairwise genetic
correlations to assess the similarity of genetic mechanisms between traits®°.
Based on the genetic correlation matrix, we used a hierarchical cluster analysis
to identify groups of traits that share genetic mechanisms. We employed the
weighted pair group method with arithmetic mean (WPGMA) for clustering, and
the resulting cluster tree was used for group identification. Moreover, we
estimate the genetic correlation across populations, TPMI and UK biobank, to
demonstrate varied genetic architecture in different ancestry populations. For
the UK biobank GWAS, we applied a generalized linear model from PLINK2
with the predefined phecode, https://github.com/umich-
cphds/createUKBphenome, and corresponding baseline quantitative measures
among the identified unrelated set (n = 378,544). Popcorn was performed for
the cross-population genetic correlation, and two correlation coefficients were
calculated, the transethnic genetic-effect correlation (pge) and transethnic
genetic-impact correlation (pgi)%.

Gene-Level Heritability and Colocalization

We used both gene-level heritability estimation and colocalization analysis to
map our GWAS findings to functional units, specifically genes. We conducted
h2gene analysis to partition SNP-based heritability to the gene level®®. We
estimated heritability for genes that overlapped with fine-mapped regions,
where gene regions were defined as the gene body 10 kb for gene-level
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heritability. Additionally, to illustrate the molecular functions of genes of interest,
we used colocalization analysis to examine whether there are shared common
genetic causal variants between tissue-specific gene expression and traits of
interest. We utilized expression quantitative traits locus (eQTL) resources from
49 tissues in GTEx v8%, testing any gene with genome-wide significant signals
in the cis-regulation region (x1 Mb). The posterior probabilities were used to
evaluate colocalization between gene expression and the trait of interest. The
R package, coloc, was used with SuSIiE relaxing the single causal variant

assumption®.62,
Single and Multi-Trait Polygenic Risk Score (PRS)

The preserved dataset of 100,000 unrelated TPMI subjects was split into two
subsets, training (n = 80,000) and validation (n = 20,000) for PRS model
building. Five popular PRS tools were used, LDpred2?%, Lassosum2?’, PRS-
CS?%8, SBayesR?°, and MegaPRS?®, and the training subset was applied for
parameter selection and model optimization if needed. LDpred2, PRS-CS, and
SBayesR assumed the effect of genetic variants following a mixture distribution
with different pre-defined parameters and applied a Bayesian framework for
distribution estimation. Lassosum2 utilized a penalized regression (LASSO) for
weight estimating, and MegaPRS leveraged minor allele frequency and linkage
disequilibrium for model building. We then used the validation subset to
evaluate the performance of PRS models. Individual score was calculated with
PLINK2%'. The explained variance (r?) was used to evaluate the performance
of PRS for quantitative traits®3%4, and two indices, area under the receiver
operating characteristic curve (AUC) and liability-scaled r?> were used for PRS
of dichotomized phenotypes. The likelihood ratio test was used to obtain the
significance for r> with R package, Imtest, and standard error for AUC was
calculated with R package, auctestr. To further leverage the gene’s pleiotropy
and shared genetic mechanism among traits, we conducted a multi-trait PRS
model building for the traits in the same genetic cluster based on pairwise
genetic correlation identified in the previous step. We pooled all PRS models
from five tools for those identified traits and applied an elastic net regression to
combine their weighting and find the most optimized model for the target trait.
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PRSmix+ was performed for the multiple traits PRS model building®'.
External Validation and Comparison

We conducted an external validation of our developed PRS using data from the
Taiwan Biobank, EAS from UK Biobank and All of Us. TWB is a community-
based biobank, and it has recruited over 200,000 participants in Taiwan. Herein,
we used 120,460 independent subjects, who were genotyped with the Axiom
customized chip TWB2 (equivalent to TPM1), and their genotyping QC, phasing,
and imputation followed the same protocol as described above. The self-
reported disease condition was queried from their baseline questionnaire,
except for cancer. Since the study design of TWB excluded cancer patients at
recruitment, we used both baseline and follow-up self-reporting data to define
cancer cases and controls. UKB has enrolled ~500,000 participants since 2006
and linked their genetic data with enriched phenotypic data. For external
validation, we only used self-reported Chinese (more diverse than Han Chinese)
as East Asian and their inpatient record for case definition. All of Us intends to
enroll over 1 million participants in the United States and has released whole
genome genotyping data for ~312,000 participants as of the first quarter of 2024.
The genetically confirmed EAS as well as other superpopulations and their
linked EMR were used for validating our PRS models. Moreover, we compared
the TPMI-derived PRS model with UKB-derived models to investigate the
performance of population-specific PRS. The UKB-derived models were based
on published UKB European GWAS (https://pheweb.org/UKB-TOPMed/), and
LDpred2-auto was applied for model building.

Overall Disease Burden Evaluation

We evaluated the genetic impact on overall disease burden. We used the
number of clinical visits and the aggregate duration of hospitalization as disease
burden indices. Due to collinearity among PRS for different traits, we utilized a
partial least square-generalized linear model (PLS-GLM) to extract components
from the PRS of qualified traits with R package, plsRgim®. The number of
extracted components was determined by the Akaike Information Criterion
(AIC). We then estimated the covariate-adjusted proportion of genetic

contribution (r?) by comparing the full model with the null model, which included
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only covariates such as sex, age, and hospital. Likelihood ratio test was used
to obtain the significances of regression models. For each index, we employed
three models to compare the top and bottom 5%, 10%, and 20%. We selected
covariate-matched controls from subjects without hospitalization records as the
bottom group for hospitalization models.

Code availability

Code for genotyping quality control process and analysis is available at our
Github (https://github.com/TPMI-Taiwan/).

Data availability

The genotyping and electronic medical record (EMR) data analyzed in this
study are from the Taiwan Precision Medicine Initiative (TPMI) with proper
approval from the TPMI Data Access Committee. In compliance with the
confidentiality laws governing genetic and health data in Taiwan, the de-
identified TPMI data are kept in a secure server at the Academia Sinica and not
released to the public. All summary statistics, polygenic risk score (PRS)
models, and GWAS results are freely available from the TPMI website
(https://tpmi.ibms.sinica.edu.tw). Researchers requesting access to the
individual genotyping and EMR data can do so on a collaborative basis.
Instructions on requesting access to the data can be found on the TPMTI’s official

website (https://tpmi.ibms.sinica.edu.tw).
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Christian Hospital (IRB2021128), Taipei City Hospital (TCHIRB-10912016),
Koo Foundation Sun Yat-Sen Cancer Center (20190823A), Cathay General
Hospital (CGH-P110041), Fu Jen Catholic University Hospital (FJUH109001)
and Academia Sinica (AS-IRB01-18079), Taiwan. Written informed consent
was obtained from the subjects in accordance with institutional requirements
and the Declaration of Helsinki principles. All collected information was de-
identified before statistical data analysis. The analysis with Health and Welfare
Data Science Center (HWDC) was approved by Institutional Review Boards of
Academia Sinica (AS-IRB-BM-23056). This research has been conducted
using the UK Biobank Resource under UK Biobank Main Application 15326.
Work with All of Us data was performed using the All of Us Researcher

Workbench under the workspace “Duplicate of Prediction of Polygenic Traits".
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Figure legend

Fig. 1. Scatter plots of the case proportion for dichotomized phenotypes and
sample size for quantitative traits in TPMI dataset. (A) The case proportion in
TPMI is compared to the 5-year prevalence in the National Health Insurance
Research Database (NHIRD) for 702 dichotomized phenotypes (phecodes).
Each dot represents a specific phecode, with the x-axis showing the prevalence
in NHIRD and the y-axis showing the case proportion in TPMI. (B) Scatter plot
shows the sample sizes for 24 quantitative traits in the TPMI cohort. Each point
represents a trait, with the x-axis indicating the different category of quantitative
traits and the y-axis representing the corresponding sample sizes.

Fig. 2. Pheno-wide independent variant-trait associations. Vertical bars show
the accumulated number of independent variant-trait associations for
dichotomized phecodes (top panel) and quantitative traits (bottom panel). Each
category of diseases and traits is represented by a corresponding color. The X-
axis is chromosome number, and the Y-axis represents the accumulated
number of associations, highlighting the uneven distribution of trait-associated
variants across phenotypes.

Fig. 3. Gene-level heritability and colocalization with gene expression. Circle
plot showing gene-level heritability and colocalization with gene expression for
(A) dichotomized phenotypes, summarized in parent (integer) phecodes, and
(B) quantitative traits. Dots represent gene-level heritability (h?) > 103, squares
indicate colocalization posterior probability > 0.9, and triangles show both. Inner
circle indicates the number associated traits for each identified gene. The bar
chart shows the number of identified genes by category and grouped by type
of pleiotropy.

Fig. 4. Genetic correlation among three identified trait clusters. Heatmap
displays genetic correlations between trait clusters: cardiometabolic,
autoimmune/infectious diseases, and kidney-related traits. Genetic correlation
was estimated using LDSC, with colors representing the correlation coefficients
between traits.

Fig. 5. PRS performance for the three identified trait clusters. Bar plot shows
SNP-heritability and PRS explained variance (r?) for (A) cardiometabolic trait
cluster, (B) autoimmune trait cluster, and (C) kidney-related trait cluster. Gray
bars indicate SNP-heritability, and the colored bar chart presents the r? values,
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indicating the proportion of variance explained by the PRS from single-trait PRS
(LDpred2, red bar) or multi-trait PRS (PRSmix+, blue bar), while the dot and
whisker plot showcases predictive accuracy using AUC. The area under the
receiver operating characteristic curve (AUC) presented with 95% confidence
interval for dichotomized traits.

Fig. 6. External validation of PRS models in Taiwan Biobank and other cohorts.
PRS performance is presented as area under the receiver operating
characteristic curve (AUC) £ 95% Cl in TPMI (orange), Taiwan Biobank (green),
East Asians in UK Biobank (blue), and East Asians in All of Us (purple). Circles
represent TPMI-derived PRS, and triangles indicate UKB (European)-derived
PRS models. Only the estimates with case size > 40 were showed on the figure.
Extended Data Fig. 1. Comparison of TPMI GWAS-identified loci to the
previously published GWAS. The replication rates of TPMI GWAS-identified
loci when compared to previously reported loci from the GWAS catalog are
presented in this bar chart. Red bars indicate the comparison of TPMI findings
to that of all ancestries and blue bars represent the comparison to East Asian
ancestries. The categories of diseases are shown under the bars.

Extended Data Fig. 2. The Manhanttan plot of GWAS for viral hepatitis B in
TPMI. The names of nearest mapped gene were labed for the independent
GWAS significant loci.

Extended Data Fig. 3. Genetic correlation heatmap for all heritable traits.
Heatmap showing genetic correlations among heritable traits. Genetic
correlations were estimated using LDSC, with colors representing the
correlation coefficients between traits. The weighted pair group method with
arithmetic mean (WPGMA) was used for clustering with the correlation
coefficient as distance between traits.

Extended Data Fig. 4. The bar chart and dot plot for PRS performance. Bar
and dot plot showing PRS explained variance (r?) and SNP-heritability for
dichotomous traits. Gray bars represent SNP-heritability, and dots show AUC.
An asterisk (*) indicates estimates considering the MHC region.

Extended Data Fig. 5. External validation of PRS models across populations.
PRS validation (AUC £ 95% CI) in East Asian (red), European (olive green),
African (green), South Asian (blue), and All of Us (purple) populations from
TPMI (circle), UKB (triangle), and All of Us (square) cohorts.
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Fig 1. Scatter plots of the case proportion and case number in TPMI dataset. (A) The case proportion in TPMI is compared to the 5-
year prevalence in the National Health Insurance Research Database (NHIRD) for 702 dichotomized phenotypes (phecodes). Each
dot represents a specific phecode, with the x-axis showing the prevalence in NHIRD and the y-axis showing the case proportion in
TPMI. (B) Scatter plot shows the sample sizes for 24 quantitative traits in the TPMI cohort. Each point represents a trait, with the x-
axis indicating the different category of quantitative traits and the y-axis representing the corresponding sample sizes.
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Fig. 3. Gene-level heritability and colocalization with gene expression. Circle plot showing gene-level heritability and colocalization with gene
expression for (A) dichotomized phenotypes, summarized in parent (integer) phecodes, and (B) quantitative traits. Dots represent gene-level
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Fig. 5. PRS performance for the three identified trait clusters. Bar plot shows SNP-heritability and PRS explained variance (r?) for (A)
cardiometabolic trait cluster, (B) autoimmune trait cluster, and (C) kidney-related trait cluster. Gray bars indicate SNP-heritability, and the colored
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characteristic curve (AUC) presented with 95% confidence interval for dichotomized traits.


https://doi.org/10.1101/2024.10.14.24315279

o
o g g
17} Q - k]
o 2 [} g 8 =
= = S @ £ c s ©
[e) a 5 c » ] n = o
5 0 ~ 2 S - 3 S =
3) - ° @ - < @ 3 S ©
= © o o > o) g o = 5
© = = > o o o © Y =2
(©] > = I O] < oM (6] O =
0.8
® PRS
® TPMiI-derived
0.7 6
¢ A UKB-derived
A R ¢
O .
- A 4 : ® Biobank
< 0.6_ A * | A A ‘ * TPMl
| ] A A , + e + -o- TWB
+ , 4 -0- UKB (EAS)
0.5
All of Us (EAS)
0.4 A

Fig. 6. External validation of PRS Models in Taiwan Biobank and other cohorts. PRS performance is presented as area under the
receiver operating characteristic curve (AUC) + 95% CI in TPMI (orange), Taiwan Biobank (green), East Asians in UK Biobank (blue),
and East Asians in All of Us (purple). Circles represent TPMI-derived PRS, and triangles indicate UKB (European)-derived PRS
models. Only the estimates with case size > 40 were showed on the figure.


https://doi.org/10.1101/2024.10.14.24315279

medRxiv preprint doi: https://doi.org/10.1101/2024.10.14.24315279; this version posted October 15, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
All rights reserved. No reuse allowed without permission.

100

75

Population
| Y
W ens

Replicated Rate (%)
o
S

25

Extended Data Fig. 1. Comparison of TPMI GWAS-identified loci to the previously published GWAS.
The replication rates of TPMI GWAS-identified loci when compared to previously reported loci from
the GWAS catalog are presented in this bar chart. Red bars indicate the comparison of TPMI
findings to that of all ancestries and blue bars represent the comparison to East Asian ancestries.

The categories of diseases are shown under the bars.
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Table 1

Table 1. Proportion of disease burden explained by genetic risk

top 5 % vs. bottom 5 %

top 10 % vs. bottom 10 %

top 20% vs. bottom 20%

Raw model Adjusted model’ Raw model Adjusted model’ Raw model Adjusted model’
Index Genetic risk R? p-value R? p-value R? p-value R? p-value R? p-value R? p-value
Clinical visit Cardiometabolic traits 0.67% 8.5x104 1.14%  4.4x102  0.38% 1.9x10*  0.77% 1.3x103 0.27% 1.3x10*  0.56%  1.7x10*
Autoimmune and infectious diseases  1.10% 1.8x10 0.93% 6.2x102 0.65% 2.0x10°  0.58% 4.0x10° 0.37% 4.0x10°  0.32%  2.4x107
Kidney-related traits 0.88% 1.3x10° 0.87% 7.8x102 0.57% 2.0x10* 0.37% 9.4x10" 0.26% 9.4x10° 0.19%  2.0x102
All predictable traits (128 traits) 7.74% 1.5x10-%7 7.99% 5.7x10"  3.84% 4.0x10%"  3.84% 2.0x10% 1.79% 2.0x10% 1.95%  8.0x10
Hospitalization =~ Cardiometabolic traits 2.40% 1.5x108 3.22%  2.4x10%  1.11% 6.5x108 1.48% 4.1x10° 0.65% 4.1x10"® 0.86% 6.1x10°
Autoimmune and infectious diseases  1.09% 6.8x104 1.42%  3.1x10%  0.21% 2.6x10°  0.29% 2.1x103 0.15% 2.1x10""  0.19%  2.0x10%
Kidney-related traits 0.39% 5.2x103 0.51% 2.2x102 0.43% 3.4x10°3 0.58% 2.8x10°3 0.21% 2.8x10" 0.28%  1.1x10?
All predictable traits (128 traits) 6.75% 1.1x10%° 9.09% 14x10%  3.80% 4.9x10% 5.08% 6.8x10°%2 2.36% 6.8x10°%2 3.12%  2.2x103

"Model adjusting for sex, age and enrollment hospital
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