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Abstract 

Predicting complex disease risks based on individual genomic profiles is an 

advancing field in human genetics.1,2 However, most genetic studies have 

focused on European populations, creating a global imbalance in precision 

medicine and underscoring the need for genomic research in non-European 

groups3,4. The Taiwan Precision Medicine Initiative (TPMI) recruited over half a 

million Taiwanese residents, providing the largest dataset of genetic profiles 

and electronic medical record data for the Han Chinese. Using extensive 

phenotypic data, we conducted the largest genomic analyses of Han Chinese 

across the medical phenome. These analyses identified population-specific 

genetic risk variants and novel findings on the genetic architecture of complex 

traits. We developed polygenic risk scores, demonstrating strong predictive 

performance for conditions such as cardiometabolic diseases, autoimmune 

disorders, cancers, and infectious diseases. We observed consistent findings 

in an independent sample from our Biobank and among East Asians in the UK 

Biobank and the All of Us Project. The identified genetic risks accounted for up 

to 9.1% of the disease burden variance in Taiwan. Our approach of 

characterizing the phenome-wide genomic landscape, developing population-

specific risk prediction models, assessing their performance, and identifying the 

genetic impact on health, serves as a model for similar studies in other diverse 

study populations. 
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Introduction 

A major promise of modern genetics is the ability to predict complex disease 

risk based on a person’s genetic profile. If successful, health management 

strategies can be developed to mitigate the risk (disease prevention) and to 

optimize care (early diagnosis and effective treatment). Large-scale studies in 

Europeans, such as those conducted with data from the UK Biobank (UKB) and 

Electronic Medical Records and Genomics (eMERGE) Network, show that risk 

prediction based on genetics holds promise and several countries are exploring 

ways to implement risk-based management in clinical practice1,2. Using 

polygenic risk scores (PRS) to predict disease risk and identify individuals at 

high risk is an emerging “precision medicine” approach to leverage individual 

genetic findings in clinical practice. However, a significant limitation of current 

PRS models is that they are predominantly based on genome-wide association 

studies (GWAS) comprising particpants from European populations4,5, often 

leading to reduced predictive performance in non-European groups6,7. To fully 

realize the potential of precision medicine for diverse global populations, 

population specific phenome wide genomic discovery must be perfomed at 

scale and clinically applicable polygenic risk models must be optimized within 

and across populations. To fill this major research gap in an East Asian 

population, we characterized the complex genetic architecture of the Han 

Chinese phenome wide, developed population-specific PRS, and assesed the 

external validity of the models across populations with varying degrees of 

genetic similarity.  

Populations with East Asian (EAS) ancestry represent nearly a quarter of the 

global population, but they account for only 3.95% of the participants in 

previously published GWAS3. Although several biobanks have been built to 

recruit subjects from East Asia, they have moderate sample size (72K - 212K) 

and many focus on specific conditions8-12. In contrast, biobanks with 

predominantly European ancestry participants13-16, have significantly larger 

sample sizes (224K – 635K) and access to more comprehensive clinical data. 

The moderate sample size and limited phenotypes in existing EAS biobanks 

hamper discovery of unique genetic effcts and preclude the development of 
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robust and clinically useful PRS models for EAS.   

We have assembled the largest non European cohort to date, the Taiwan 

Precision Medicine Initiative (TPMI). From 2019 to 2023, TPMI enrolled and 

genotyped over half a million participants across sixteen medical centers in 

Taiwan. All the participants, who are overwhelmingly of Han Chinese ancestry, 

contributed DNA samples for genetic profiling with a custom-designed 

genotyping array and consented to provide their longitudinal electronic medical 

record (EMR) data from 5 years prior to enrollment and into the future. The 

EMR dataset includes rich and accurate health-related phenotypes, including 

medical diagnoses and biochemical examinations17. In this paper, we present 

the results of comprehensive genomic analyses of extensive genetic and 

medical data derived from the Han Chinese population, including phenome-

wide GWAS and PRS model development. We identified numerous population-

specific risk variants/genes, observed evidence of genetic pleiotropy, and 

pinpointed clusters of traits that shared similar genetic etiology. We developed 

and validated PRS prediction models for numerous conditions against external 

datasets including those from the Taiwan Biobank (TWB), the UKB, and the All 

of Us Project. Our results reveal the benefits of leveraging large cohort from 

understudied population to identify unique genetic underpinnings of the human 

phenome, interpret causal effects via fine mapping and colocalization, and 

improve the performance of population-specific PRS models, which together, 

better illuminate the clinical implications of genetic risk. The lack of 

representation of diverse populations in genetic research will result in 

inequitable access to precision medicine for those with the highest burden of 

disease. Thus, continued, large scale genome-wide efforts in diverse 

populations will be required to maximize genetic discovery and reduce health 

disparities.  

Results 

Dichotomized Phenotype (Phecodes) and Quantitative Traits in TPMI 

We performed comprehensive genomic analyses, including GWAS, heritability 

estimation, and PRS model building and evaluation, across a wide range of 

diseases and quantitative traits using data from TPMI. We examined 700 
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dichotomized phenotypes (phecode, case n > 2,000) and 24 quantitative traits 

(sample size > 100,000), spanning numerous disease categories, such as 

neoplasms, metabolic disorders, circulatory conditions, autoimmune diseases, 

and more (Fig. 1). The phecodes, derived from International Classification of 

Diseases (ICD) codes18,19, alongside quantitative traits such as blood pressure, 

BMI, liver enzymes, and lipid levels, provide a robust dataset for exploring 

genetic contributions to human health (Table S1 and S2). The log-transformed 

case proportion identified from EMR showed a significant correlation with the 

log-transformed 5-year disease prevalence from National Health Insurance 

Research Database in Taiwan20 (r = 0.64, p-value = 4.4x10-33) (Fig. 1A), which 

suggests that TPMI represented the Taiwanese population well. Fig. 1B 

displays the sample sizes for 24 quantitative traits in the TPMI cohort and 

highlights sample size variation across traits, which is crucial for determining 

the power and precision of association analyses within the cohort. 

Genome-Wide Association Studies, Fine-Mapping, and Novel Finding 

Our GWAS identified at least one significant locus (p-value < 5x10-8) for 265 

phecodes and 24 quantitative traits. The high replication rate of 74.4% for 

reported disease loci from EAS GWAS highlights the robustness of the TPMI 

data, particularly for endocrine/metabolic and hematopoietic diseases (88.68% 

and 84.62%, respectively) (Extended Data Fig. 1 and Table S3). Lower 

replication rates for respiratory and psychiatric disorders (27.78% and 19.81%) 

may reflect limited case numbers, other untyped genetic variants, such as rare 

variant, copy number variation and structure variants, or recruitment bias. 

Our GWAS revealed 1,139 independent association signals for phecodes and 

1,305 signals for quantitative traits via fine-mapping. Notably, 77 novel 

associations were identified across 44 phecodes and 7 quantitative traits that 

had not been previously reported in nearby regions (±1Mb), and 307 novel hits 

from reported regions (Table S4 and S5). Some of our novel findings are 

biologically relevant to the corresponding phenotypes. For example, the SNP 

rs17089782, a missense variant in the PIBF1 (p.R405Q) gene on chromosome 

13 is significantly associated with thyroid cancer (p = 2.8x10⁻⁹). PIBF1 is 

essential for immune regulation, especially during pregnancy, and is relevant 
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to autoimmune diseases and cancer21. Another novel variant from the known 

region associated with BMI found in PHOX2B (rs761018157, p-value = 

7.6x10⁻⁹). This gene, highly expressed in the nervous system, had previously 

been linked to obesity hypoventilation syndrome in a small study (n = 30)22 and 

associated with bone mineral density23. Moreover, among the 22 identified 

independent loci for hepatitis B, 16 fine-mappped loci have not been previously 

linked to hepatitis B in the GWAS Catalog (Extended Data Fig. 2). Notably, 15 

of these 16 loci were found to be associated with liver function or diseases 

(Table S5). These novel associations highlight the uniqueness of certain 

disease loci in the TPMI cohort, presenting opportunities for developing 

population-specific therapeutic interventions and advancing precision medicine. 

We summarized these identified independent associations in Fig. 2. The 

identification of the major histocompatibility complex (MHC) region as a 

significant hotspot on chromosome 6 underscores its extensive involvement in 

immune-related diseases across multiple categories. Similarly, the short arm of 

chromosome 11 also affect various traits, including metabolic, endocrine, and 

genitourinary diseases. These hotspots of trait-relevant variants implied the 

shared genetic mechanism among diseases and genes’ pleiotropy.    

Genome- and Gene-level Heritability, and Colocalization  

Linkage disequilibrium score regression analysis24 showed strong liability-

scaled SNP-heritability for conditions such as alcoholism (h² = 0.242), open-

angle glaucoma (h² = 0.171), and retention of urine (h² = 0.173). In terms of 

quantitative traits, body height (h² = 0.323), BMI (h² = 0.218), and high-density 

lipoprotein cholesterol (h² = 0.191) exhibited the highest heritability estimates 

(Table S6), highlighting the significant role of genetics in these traits. These 

results have far-reaching implications for precision medicine, as higher 

heritability signals suggest the potential for more accurate genetic risk 

prediction models that could improve personalized disease risk assessments. 

We then partitioned the heritability to gene level and identified 368 unique 

genes contributing significantly to phenotypic variation (h2 > 0.1% and z-score 

> 1.64), and 51 of them affected more than one category, including key genes 

such as APOE, APOC1, TOMM40, ABCG2, and KCNQ1 (Fig. 3 and Table S7). 
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We also conducted a colocalization analysis to elucidate the potential molecular 

function of identified GWAS signals (Fig. 3 and Table S8). Our results identified 

335 unique genes that might mediate the outcome through their expression 

(posterior probability > 0.9), including GBAP1 which colocalized with five 

different traits (uric acid, serum creatinine, hematocrit, hypertension, and gout). 

These findings highlight the pleiotropic effects of these genes and present 

potential avenues for cross-disease therapeutic strategies, where targeting one 

gene could influence multiple related disorders. Understanding these shared 

genetic effects is crucial for devising broader precision medicine approaches, 

particularly for managing comorbidities. 

Genetic Correlation and Clusters 

Pairwise genetic correlation analysis revealed three major phenotype clusters: 

cardiometabolic traits, autoimmune and infectious diseases, and kidney-related 

traits (Fig. 4 and Extended Data Fig. 3). The cardiometabolic cluster, which 

includes type 2 diabetes, hypertension, and BMI, reinforces the interconnected 

genetic architecture of cardiovascular and metabolic diseases. The cluster of 

autoimmune and infectious diseases, which includes viral hepatitis B, psoriasis, 

and systemic lupus erythematosus, highlights shared immune system 

pathways and potential gene-pathogen interaction. The kidney-related cluster 

involved gout, chronic kidney disease, calculus of kidney and ureter, ankylosing 

spondylitis, and measures of urea nitrogen, creatinine, and uric acid. These 

findings are significant for clinical applications, suggesting that shared genetic 

risks across diseases could enable earlier detection of comorbidities and 

prevention strategies based on an individual’s genetic profile. The shared 

genetic architecture also implied that we may leverage the genetic risk of 

correlated traits while developing the PRS model.  

Cross-Population Comparison Based on GWAS  

Cross-population comparisons25 with the Europeans from UKB showed varying 

degrees of genetic correlation, with strong correlations for traits like 

cholelithiasis (ρge > 0.999), type 2 diabetes (ρge= 0.829), and ischemic heart 

disease (ρge= 0.756), but moderate correlations for gout (ρge= 0.616) and 

psoriasis (ρge= 0.418) (Table S6). These findings demonstrate the importance 
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of population-specific genetic studies, as differences in genetic architectures 

between populations can significantly affect the accuracy of PRS models.  

Polygenic Risk Score (PRS) Development 

Building on these insights, we developed and validated PRS models that 

demonstrated strong predictive performance for a wide range of diseases. 

Although we used five PRS tools, including , LDpred226, Lassosum227, PRS-

CS28, SBayesR29, and MegaPRS30 (Tables S9-S13), we found that LDpred2 

outperformed the others for most traits. Therefore, we took the results of 

LDpred2 for further comparisons. Out of the 289 PRS models, AUC values 

surpassed 0.55 for 106 dichotomized phecodes, while all 24 models for 

quantitative traits accounted for more than 3% of the phenotypic variance. 

(Table S9 and Extended Data Fig. 4). The top-performing PRS models included 

well-known heritable traits such as ankylosing spondylitis (AUC = 0.812±0.016), 

psoriasis (0.710±0.016), atrial fibrillation (0.702±0.014), prostate cancer 

(0.696±0.018), systemic lupus erythematosus (0.695±0.015), rheumatoid 

arthritis (0.649±0.011), type 2 diabetes (0.642±0.005), female breast cancer 

(0.610±0.010), and hypertension (0.610±0.004). Interestingly, the PRS for 

hepatitis B also demonstrated genetic predictability (0.655±0.008). Comparing 

these results with heritability, which serves as the theoretical upper bound of 

PRS explained variance (r²), we found that 27 phecodes and 10 quantitative 

traits explained over 60% of their heritability, including prostate cancer, type 2 

diabetes, female breast cancer, HDLC, triglycerides, and red blood cell count 

(Fig. S2). 

Leveraging the identified clusters, we performed a multi-trait PRS training, 

PRSmix+31, for the traits within each cluster (Fig 5 and Table S14). Notably, 

multi-trait PRS models improved prediction accuracy for the cardiometabolic 

cluster with a 3.9% increase in AUC and a 1.70-fold improvement in phenotypic 

variance explained (r²). The performances of autoimmune and kidney-related 

clusters were also enhanced, with AUC improvements of 2.1% and 0.8%, 

respectively, and 1.44- and 1.32-fold improvements in variance explained (r²). 

The significant enhancement of multi-trait PRS (comparing r2 of LDpred2 and 

PRSmix+ with paired t-test, p=1.1x10-9) highlights the potential of leveraging 
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shared genetic architecture to enhance disease prediction. Fig. 5 demonstrated 

the performance of single and multi-trait PRS across three disease clusters, 

and the differing effectiveness of PRS in predicting genetic risk across various 

disease categories.  

External Validation and Comparison of PRS Models  

To evaluate the robustness of the clinical implications of these findings, we 

performed the external validation of these PRS models (hypertension, type 2 

diabetes, viral hepatitis B, gout, calculus of kidney from PRSmix+ and others 

from LDpred2) in Taiwan Biobank (TWB), UKB, and All of Us and confirmed 

their robustness and generalizability in EAS across different biobanks (Fig. 6). 

Although the TWB questionnaire did not contain specific details on hepatitis B 

status, we used anti-hepatitis B core total antibodies (Anti-HBc) as an indicator 

of infection or past infection and hepatitis B e-antigen (HBeAg) as a marker of 

active viral replication. Intriguingly, the AUC for HBeAg was 0.678±0.012, and 

for Anti-HBc, 0.531±0.002. These results suggest that the PRS for hepatitis B 

is predicting for the symptoms or severity of the disease.  

TPMI-derived PRS models also consistently outperformed UKB European-

derived models when applied to EAS (Fig. 6). These results suggest that 

population-specific PRS models could play a pivotal role in precision medicine, 

allowing for more accurate risk stratification and enabling personalized 

healthcare interventions. Additionally, we assessed the performance of TPMI-

derived PRS across various ancestry groups, including European, African, 

Admixed American, and South Asian populations from the UK Biobank and All 

of Us cohorts (Extended Data Fig. 5). The performance varied by diseases, but 

consistent results were observed for female breast cancer and glaucoma 

across populations. 

Impact of Genetic Risks on Overall Disease Burden 

Although overall health is hard to define with a few metrics, herein, we used the 

count of clinical visits and duration of hospitalization to roughly describe 

individuals’ overall disease burden. We found the 128 well-performed PRS 

models (PRSmix+ and LDpred2 model with AUC > 0.55 for phecodes and r2 > 
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0.03 for continuous traits) shown to influence overall health indices, explaining 

8.06% of the variation in clinical visit frequency (p-value = 5.7x10-13) and 9.07% 

of the variation in hospitalization duration (p-value = 1.4x10-23, Table 1). Among 

the identified clusters, cardiometabolic cluster contributed the most to the 

indices, accounting for 1.14% of clinical visits and 3.22% of hospitalizations. In 

short, we quantified the proportion of the developed polygenic risk of various 

diseases and traits on human health, and the results underlined the importance 

of genomic impact and necessary for precision health development. 

Discussion 

This study represents the largest GWAS conducted to date in the Han Chinese 

population, utilizing data of around 500,000 individuals recruited from 16 

medical centers across Taiwan. We investigated the genetic architecture of 700 

dichotomized phecodes and 24 quantitative traits, identifying 2,444 

independent variant-trait associations and showed that population-specific 

genetic risk-prediction PRS models for a wide range of diseases performed well 

in the population. Indeed, for the 128 traits where there is sufficient sample size 

in the cohort, the PRS performance (AUC > 0.55 for dichotomized phecodes 

and r2 > 0.03 for quantitative traits) rival those developed for Europeans using 

UKB data. These findings show that population-specific PRS models can be 

developed successfully for non-European populations and our project serves 

as a model for large-scale genetic studies in non-European populations.  

Recent large-scale projects that emphasize ancestral diversity in human 

genetic studies have discovered new findings with the inclusion of non-

European subjects. MVP conducted multi-ancestry GWAS on 635,000 

participants, identifying over 2,000 signals unique to non-European 

populations16. With the TPMI dataset, we performed the largest-ever GWAS in 

the Han Chinese for several traits. For instance, the previous largest meta-

analysis for type 2 diabetes included 77,418 cases from EAS populations, of 

which 20,573 were Han Chinese32. In contrast, our GWAS included 59,289 

cases of type 2 diabetes, almost tripling the number of cases ever tested, and 

identified eight unreported T2D SNPs from known regions, demonstrating the 

power of TPMI sample size. Identification of new and population-specific risk 
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variants may lead to further understanding of their molecular mechanism and 

underline the need for population-specific weightings in PRS models. Moreover, 

population-specific findings also explain better performance of population-

specific PRS model in the population in question. In short, our Han Chinese 

specific genomic profiles for comprehensive phenotypes provide a solid 

foundation for population-specific PRS development and precision medicine 

implementation.  

Our understanding of how the genetic factors influencing Hepatitis B, an 

epidemic infectious disease in Taiwan with an estimated hepatitis B virus carrier 

rate of 15-20%, also benefited from the large dataset. With 23,618 cases, a 

significant increase from prior studies of only a few thousand cases, we 

identified novel loci and demonstrated that host genome may determine the 

severity and symptoms of this infectious disease. This is similar to that 

previously reported in COVID-19 and pneumonia, where genetic factors have 

been shown to influence disease outcomes33-36. Our unexpected success of 

GWAS and PRS for hepatitis B not only demonstrate the power of the large 

sample size of TPMI, but also reveal the necessity of population-specific 

genetic study for population-unique diseases. 

In addition, the comprehensive phenotypic data allows us to leverage the 

genetic correlation of multiple traits to improve the performance of PRS models. 

Three large clusters of correlated traits were identified from pairwise genetic 

correlation analysis. Including the correlated traits in PRS model development 

improved performance, resulting in an average 1.53-fold increase in the 

explained percentage of phenotypic variation. Although previous studies have 

proven the utility of multi-traits on target diseases31,37,38, we are first to use this 

approach at a phenome-wide level and demonstrate the improvement across 

different types of traits. As a result, we produced well-performed PRS for 

various categories of diseases, including cardiometabolic diseases, 

autoimmune disorders, and infectious diseases.  

We evaluated our PRS models across several large cohorts, including the TWB, 

UK Biobank, and All of Us. The TPMI-derived PRS models consistently 

outperformed those developed from European populations when applied to 
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diseases in EAS from the three large cohorts. When comparing with European-

derived PRS models, we also observed better performance across several 

traits in EAS, particularly for cardiometabolic and autoimmune diseases. By 

integrating these well-developed PRS models, we estimate that genetics 

account for 9.1% of the disease burden in Taiwan. As Taiwan has an aging 

(and soon to be super-aging) population, implementing genetic risk-based 

health management strategies may decrease the disease burden while 

extending health-span significantly. 

As with other large-scale studies, our study has several commonly found 

limitations. First, the TPMI cohort size is not sufficiently large to study some of 

the severe subtypes of many (common or rare) diseases, such as diabetes 

insipidus and neurofibromatosis. Second, we attempted to use eQTLs to 

elucidate the molecular mechanism of diseases, but the underrepresentation of 

EAS in current eQTL datasets, such as GTEx, poses challenges39. Gene 

expression regulation varies across ancestries40,41, and differences in LD 

structures further complicate colocalization analyses. Therefore, ancestral 

diversity is an urgent need not only in genomic data but also in transcriptomic, 

proteomic, metabolomic, and epigenomic datasets. Third, the EMR of the 

participants are incomplete, as some participants receive care from multiple 

health providers, but the TPMI only has access to EMRs from their enrollment 

hospitals. Furthermore, the current project retrieved EMRs from an average of 

5 years prior to enrollment, so some important data such as age of disease 

onset for the older participants are not available. Incomplete EMR leads to less 

precise case definition of some participants. Fourth, some of the younger 

participants have high-risk genetic profiles but are disease free for those 

diseases. The duration of the project is too short to determine whether they will 

eventually develop those diseases.  

Effort is underway to gain access to the complete EMRs of the TPMI 

participants and to recruit additional participants with severe subtypes of 

common diseases. The high-risk participants who are symptom-free are being 

followed to monitor disease development. Future studies are being planned to 

study the high-risk individuals who escape disease development to identify 
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genetic and non-genetic factors that mitigate their disease risk. 

This study formally validates the common belief that population-specific risk-

prediction models perform well in that population, pointing to the need to build 

these models in the major populations across the world. As the PRSs we 

developed perform well in EAS, the implementation of genetic findings is now 

available to an additional 25% of the world’s population. It is hopeful that if all 

EAS obtain their genetic profiles and determine their risk for major diseases, 

many diseases can be prevented or their onset can be delayed significantly, 

thereby fulfilling the promise of modern genetics. 

We also found notable evidence that, for certain diseases, e.g. female breast 

cancer and glaucoma, PRS models developed from one population can perform 

equally well in other populations, suggesting a shared genetic etiology for those 

conditions. This raises the possibility of creating universal PRS models that 

could be effective across diverse populations for at least some diseases.  

In conclusion, we used a large-scale Han Chinese dataset produced by the 

TPMI to conduct pheno-wide genetic analyses and leverage these genetic 

findings to train risk prediction models for multiple diseases and traits. The 

developed models are validated in EAS of different biobanks and demonstrate 

a consistent performance that bodes well for their use in the general Han 

Chinese/EAS population. Our approach can serve as a template for developing 

PRS models in populations currently without such resources, anticipating the 

time when all populations around the world can benefit from risk-based health 

management as part of the precision health movement. 

Methods  

Study Population and Phenotyping 

We utilized the Taiwan Precision Medicine Initiative (TPMI) dataset, which links 

extensive electronic medical records (EMR) with genotypic data for 486,956 

individuals. Dichotomized disease status was defined by phecodes, which were 

based on information extracted from the EMR using International Classification 

of Diseases (ICD) codes18,19. To ensure robustness, cases were defined by 
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having the diagnosis of the relevant condition on two or more clinical visits. We 

also extracted quantitative traits from the EMR, including anthropometric, vital 

sign and laboratory measurements, and we excluded the extreme outliers and 

removed or adjusted the treated and/or medicated measures based on previous 

research, and the median value was kept if the participant had multiple qualified 

measures42. (Supplementary methods) In this study, we focused on 702 

dichotomized phenotypes (phecodes) that had at least 2,000 cases and 24 

quantitative traits that were measured in at least 100,000 individuals. These 

phecodes spanned 17 disease categories, including but not limited to infectious 

diseases, neoplasms, endocrine/metabolic disorders, and circulatory system 

diseases. The 24 quantitative traits were categorized into anthropometric, 

circulatory, hematological, kidney-related, liver-related, and metabolic 

measurements. 

Genotyping and Quality Control 

Genotyping was performed using two customized high-density Axiom SNP 

arrays produced by Thermo Fisher (Waltham, MA, USA), TPM1 and TPM2. The 

genotyping experiments were conducted in six genotyping centers in Taiwan17. 

The raw genotypic data underwent quality control measures, and the genetic 

variants were excluded when they had call rate <0.02, minor allele frequency 

(MAF) <0.01, Hardy-Weinberg equilibrium test p-value <1x10-6. We also 

excluded individuals with overall call rate <0.95, failed heterozygosity check, or 

inconsistent documented versus genetically determined sex. For this study, we 

only included the genetic variants found on both genotyping arrays and 

excluded variants with a significant batch effect in GWAS. The proportion of 

genetic ancestry was determined by ADMIXTURE43, and the projected principal 

component scores with 1000 Genome as reference panel were applied to 

determine individuals’ ancestry44. As a result, 401,710 genetic variants and 

463,447 Han Chinese participants passed all quality control measures and 

were used in the subsequent studies.  Details are found in supplementary 

methods and GitHub (https://github.com/TPMI-Taiwan/tpmi-qc). 

Phasing and Imputation 

Phasing was conducted on QC-passed genotype data with SHAPEIT545. 
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Genome imputation was carried out with IMPUTE5 using a reference panel of 

1,498 whole genome sequenced Taiwan Biobank subjects12,46. We also 

conducted post-imputation quality control with exclusion criteria INFO score ≤ 

0.7 and MAF ≤ 0.01. In addition, we also performed a chip-GWAS for minimizing 

the bias from different chips, resulting in a dataset of 8,046,864 well-imputed 

common genetic variants. 

Population Structure and Relatedness Estimation 

We performed a principal component analysis (PCA) based on genotyped 

variants to capture the effect of population structure. To diminish the effect of 

close relatives, the main PCA was conducted in a genetically unrelated subset, 

and other subjects were projected with the calculated PC weightings. And then, 

these PCA scores were leveraged to accurately quantify the proportion of 

identity-by-decent (IBD) and degree of relatedness. The maximum unrelated 

set was determined based on these estimated degrees of relatedness. PC-AiR 

and PC-Relate were used for PCA and relatedness estimation and PRIMUS 

was used for identifying the maximum unrelated set with the third degree as 

threshold47-49. 

Genome-Wide Association Study (GWAS) 

To train and validate the proposed PRS models, we left 100,000 unrelated 

subjects out of GWAS. To maximize the statistical power, we used a mixed-

effect regression model to examine the association between genotype and 

outcome of interest, logistic regression for dichotomized phecode, and linear 

regression for quantitative traits. The quantile-normalization was applied to 

quantitative traits to ensure the normal distribution. The mixed-effect model 

accounted for relatedness among individuals by including a random effect for 

pairwise kinship. The model also adjusted for key covariates, including age, sex, 

age2, interactions between age/age2 and sex, genotyping chip, enrollment 

hospital, and 10 genetic principal components to control for population 

stratification. SAIGE was applied for the mixed effect model GWAS50. In 

addition, we also performed a generalized linear model from PLINK2 for GWAS 

among the unrelated subset (n = 248,754)51, and these statistics were used for 

heritability and genetic correlation estimation.   
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Replication Evaluation   

To systematically evaluate the performance of our GWAS, we leveraged a pre-

summarized phenotype-genotype reference map52, which collected 5,879 

genetic associations for 149 unique phecodes from 523 published GWAS and 

1,215 associations from EAS. We calculate the overall and power-adjusted 

replication rates and actual over expected ratio for each available phecode and 

categories respectively.  For measuring the quality of biobank data through 

replication an R package PGRM was used52.   

Fine-mapping 

We performed fine-mapping to identify the independent GWAS signals in all 

genomic regions containing any variant with a p-value < 5x10-8 and ±1.5 Mb of 

the regional lead variant14, except the major histocompatibility complex region 

(MHC region, chr6: 25,391,792-33,424,245) due to its complex LD structure. 

We used the reported 95% credible set to determine the independent signals, 

and up to ten signals were allowed for each region. The genome-wide 

significant threshold was applied for defining a credible set as an independent 

hit, and an additional requirement of log Bayes factor (BF) > 2 was applied for 

the second hit. For the failed fine-mapping regions and MHC region, we used 

the lead SNP as the hit of each significant region. SuSiE was conducted for this 

summary statistics-based fine-mapping with LD derived from our imputation 

reference panel53. 

Novel Association Identification 

We comprehensively compared our GWAS results with reported significant 

signals on the NHGRI-EBI GWAS Catalog54, download at 2024-03-11. The 

mapping of phecodes and quantitative traits to GWAS catalog phenotypes is 

summarized in Table S15.  We classified a gene or region as novel if the fine-

mapped independent signal was not located within 1 Mb of any reported 

genome-wide significant association (p-value < 5x10-8) for the corresponding 

phenotype55. Additionally, a variant was considered a novel hit if the highest 

linkage disequilibrium (LD) r² was less than 0.1 with any reported significant 

association. Associations derived from uncertain and umbrella phecodes were 
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excluded, and for duplicated genetic variants or regions, we only reported the 

association with the smaller p-value or from the phecode with the more specific 

definition. Finally, we used ANNOVAR to annotate the novel variants with data 

from the RefSeq Gene database (2020-08-17 updated)56,57. 

Heritability, Genetic Correlation, and Clustering   

To quantify the genomic contribution of the specific traits, we applied linkage 

disequilibrium score regression to estimate the SNP-based heritability with 

LDSC24. The GWAS summary statistics and the pre-calculated LD score from 

EAS superpopulation of 1000 Genome were used44. For the dichotomized traits, 

we performed a liability-scaled transformation on the observed heritability using 

the 5-years population prevalence from the National Health Insurance 

dataset20,58. Additionally, we conducted LDSC to obtain pairwise genetic 

correlations to assess the similarity of genetic mechanisms between traits59. 

Based on the genetic correlation matrix, we used a hierarchical cluster analysis 

to identify groups of traits that share genetic mechanisms. We employed the 

weighted pair group method with arithmetic mean (WPGMA) for clustering, and 

the resulting cluster tree was used for group identification. Moreover, we 

estimate the genetic correlation across populations, TPMI and UK biobank, to 

demonstrate varied genetic architecture in different ancestry populations. For 

the UK biobank GWAS, we applied a generalized linear model from PLINK2 

with the predefined phecode, https://github.com/umich-

cphds/createUKBphenome, and corresponding baseline quantitative measures 

among the identified unrelated set (n = 378,544). Popcorn was performed for 

the cross-population genetic correlation, and two correlation coefficients were 

calculated, the transethnic genetic-effect correlation (ρge) and transethnic 

genetic-impact correlation (ρgi)25. 

Gene-Level Heritability and Colocalization  

We used both gene-level heritability estimation and colocalization analysis to 

map our GWAS findings to functional units, specifically genes. We conducted 

h2gene analysis to partition SNP-based heritability to the gene level60. We 

estimated heritability for genes that overlapped with fine-mapped regions, 

where gene regions were defined as the gene body ±10 kb for gene-level 
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heritability. Additionally, to illustrate the molecular functions of genes of interest, 

we used colocalization analysis to examine whether there are shared common 

genetic causal variants between tissue-specific gene expression and traits of 

interest. We utilized expression quantitative traits locus (eQTL) resources from 

49 tissues in GTEx v839, testing any gene with genome-wide significant signals 

in the cis-regulation region (±1 Mb). The posterior probabilities were used to 

evaluate colocalization between gene expression and the trait of interest. The 

R package, coloc, was used with SuSiE relaxing the single causal variant 

assumption61,62.  

Single and Multi-Trait Polygenic Risk Score (PRS) 

The preserved dataset of 100,000 unrelated TPMI subjects was split into two 

subsets, training (n = 80,000) and validation (n = 20,000) for PRS model 

building. Five popular PRS tools were used, LDpred226, Lassosum227, PRS-

CS28, SBayesR29, and MegaPRS30, and the training subset was applied for 

parameter selection and model optimization if needed. LDpred2, PRS-CS, and 

SBayesR assumed the effect of genetic variants following a mixture distribution 

with different pre-defined parameters and applied a Bayesian framework for 

distribution estimation. Lassosum2 utilized a penalized regression (LASSO) for 

weight estimating, and MegaPRS leveraged minor allele frequency and linkage 

disequilibrium for model building. We then used the validation subset to 

evaluate the performance of PRS models. Individual score was calculated with 

PLINK251. The explained variance (r2) was used to evaluate the performance 

of PRS for quantitative traits63,64, and two indices, area under the receiver 

operating characteristic curve (AUC) and liability-scaled r2, were used for PRS 

of dichotomized phenotypes. The likelihood ratio test was used to obtain the 

significance for r2 with R package, lmtest, and standard error for AUC was 

calculated with R package, auctestr.  To further leverage the gene’s pleiotropy 

and shared genetic mechanism among traits, we conducted a multi-trait PRS 

model building for the traits in the same genetic cluster based on pairwise 

genetic correlation identified in the previous step. We pooled all PRS models 

from five tools for those identified traits and applied an elastic net regression to 

combine their weighting and find the most optimized model for the target trait. 
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PRSmix+ was performed for the multiple traits PRS model building31.     

External Validation and Comparison  

We conducted an external validation of our developed PRS using data from the 

Taiwan Biobank, EAS from UK Biobank and All of Us. TWB is a community-

based biobank, and it has recruited over 200,000 participants in Taiwan. Herein, 

we used 120,460 independent subjects, who were genotyped with the Axiom 

customized chip TWB2 (equivalent to TPM1), and their genotyping QC, phasing, 

and imputation followed the same protocol as described above. The self-

reported disease condition was queried from their baseline questionnaire, 

except for cancer. Since the study design of TWB excluded cancer patients at 

recruitment, we used both baseline and follow-up self-reporting data to define 

cancer cases and controls. UKB has enrolled ~500,000 participants since 2006 

and linked their genetic data with enriched phenotypic data. For external 

validation, we only used self-reported Chinese (more diverse than Han Chinese) 

as East Asian and their inpatient record for case definition. All of Us intends to 

enroll over 1 million participants in the United States and has released whole 

genome genotyping data for ~312,000 participants as of the first quarter of 2024. 

The genetically confirmed EAS as well as other superpopulations and their 

linked EMR were used for validating our PRS models. Moreover, we compared 

the TPMI-derived PRS model with UKB-derived models to investigate the 

performance of population-specific PRS. The UKB-derived models were based 

on published UKB European GWAS (https://pheweb.org/UKB-TOPMed/), and 

LDpred2-auto was applied for model building.             

Overall Disease Burden Evaluation  

We evaluated the genetic impact on overall disease burden. We used the 

number of clinical visits and the aggregate duration of hospitalization as disease 

burden indices. Due to collinearity among PRS for different traits, we utilized a 

partial least square-generalized linear model (PLS-GLM) to extract components 

from the PRS of qualified traits with R package, plsRglm65. The number of 

extracted components was determined by the Akaike Information Criterion 

(AIC). We then estimated the covariate-adjusted proportion of genetic 

contribution (r²) by comparing the full model with the null model, which included 
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only covariates such as sex, age, and hospital. Likelihood ratio test was used 

to obtain the significances of regression models. For each index, we employed 

three models to compare the top and bottom 5%, 10%, and 20%. We selected 

covariate-matched controls from subjects without hospitalization records as the 

bottom group for hospitalization models. 

Code availability 

Code for genotyping quality control process and analysis is available at our 

Github (https://github.com/TPMI-Taiwan/).  

Data availability  

The genotyping and electronic medical record (EMR) data analyzed in this 

study are from the Taiwan Precision Medicine Initiative (TPMI) with proper 

approval from the TPMI Data Access Committee. In compliance with the 

confidentiality laws governing genetic and health data in Taiwan, the de-

identified TPMI data are kept in a secure server at the Academia Sinica and not 

released to the public. All summary statistics, polygenic risk score (PRS) 

models, and GWAS results are freely available from the TPMI website 

(https://tpmi.ibms.sinica.edu.tw). Researchers requesting access to the 

individual genotyping and EMR data can do so on a collaborative basis. 

Instructions on requesting access to the data can be found on the TPMI’s official 

website (https://tpmi.ibms.sinica.edu.tw). 
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Taichung Veterans General Hospital (SF19153A), Changhua Christian Hospital 
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Christian Hospital (IRB2021128), Taipei City Hospital (TCHIRB-10912016), 

Koo Foundation Sun Yat-Sen Cancer Center (20190823A), Cathay General 

Hospital (CGH-P110041), Fu Jen Catholic University Hospital (FJUH109001) 

and Academia Sinica (AS-IRB01-18079), Taiwan. Written informed consent 

was obtained from the subjects in accordance with institutional requirements 

and the Declaration of Helsinki principles. All collected information was de-

identified before statistical data analysis. The analysis with Health and Welfare 

Data Science Center (HWDC) was approved by Institutional Review Boards of 

Academia Sinica (AS-IRB-BM-23056). This research has been conducted 

using the UK Biobank Resource under UK Biobank Main Application 15326. 

Work with All of Us data was performed using the All of Us Researcher 

Workbench under the workspace “Duplicate of Prediction of Polygenic Traits'”. 
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Figure legend 
Fig. 1. Scatter plots of the case proportion for dichotomized phenotypes and 
sample size for quantitative traits in TPMI dataset. (A) The case proportion in 
TPMI is compared to the 5-year prevalence in the National Health Insurance 
Research Database (NHIRD) for 702 dichotomized phenotypes (phecodes). 
Each dot represents a specific phecode, with the x-axis showing the prevalence 
in NHIRD and the y-axis showing the case proportion in TPMI. (B) Scatter plot 

shows the sample sizes for 24 quantitative traits in the TPMI cohort. Each point 
represents a trait, with the x-axis indicating the different category of quantitative 
traits and the y-axis representing the corresponding sample sizes. 
Fig. 2. Pheno-wide independent variant-trait associations. Vertical bars show 
the accumulated number of independent variant-trait associations for 
dichotomized phecodes (top panel) and quantitative traits (bottom panel). Each 
category of diseases and traits is represented by a corresponding color. The X-
axis is chromosome number, and the Y-axis represents the accumulated 
number of associations, highlighting the uneven distribution of trait-associated 
variants across phenotypes.  
Fig. 3. Gene-level heritability and colocalization with gene expression. Circle 
plot showing gene-level heritability and colocalization with gene expression for 
(A) dichotomized phenotypes, summarized in parent (integer) phecodes, and 
(B) quantitative traits. Dots represent gene-level heritability (h2) > 10-3, squares 
indicate colocalization posterior probability > 0.9, and triangles show both. Inner 
circle indicates the number associated traits for each identified gene. The bar 
chart shows the number of identified genes by category and grouped by type 
of pleiotropy.   
Fig. 4. Genetic correlation among three identified trait clusters. Heatmap 
displays genetic correlations between trait clusters: cardiometabolic, 
autoimmune/infectious diseases, and kidney-related traits. Genetic correlation 
was estimated using LDSC, with colors representing the correlation coefficients 

between traits. 
Fig. 5. PRS performance for the three identified trait clusters. Bar plot shows 
SNP-heritability and PRS explained variance (r²) for (A) cardiometabolic trait 
cluster, (B) autoimmune trait cluster, and (C) kidney-related trait cluster. Gray 
bars indicate SNP-heritability, and the colored bar chart presents the r² values, 
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indicating the proportion of variance explained by the PRS from single-trait PRS 
(LDpred2, red bar) or multi-trait PRS (PRSmix+, blue bar), while the dot and 
whisker plot showcases predictive accuracy using AUC. The area under the 
receiver operating characteristic curve (AUC) presented with 95% confidence 
interval for dichotomized traits.  
Fig. 6. External validation of PRS models in Taiwan Biobank and other cohorts. 
PRS performance is presented as area under the receiver operating 
characteristic curve (AUC) ± 95% CI in TPMI (orange), Taiwan Biobank (green), 
East Asians in UK Biobank (blue), and East Asians in All of Us (purple). Circles 
represent TPMI-derived PRS, and triangles indicate UKB (European)-derived 
PRS models. Only the estimates with case size > 40 were showed on the figure.   
Extended Data Fig. 1. Comparison of TPMI GWAS-identified loci to the 

previously published GWAS. The replication rates of TPMI GWAS-identified 
loci when compared to previously reported loci from the GWAS catalog are 
presented in this bar chart. Red bars indicate the comparison of TPMI findings 
to that of all ancestries and blue bars represent the comparison to East Asian 
ancestries. The categories of diseases are shown under the bars. 
Extended Data Fig. 2. The Manhanttan plot of GWAS for viral hepatitis B in 
TPMI. The names of nearest mapped gene were labed for the independent 
GWAS significant loci. 
Extended Data Fig. 3. Genetic correlation heatmap for all heritable traits. 
Heatmap showing genetic correlations among heritable traits. Genetic 
correlations were estimated using LDSC, with colors representing the 
correlation coefficients between traits. The weighted pair group method with 
arithmetic mean (WPGMA) was used for clustering with the correlation 
coefficient as distance between traits.  
Extended Data Fig. 4. The bar chart and dot plot for PRS performance. Bar 
and dot plot showing PRS explained variance (r²) and SNP-heritability for 
dichotomous traits. Gray bars represent SNP-heritability, and dots show AUC. 
An asterisk (*) indicates estimates considering the MHC region. 
Extended Data Fig. 5. External validation of PRS models across populations. 
PRS validation (AUC ± 95% CI) in East Asian (red), European (olive green), 
African (green), South Asian (blue), and All of Us (purple) populations from 
TPMI (circle), UKB (triangle), and All of Us (square) cohorts. 
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Fig 1. Scatter plots of the case proportion and case number in TPMI dataset. (A) The case proportion in TPMI is compared to the 5-
year prevalence in the National Health Insurance Research Database (NHIRD) for 702 dichotomized phenotypes (phecodes). Each 
dot represents a specific phecode, with the x-axis showing the prevalence in NHIRD and the y-axis showing the case proportion in 
TPMI. (B) Scatter plot shows the sample sizes for 24 quantitative traits in the TPMI cohort. Each point represents a trait, with the x-
axis indicating the different category of quantitative traits and the y-axis representing the corresponding sample sizes.
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Fig. 2. Pheno-wide independent variant-trait associations. Vertical bars show the accumulated number of independent variant-trait associations 
for dichotomized phecodes (top panel) and quantitative traits (bottom panel). Each category of diseases and traits is represented by a 
corresponding color. The X-axis is chromosome number, and the Y-axis represents the accumulated number of associations, highlighting the 
uneven distribution of trait-associated variants across phenotypes.
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Fig. 3. Gene-level heritability and colocalization with gene expression. Circle plot showing gene-level heritability and colocalization with gene 
expression for (A) dichotomized phenotypes, summarized in parent (integer) phecodes, and (B) quantitative traits. Dots represent gene-level 
heritability (h2) >10-3, squares indicate colocalization posterior probability > 0.9, and triangles show both. Inner circle indicates the number 
associated traits for each identified gene. The bar chart shows the number of identified genes by category and grouped by type of pleiotropy. 
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Fig. 4. Genetic correlation among three identified trait clusters. Heatmap displays genetic correlations between trait clusters: cardiometabolic, 
autoimmune/infectious diseases, and kidney-related traits. Genetic correlation was estimated using LDSC, with colors representing the correlation 
coefficients between traits. 
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Fig. 5. PRS performance for the three identified trait clusters. Bar plot shows SNP-heritability and PRS explained variance (r²) for (A) 
cardiometabolic trait cluster, (B) autoimmune trait cluster, and (C) kidney-related trait cluster. Gray bars indicate SNP-heritability, and the colored 
bar chart presents the r² values, indicating the proportion of variance explained by the PRS from single-trait PRS (LDpred2, red bar) or multi-trait 
PRS (PRSmix+, blue bar), while the dot and whisker plot showcases predictive accuracy using AUC. The area under the receiver operating 
characteristic curve (AUC) presented with 95% confidence interval for dichotomized traits.
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Fig. 6. External validation of PRS Models in Taiwan Biobank and other cohorts. PRS performance is presented as area under the 
receiver operating characteristic curve (AUC) ± 95% CI in TPMI (orange), Taiwan Biobank (green), East Asians in UK Biobank (blue), 
and East Asians in All of Us (purple). Circles represent TPMI-derived PRS, and triangles indicate UKB (European)-derived PRS 
models. Only the estimates with case size > 40 were showed on the figure.  
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Extended Data Fig. 1. Comparison of TPMI GWAS-identified loci to the previously published GWAS. 

The replication rates of TPMI GWAS-identified loci when compared to previously reported loci from 

the GWAS catalog are presented in this bar chart. Red bars indicate the comparison of TPMI 

findings to that of all ancestries and blue bars represent the comparison to East Asian ancestries. 

The categories of diseases are shown under the bars. 
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Extended Data Fig. 2. The Manhanttan plot of GWAS for viral hepatitis B in TPMI. The names of nearest mapped gene were labed for the 
independent GWAS significant loci.  
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Extended Data Fig. 3. Genetic correlation heatmap for all heritable traits. Heatmap showing genetic correlations among heritable traits. Genetic 
correlations were estimated using LDSC, with colors representing the correlation coefficients between traits. The clustering three is based on the 
weighted pair group method with arithmetic mean (WPGMA) with the correlation coefficient as distance between traits.
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Extended Data Fig. 4. The bar chart and dot plot for PRS performance. Bar and dot plot showing PRS explained variance (r²) and SNP-heritability 
for dichotomous traits. Gray bars represent SNP-heritability, and dots show AUC. An asterisk (*) indicates estimates considering the MHC region.
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Extended Data Fig. 5. External validation of PRS models across populations. PRS validation (AUC ± 95% CI) in East Asian (red), European (olive 

green), African (green), South Asian (blue), and All of Us (purple) populations from TPMI (circle), UKB (triangle), and All of Us (square) cohorts.
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Table 1 
Table 1. Proportion of disease burden explained by genetic risk 

  top 5 % vs. bottom 5 % top 10 % vs. bottom 10 % top 20% vs. bottom 20% 

  Raw model Adjusted model1 Raw model Adjusted model1 Raw model Adjusted model1 

Index Genetic risk R2 p-value R2 p-value R2 p-value R2 p-value R2 p-value R2 p-value 

Clinical visit Cardiometabolic traits 0.67% 8.5x10-4 1.14% 4.4x10-2 0.38% 1.9x10-4 0.77% 1.3x10-3 0.27% 1.3x10-4 0.56% 1.7x10-4 
 Autoimmune and infectious diseases 1.10% 1.8x10-4 0.93% 6.2x10-2 0.65% 2.0x10-5 0.58% 4.0x10-3 0.37% 4.0x10-5 0.32% 2.4x10-2 
 Kidney-related traits 0.88% 1.3x10-3 0.87% 7.8x10-2 0.57% 2.0x10-4 0.37% 9.4x10-1 0.26% 9.4x10-5 0.19% 2.0x10-2 
 All predictable traits (128 traits) 7.74% 1.5x10-27 7.99% 5.7x10-13 3.84% 4.0x10-27 3.84% 2.0x10-25 1.79% 2.0x10-25 1.95% 8.0x10-14 

Hospitalization Cardiometabolic traits 2.40% 1.5x10-8 3.22% 2.4x10-8 1.11% 6.5x10-8 1.48% 4.1x10-9 0.65% 4.1x10-15 0.86% 6.1x10-9 
 Autoimmune and infectious diseases 1.09% 6.8x10-4 1.42% 3.1x10-3 0.21% 2.6x10-3 0.29% 2.1x10-3 0.15% 2.1x10-11 0.19% 2.0x10-2 
 Kidney-related traits 0.39% 5.2x10-3 0.51% 2.2x10-2 0.43% 3.4x10-3 0.58% 2.8x10-3 0.21% 2.8x10-11 0.28% 1.1x10-2 
 All predictable traits (128 traits) 6.75% 1.1x10-25 9.09% 1.4x10-23 3.80% 4.9x10-27 5.08% 6.8x10-32 2.36% 6.8x10-32 3.12% 2.2x10-31 
1Model adjusting for sex, age and enrollment hospital  
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