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ABSTRACT 
 

 

Alzheimer's disease (AD) can be conceptualized as a network-based syndrome. 

Network alterations are linked to the molecular hallmarks of AD, involving amyloid-

beta and tau accumulation, and neurodegeneration. By combining molecular and 

resting-state functional magnetic resonance imaging, we assessed whether different 

biological patterns of AD identified through a data-driven approach matched specific 

abnormalities in brain dynamic connectivity. We identified three main patient clusters. 

The first group displayed mild pathological alterations. The second cluster exhibited 

typical behavioral impairment alongside AD pathology. The third cluster demonstrated 

similar behavioral impairment but with a divergent tau (low) and neurodegeneration 

(high) profile. Univariate and multivariate analyses revealed two connectivity patterns 

encompassing the default mode network and the occipito-temporal cortex, linked 

respectively with typical and atypical patterns. These results support the key 

association between macro-scale and molecular alterations. Dynamic connectivity 

markers can assist in identifying patients with AD-like clinical profiles but with different 

underlying pathologies. 

 

 

 

 

Within the clinical continuum of Alzheimer’s disease (AD), we identified two main groups: 

one characterized by typical AD neuropathological changes, and the other by atypical 

pathophysiological mechanisms. Univariate and multivariate analyses revealed two dynamic 

functional connectivity patterns, involving the default mode network and the occipito-

temporal cortex, respectively. 
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INTRODUCTION 

An operational framework, known as ATN from the biological markers of (A)myloid-beta (Aβ), 

(T)au, and (N)eurodegeneration, has facilitated a transition from a clinical perspective to a 

biological viewpoint of Alzheimer’s disease (AD), decoupling diagnosis from discrete clinical 

stages.1 Classification into ATN stages requires the designation of individuals as positive (+) 

or negative (-) for Aβ, tau, and neurodegeneration (A+/A−, T+/T−, N+/N−). While Aβ thresholds 

for positivity are relatively consistent across amyloid positron emission tomography (PET) 

studies, there is methodological variance in determining tau cut-offs based on PET, leading to 

limited consensus.2 In a recent review, Weigand et al. (2022) found that tau PET 

quantifications were consistently reliable across studies, but dichotomization cut-points varied 

significantly. This variability, with cut-points ranging from 1.13 to 2.79, may be due to 

differences in sample characteristics and processing methodologies.2 Similarly, there is no 

universal cut-off value to define abnormal Aβ cerebrospinal fluid (CSF), partially due to the 

variability of measurements across laboratories.3   

Overall, performance findings in thresholding methods, either based on CSF or PET data, 

show some variability mainly due to differences in methodology, such as processing steps, 

region-of-interest selection and different statistical approaches.2,4 Additionally, ATN cut-off 

points are not sensible to individual variability (e.g., age, genetics, sociodemographic) or 

specific brain regions, making challenging to establish universal sensitive/specific values.5–7 

These limitations appear more pronounced in view of non-AD pathophysiological mechanisms 

involving ATN markers, such as limbic-predominant age-related TAR DNA binding protein 43 

(TDP-43) encephalopathy (LATE)8, mimicking both AD clinical and N phenotypes.9,10  

Along with such complexity, the ATN poses also challenges for individuals with a clinical AD 

diagnosis but atypical biomarker abnormalities, such as amyloid negative patients with positive 

marker of tau and/or degeneration (A−T+N−, A−T−N+ and A−T+N+), all profiles referring to 

the suspected-non-AD pathology (SNAP). The underlying pathology of SNAP can be highly 

heterogeneous, although the prevalence of these possible combinations is still an open 

question, underling the necessity of new insights into the pathophysiology of SNAP.11  

Taking all these aspects together, given the challenges posed by the definition of universal 

cut-offs, inter-individual variability, overlapping pathophysiological mechanisms (e.g., LATE) 

and unclear ATN profiles (e.g., SNAP), data driven approaches rather than strict cut-off points 

may aid in differentiating the biological patterns in patients with a clinical diagnosis of AD.  

The core ATN system could also be extended by adding further brain fingerprints serving as 

novel biomarkers, such as functional connectivity (FC) from resting state functional magnetic 

resonance imaging (rs-fMRI). Such technique measures Brain signal arising from neural 

activity-related local blood flow changes and the subsequent alteration of the oxy-to 

deoxyhemoglobin ratio, allowing to detect large-scale neural networks. These circuits exhibit 
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specific spatiotemporal features and a certain degree of correspondence with behavior.12 

Among the well-known resting-state networks, the default mode network (DMN) has been 

shown to be  highly vulnerable in AD,13,14 to be linked with memory deficits,13,15 and to predict 

brain Aβ and tau deposition, suggesting that the molecular pathology may spread along 

functional pathways16,17. However, it is unlikely that there is a 1:1 ratio between pathology and 

distinctive network alterations. Imbalances within and between networks could better predict 

clinical and cognitive impairment, rather than focusing solely on a single network connectivity 

breakdown.18 Moreover, exploring dynamic FC (dFC) changes rather than static brain 

connectivity can provide a finer-grained characterization of FC modulations. Among these 

approaches,19 methods based on the frame-wise description of rs-fMRI time courses, e.g., co-

activation patterns (CAPs) analysis, are gaining increasing interest thanks to their ability to 

generate voxel-wise brain states representing how a specific brain region recurrently co-

activates or co-deactivates with all the others. Previous studies applied CAPs in both healthy 

and psychiatric disorders,20,21–23,24, showing higher sensitivity to characterize connectivity 

reconfiguration. 

Based on these assumptions, we first aimed at identifying individuals sharing similar biological 

ATN patterns in the clinical continuum of AD, by relying on a data-driven machine learning 

based approach. We hypothesize this would allow to detect groups exhibiting diverse ATN 

patterns which may correspond to different temporal stages of typical AD as well as atypical 

patterns suggestive of distinct pathological mechanisms.  

We then aimed at characterizing the dFC and associated brain states to capture the time-

varying brain activity and disease-induced modulations. We hypothesized that different dFC 

patterns would emerge in the ATN-based subgroups, providing a complete characterization of 

the identified ATN profiles, from a biological to physiological perspective. Moreover, we 

evaluated whether the dFC temporal measures associated with the different brain CAPs could 

hold predictive power in discriminating patients with diverse biological hallmarks. All these 

elements can uncover the association between data-driven ATN profiles and specific dFC 

fingerprints, reinforcing the assumption that manifold ATN profiles align with dFC. 

 

METHODS 

Participants and dataset 

From the Alzheimer’s Disease Neuroimaging Initiative (ADNI), we included 334 MCI/AD 

patients (74±10 years, female 43%) and 152 cognitively unimpaired individuals (CU)(74±9 

years, female 56%). For up-to-date information, see www.adni-info.org. The study was carried 

out in accordance with the guidelines of the Declaration of Helsinki. 

Data selection was based on the availability of structural T1-weighted (sMRI) and rs-fMRI 

images acquired on 3T scanners (Table 1). This cohort (referred to as the “imaging cohort”) 
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was used to compute CAPs. A subset of n=99 patients with fully availability of specific ATN 

measures (mean age 74 ± 8, female 51%; “ATN cohort”) was considered for further analyses. 

Specifically, ADNI individuals with the availability of the following data were considered as the 

“ATN cohort”: 1) Aβ42, total tau and phosphorylated tau (ptau) levels assessed in the CSF; 2) 

regional caudal middle frontal (CMF) gyrus, hippocampus, entorhinal cortex (EC), and 

amygdala mean values from both tau-PET and amyloid-PET standardized uptake values 

(SUVR); 3) whole brain composite tau-PET and amyloid-PET values, along with normalized 

FDG-PET signal within a set of predefined and previously validated regions of interest 

(metaROIs).25 Only participants with these data fully available and collected within 1 year from 

the MRI exam were included in the ATN cohort, to avoid any potential biases deriving from 

missing data. Finally, regional grey matter volumes of the hippocampus, amygdala, EC, and 

CMF gyrus were computed from the minimally preprocessed bias-field corrected sMRI data 

(fsl_anat, fsl.fmrib.ox.ac.uk/fsl/fslwiki) based on the Desikan-Killiany atlas and using 

FreeSurfer v.6 (surfer.nmr.mgh.harvard.edu/). These regions were select to cover regions 

showing alterations in both AD neuropathological change (AD-NC) and not AD-NC mimicking 

AD (e.g., LATE)26.  

Volumetric features were normalized to the respective total intracranial brain volume and 

averaged across the hemispheres. ATN measures were z-scored with respect to the mean 

and standard deviation values estimated from the whole group of 152 CU to depict variations 

compared to normative data. CSF Aβ42 values were multiplied by -1 to align with amyloid PET 

measures as elevated CSF Aβ42 indicates normal patterns, while high amyloid PET values 

signify severe amyloid pathology. Besides age, education level and gender, for each patient 

of the ATN cohort cognitive and clinical information were retrieved: Mini-Mental State 

Examination (MMSE) score, Clinical Dementia Score – Sum of Boxes (CDR-SB), total score 

from Alzheimer's Disease Assessment Scale-13 (ADAS-13), and composite measures 

computed from the ADNI consortium for memory, executive functions, language, and 

visuospatial abilities.27,28 

 

Co-activation patterns analysis 

Rs-fMRI data from the imaging cohort were preprocessed using the FMRIB Software Library 

(version 6.0). Details are reported in the Supplementary Material (paragraph S1.1). The 

denoised data, all truncated at the 192nd volume to ensure the same amount of data was 

available in all subjects, were then used for the CAPs analysis, conducted using the TbCAPs 

toolbox29 on MATLAB v2021a. The toolbox was adapted with in-house scripts to deal with 

large amount of data. The following steps were performed, starting from CU: 1) Z-score 

transformation of the rs-fMRI signals; 2) data masking using TbCAPs default grey matter 

mask; 3) frames with framewise displacement (FD)>0.1 were excluded to control for motion; 
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4) a single seed (PCC) was selected using a spherical region of interest (ROI) of  5-mm radius 

centered in the MNI peaks previously described (x=0, y=56, z=16).30 PCC was chosen 

according to its key role as hub of the functional connectome and due to its centrality within 

the memory network systems vulnerable in neurodegenerative disorders;31 5) volumes with 

PCC signal intensity in the top 30% were retained (positive only) and considered as PCC-

activated frames. Spatial clustering was performed on the extracted PCC frames to compute 

CAPs. The selection of the optimal number of clusters was determined using the consensus 

clustering algorithm (2): k-means clustering was run across 20 folds for cluster numbers (K) 

ranging from 3 to 6, randomly selecting 80% of the data for each fold. The K-range was 

selected according to a previous study investigating PCC-CAPs and reporting K=5 as the 

optimal value (3). The first four steps were performed also in patients’ data. However, their 

CAPs were not directly computed but each PCC-activated frame was assigned to one of the 

CAPs estimated in the CU control group, based on the distribution of the spatial correlation 

values between the CU PCC frames and the considered CAP. If the spatial correlation value 

of the patient frame with the given CAP exceeded the 5th percentile of this distribution, the 

frame-to-CAP assignment was performed, otherwise it was left unassigned. To check whether 

this assignment generated comparable CAPs between CU and patients, a spatial correlation 

between the group-averaged CAP was performed.  

For each CAP and patient, the following temporal metrics were computed: i) resilience; ii) 

betweenness centrality; iii) average duration; iv) subject entries; v) counts; vi) out degree; vii) 

transition probabilities. Finally, we computed for each subject a frame-wise CAPs average. 

These spatial maps correspond to the spatial distribution of the fMRI signal grouped into 

specific CAPs. A full description of CAPs metrics is reported in the Supplementary Material 

(paragraph S1.2). A general overview of the methodology is reported in Fig. 1.  

 

ATN data-driven analysis and patient clustering 

For the subgroup of patients included in the ATN cohort a data-driven analysis was performed 

on the ATN measures. Before clustering, the z-scored ATN measures were processed with 

the Uniform Manifold Approximation and Projection (UMAP), a non-linear embedding 

approach that distributes data variability along major axes.32 We employed UMAP for its ability 

to transform data onto a newly constructed manifold while maintaining the original pairwise 

distances between data points on a global scale. Thus, patients with similar ATN profile cluster 

together in the UMAP space, while patients with different distribution of ATN measures are 

located further apart. Further, we performed a sensitivity analysis to ensure the robustness of 

these clusters (see paragraph S1.3 in the Supplementary Material for further details). 

Overall, this step allowed to identify specific clusters based on the ATN measures. 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.14.24314934doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.14.24314934


7 
 

Statistical analysis 

Statistical analyses were run to investigate differences in the ATN, clinical, cognitive, and 

CAPs’ temporal features between patient clusters identified through the UMAP-Kmeans 

algorithm, using Python 3.9. 

Comparing biological, clinical, and cognitive measures between patient clusters 

For ATN, clinical, and cognitive measures a series of one-way analyses of variance (ANOVA) 

were run. Before running the ANOVA, we checked for the homoscedasticity of the data using 

the Levene’s test. For data with unequal variance, we used the Welch ANOVA which better 

controls for type I error in case of heterogeneity of variance.33 

Comparing dynamic connectivity patterns between patient clusters 

For the temporal CAPs metrics, a series of mixed ANOVA were run to investigate interaction 

effects between cluster assignment and specific metrics. CAP was inserted as within-factor, 

while patient cluster assignment was considered the between-factor. Each specific temporal 

metric represented the dependent variable and considered independently from the other 

metrics. A p-value<0.05 was set as significant. For this analysis we considered the full set of 

temporal metrics, although for the transition probabilities matrix only the diagonal was here 

considered. This decomposition enabled to retrieve a single value for each CAP, in line with 

the other metrics.  

Multivariate analysis of ATN and dynamic connectivity measures 

Multivariate analyses were performed at two different levels, aimed at complementing the 

univariate findings described above. First, in each identified CAP we run a factorial analysis 

(varimax rotation) on the 7 temporal metrics. Factors were retained based on the eigenvalue 

silhouette and if explaining more than 10% of variance.18 Kaiser-Meyer-Olkin (KMO) test was 

run to test the sample size adequacy of the factorial analysis, by examining the proportion of 

variance among variables that might be common variance, i.e., that might be caused by 

underlying factors. More in details, high KMO values (>0.7) indicate that most of the partial 

correlations are small compared to the correlations; low values (<0.7) indicate that the partial 

correlations are relatively large, suggesting that the variables are not well suited for factor 

analysis. Latent factors for each CAP were then independently analyzed through a mixed 

ANOVA, with latent components as the within-factor, and patient cluster assignment as 

between-factor, according to the same criteria applied for the univariate analysis. The same 

factorial analysis was applied on the ATN outcomes to further reduce the dimensionality of 

these measures and improve the interpretability of results. 

Finally, for each CAP, ATN measures and temporal metrics were fed into a canonical 

correlation analysis (CCA) to investigate the multivariate correlation patterns between ATN 

and dFC temporal features (see paragraph S1.4 in the Supplementary Material for details). 
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Significant CAP-modes were entered into a one-way ANOVA to investigate differences among 

patient clusters. 

CAP spatial analysis 

We run a post-hoc spatial voxel-wise analysis to compare the subject-level CAP topographies 

across patient clusters. We applied a non-parametric approach suitable for high dimensional 

data (fsl-randomise; fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise) at a threshold-free cluster 

enhancement (n=5000 permutations, p<0.05 FWE-corrected with a minimum size k=50). 

Significant results were registered to the fsaverage template and showed at surface level. 

 

Predicting patient clusters from CAPs temporal dynamics 

In order to investigate the predictive power of dFC to predict patients’ classification computed 

with the ATN measures, we applied a random forest (RF) algorithm (paragraph S1.5 in the 

Supplementary Material), independently for each CAP. We used the latent factors from the 

factorial analysis on the temporal CAP metrics as predictors with a k-fold cross-validation (k=5) 

and a fixed random seed for each run. For the test set, balanced accuracy, and f1 score 

(weighted) of the CAPs-based RF classifiers were compared across CAPs to identify which 

CAP allowed to retrieve the most accurate patient classification based on the ATN patterns. A 

logistic regression analysis was implemented to assess the replication of the RF results. 

  

RESULTS 

Posterior cingulate cortex co-activation patterns 

Consensus clustering of rs-fMRI PCC-activation frames in CU showed the optimal (stable) 

number of CAPs to be 5 (Fig. S1), in line with previous literature using PCC seed.20 CAP1 

encompassed brain parcels belonging to the DMN mainly mapping to frontal and parietal 

regions, while regions in sensory regions showed co-deactivation. CAP2 included brain 

parcels overlapping with the visual, sensorimotor, and dorsal attention (DAN) networks. CAP3 

overlapped mainly with the parietal and temporal regions of the DMN and co-deactivated in 

DAN regions. CAP4 showed an occipital-temporal gradient. Finally, CAP5 showed a 

widespread fronto-parieto-temporal pattern. These dynamic patterns were similar in the 

patient group (Fig. 2). High spatial correlation between patients and controls were reported 

for all the group-averaged CAPs (CAP1, r=0.982; CAP2, r=0.978; CAP3, r=0.980; CAP4, 

r=0.978; CAP5, r=0.973, with all p<0.00001), excluding potential biases in CAPs construction. 

When group averaged CAPs were projected at the cortical surface (parcel-level), a significant 

difference was observed in each CAP across the seven Yeo’s34 resting state network 

topographies (one-way ANOVA: p<0.0001 for all CAPs; Fig. S2).  

 

Data-driven patients’ stratification based on ATN measurements 
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Following UMAP dimensionality reduction, patient data were clustered into three groups (K-

means algorithm), according to both silhouette and elbow methods (Fig. S3). 

The three patient clusters represented well segregated groups in the UMAP space (Fig. S4, 

top panel), with dimensions equals to 45, 35, and 19 patients, respectively. While the main 

UMAP analysis was run with the default parameters, we also performed an additional 

sensitivity analysis with different UMAP parameters followed by K-means clustering (K=3) to 

assess the stability of the results. Group assignment accuracy between the main UMAP 

analysis and additional UMAP runs was very high (average: 0.952, range: 0.71–1.0), indicating 

that patients were assigned to the same clusters with very high probability at each UMAP-

KMeans run (Fig. S4). Moreover, cluster sizes were comparable across UMAP-Kmeans runs 

indicating high results’ stability (Fig. S4).   

 

ATN profile across patients’ clusters 

The three clusters were different for almost all the ATN measures (p<0.001)(Table 2). Welch’s 

ANOVA was used for Aβ and tau from CSF, whole brain composite amyloid-PET and tau-

PET, hippocampal volume. For the remaining measures a classic one-way ANOVA was run. 

The first cluster showed the highest accumulation of A and T features compared to the other 

clusters. CSF tau, ptau and amyloid level were higher in the first cluster compared to both the 

second and third clusters (CSF-amyloid metrics were multiplied by -1 for consistencies with 

the other measures). Similar patterns were reported for whole brain composite amyloid- and 

tau-PET. Notably, the third cluster showed the highest rate of medial temporal atrophy and 

hypometabolism (N).  

This finding was confirmed when ANOVA was performed considering the ATN latent factors 

from the factorial analysis. Three latent factors explained more than 50% of data variance 

(KMO=0.769), closely reflecting the ATN framework. The first factor loaded on T measures 

(both CSF and PET), the second factor loaded on A measures (CSF (multiplied by -1) and 

PET), while the third factor expressed neurodegeneration (N), loading on volumetric and 

metabolic measures (Fig. 3). All the three components were different among groups (Factor 

1 (T): F=19.22, p<0.0001, np2=0.29; Factor 2 (A): F=33.73, p<0.0001, np2=0.41; Factor 3 (N): 

F=33.52, p<0.0001, np2=0.41). Post-hoc analysis showed that T accumulation was highest in 

the first cluster (vs both early and atypical; p<0.001) while being similar between the second 

and third (p=0.616)(Fig. 4, bottom panel). A gradient was found for A accumulation, with the 

highest value for the first cluster compared to both the second and third clusters (p<0.0001) 

and lower in the third compared to second (p<0.001). Regarding N, the third cluster showed 

the highest atrophy pattern (N) compared to both the second (p<0.0001) and third clusters 

(p=0.012), while the first cluster showed higher atrophy than the second one (p<0.0001).  
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To further characterize these clusters, we explored the relationships between whole brain 

composite tau-PET SUVR and FDG-PET metabolism in these groups. Specifically, we 

employed a quadratic polynomial curve fitting with a degree of two for each pair of patient 

clusters, aimed at identifying non-linear relationship between these measures as suggested 

by previous studies.35,36 To evaluate the goodness of fit, we calculated the R2 value for each 

pair, which allowed us to determine the clusters that best represented, with a winner-take-all 

approach, the Tau-metabolism quadratic relationship. The three clusters showed peculiar 

relationships between these measures. The first cluster showed a strong negative correlation 

between metabolism and whole brain composite tau accumulation (r=-0.495, p=0.002; blue 

dots in Fig 3), while these measures were positively correlated in the second cluster (r=0.504; 

p=0.0004; orange dots in Fig 3). On the contrary, the third cluster showed no significant 

correlation between these outcomes (r=-0.188; p=0.442; green dots in Fig 4). In order to 

assess for the presence of an inverted U-shape relationship between metabolism and cerebral 

tau, previously described in AD35,36 and suggestive of an initial compensatory stage (high tau 

accumulation and high metabolism) followed by a detrimental stage (high tau and low 

metabolism), the different patient clusters were pooled together in groups of two. When 

performing a series of quadratic regressions, we found the largest predictive power by pooling 

the first and second clusters (R2=0.336). On the contrary, pooling the first and third clusters 

resulted in a drop of the quadratic predictive power (R2=0.256). Pooling the second and third 

clusters resulted in the smallest quadratic predictive power (R2=0.099). Overall, these results 

could suggest AD-NC (with different onset) for the first and second clusters, while the third 

one showed an atypical T-N trajectory (Fig. 4).  

Based on these and above results, the first cluster could represent a subset of patients with a 

typical ATN profile in an advanced biological stage. The second cluster could represent an 

initial (early) stage of the typical ATN profile. Finally, the third cluster was suggestive of an 

atypical ATN pattern, highly suggestive of SNAP. A specific color code (orange for early, blue 

for typical, and green for atypical) was consistently used in all the figures throughout the 

manuscript to improve the readability. 

 

Sociodemographic, clinical, and cognitive features 

The three patient clusters were comparable for gender distribution, education, and total 

intracranial volume (p=0.954, p=0.351, and p=0.203, respectively). Conversely, a significant 

age effect was reported (p=0.029). To account for possible confounding effects, age was 

linearly regressed from all the cognitive and clinical scores. 

The three groups were different in terms of clinical severity and cognitive impairment (Fig. 5; 

Table S1). A significant group effect was reported for MMSE score (Welch’s ANOVA F=18.48, 

p<0.001; np2=0.27), CDR-SOB (Welch’s ANOVA F=13.95, p<0.001; np2=0.22), ADAS-13 (one 
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patient from the atypical cluster was removed due to missing value; Welch’s ANOVA F=20.54, 

p<0.001; np2=0.30), composite memory (ANOVA F=21.12, p<0.001; np2=0.31), composite 

executive functions (Welch’s ANOVA F=5.43, p=0.007, np2=0.10), and language abilities 

(Welch’s ANOVA F=5.61, p<0.001; np2=0.09). On the contrary, visuospatial abilities were not 

different between groups (ANOVA F=1.58, p=0.212; np2=0.03). In all significant ANOVAs, the 

post-hoc analysis showed a significant difference between the early group and the two other 

patients’ clusters for all the measures, suggesting a similar degree of cognitive impairment 

and clinical severity between typical and atypical clusters (Fig. 5). Results were similar 

considering data without regressing age. 

 

CAPs across patients’ clusters 

Univariate analysis 

Temporal metrics were corrected for age effect in the same way reported for the 

cognitive/clinical outcomes. Among the temporal metrics included in the study, a significant 

group*CAP interaction effect was reported for average duration (F=2.059, p=0.039; 

np2=0.041), resilience (F=2.83, p=0.003; np2=0.056), subject entries (F=2.87, p=0.004; 

np2=0.056), counts (F=2.10, p=0.035; np2=0.042), and within-CAP transition probabilities 

(F=2.83, p=0.005; np2= 0.056). Betweenness (F=1.419, p=0.187), and out degree (F=0.86, 

p=0.553), showed no interaction effect (see paragraph S2.1 in the Supplementary Material 

and Fig. S5 for post-hoc results). 

Multivariate analysis 

Five factorial analyses including the temporal metrics for each CAP independently were run. 

We found that the temporal metrics could be reduced to three main factors which together 

explained more than 80% of data variance in all the five CAPs. The first factor mainly loaded 

on the within-CAP transition probabilities, subject entries, resilience, and average duration, 

describing quantitative CAP patterns, explaining around the 40% of variance. The other two 

factors loaded on counts, out degree, and betweenness, indicative of CAP-dynamic features. 

This pattern was reported for all the CAPs. Similarly, the amount of variance explained by 

these three components was equivalent across CAPs (Fig. S6).  

The mixed ANOVA run independently on each CAP and including the first three factors 

showed a significant group effect (F=4.70, p=0.011; np2= 0.084) for CAP1. Post-hoc analysis 

revealed significant differences between typical and atypical clusters, in line with the univariate 

analysis. Notably, CAP4 showed a significant group*factors interaction effect (F=6.33, 

p=0.002; np2=0.12). Post-hoc analysis revealed again a significant difference between typical 

and atypical for the first and second factors (p<0.05), while the third component showed a 

significant difference between typical and early clusters (p<0.05) suggestive of a specific 

temporal-CAP effect between these groups (Fig. 6, top-left panel). 
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The CCA reinforced these results, with CAP1 and CAP4 being the most involved between 

patient clusters. The first mode of CAP1 exhibited significant group effects between the typical 

and atypical clusters. Similarly, the first mode of CAP4 displayed significant patterns and group 

effects between these two ATN clusters (Details are reported in the paragraph S2.2 in the 

Supplementary Material and Fig. S7). 

 

Predictive modeling using latent CAP factors 

This analysis was run using as features the temporal CAP latent factors and limited to the 

classification of typical and atypical individuals, due to their similar cognitive impairment but 

significantly different ATN profile. In line with the multivariate findings, the three main latent 

factors from CAP1 and, especially, CAP4 showed the highest balanced accuracy when 

included in the RF classification algorithm (CAP1: 0.78; CAP4: 0.88) and f1 score (CAP1: 0.78; 

CAP4: 0.78) for predicting patient clusters derived from the ATN measures. On the contrary, 

the three latent factors from CAP2, CAP3, and CAP5 showed lower predictive power 

(accuracy < 0.64; f1 score < 0.54) (Fig. 6). CAP 4 results were confirmed by the logistic 

regression analysis (Fig. 6). 

  

Spatial CAPs topology in patients 

Based on the temporal CAPs results, we performed a post-hoc analysis to investigate spatial 

differences between the two CAPs mainly involved in group discrimination, that is CAP1 and 

CAP4 between atypical and typical clusters. This analysis showed no significant differences 

between patient clusters for CAP1. Notably, CAP4 showed a significant spatial difference 

between the typical and atypical clusters, in line with previous results on dynamical patterns 

(Fig. 6). 

  

DISCUSSION 

The main novelty of this study lies in exploring the relationship between dFC and biological 

patterns in clinical MCI/AD patients stratified according to a data-driven approach. In line with 

our assumptions, we identified a group with a peculiar ATN pattern distinguished by a 

divergent pattern of tau/amyloid accumulation and neurodegeneration compared to the typical 

groups. Interestingly, when considering the PCC-CAPs, the analyses consistently revealed 

different dFC patterns, confirming that different ATN profiles also share selective dFC 

changes. Such dFC patterns were also highly accurate in differentiating patients with typical 

and atypical ATN profiles.  

The application of dFC in AD research has been relatively limited compared to static FC.30 

However, a few studies have emerged that utilize dynamic connectivity analyses, specifically 

employing a sliding windows approach, which have reported alterations in the temporal 
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stability of connectivity in AD compared to healthy controls.37–39 Over a decade ago, Chang 

and Glover demonstrated that the coherence and phase of FC between the PCC and the rest 

of the DMN exhibit temporal variation.40 Further, clustering analysis has revealed that brain 

networks display dynamic yet topographically stable connectivity patterns that differ 

significantly from the time-average connectivity pattern.41 Building upon these previous 

observations, we expanded the scope by employing a PCC-CAPs approach. This 

methodology has the potential to identify both co-active and co-deactive states, which allows 

to investigate whether neurological disorders are associated with alterations in correlated 

and/or anti-correlated connectivity patterns that are linked to the clinical phenotype of the 

disease.42,43 Accordingly, we reported five distinct PCC-CAPs, with a consistent spatial 

topography pattern between controls and patients. These findings align with a previous study 

which utilized PCC for CAP computation and reported five main CAPs in a healthy cohort,20 

many of which overlapped with the CAPs identified in our study. Two previous studies from 

the same research group analyzed PCC-CAPs in a sample of patients with disorders of 

consciousness.24,44 While these studies extracted a fixed number of eight CAPs, our study 

determined the number of CAPs based on cluster stability. Despite this difference, there are 

notable similarities between the CAPs, such as the presence of cortical and temporal DMN 

CAPs, as well as the visual-temporal CAP, which suggests the overall stability of this 

methodology,44 supporting the translational value in the AD context. In the context of AD, 

Adhikari et al. applied CAP in rs-fMRI signals in old TG2576 mice (animal model of 

amyloidosis). They reported CAP dynamics’ differences between diseased and wild animals,45 

suggesting that CAPs could be used as predictors distinguishing between different molecular 

processes. 

In this study, the CAP framework was complemented with a dual data-driven strategy (low-

dimensionality and clustering) on ATN measures to identify latent groups within the clinical AD 

continuum. We identified three patient clusters based on the ATN profile, providing new 

insights into the underlying biological processes. Two of these clusters aligned with the well-

established pathophysiological distribution of the ATN measures, suggestive of different 

timelines of the pathological changes. A cluster exhibited characteristics indicative of an early 

pathophysiological stage of AD, in line with the subtle cognitive/clinical impairment. The 

second cluster demonstrated a clinical/cognitive profile consistent with the manifest stage of 

the AD cascade, marked by high levels of both Aβ and tau pathology, as well as widespread 

neurodegeneration. Interestingly, our analysis revealed a third cluster displaying an atypical 

ATN profile, suggestive of a different underlying syndrome. Although presenting with clinical 

and cognitive manifestations associated with AD (as compared with the second cluster), these 

patients exhibited distinct biological features. Specifically, it exhibited the most pronounced 
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pattern of neurodegeneration while displaying the lowest pattern of tau and amyloid 

accumulation, suggesting a limited tau pathology compared to the other clusters.  

This atypical profile could be suggestive, at least partially, of the SNAP construct. Originally, 

SNAP included patients with an A-N+ profile,46 and subsequently it was extended to include 

patients with an A−T−N+ profile,47 which is in line with the data-driven results of this third 

cluster. SNAP is a heterogeneous biomarker-based concept that can represent different 

pathologies, such as primary age-related tauopathy, Lewy body disease, LATE, or argyrophilic 

grain disease.11 On the contrary, our connectivity analysis pointed to specific dFC alterations 

within this group compared to the typical cluster, rather than showing widespread alterations 

indicative of a lack of distinct connectivity changes. Indeed, while typical and atypical groups 

showed similar level of cognitive and clinical impairment, differences in temporal dFC were 

reported, involving CAP1 (cortical DMN co-activation pattern) and, mainly, CAP4 (occipito-

temporal co-activation pattern with the PCC). A large body of literature suggests that DMN 

alterations are linked with the biology of AD.13–15 CAP1 dynamic features could distinguish 

between typical and atypical clusters with high accuracy (around 80%), suggesting different 

DMN alterations in patients with comparable clinical impairment but distinct ATN profiles. This 

pattern was confirmed by the CCA analysis. The classification accuracy for distinguishing 

between typical and atypical cases was higher (approximately 90%) when employing temporal 

metrics derived from CAP4. CAP4 involves co-activation of the PCC within an occipital-

parieto-temporal axis. Notably, occipital regions tend to remain unaffected in AD patients, even 

in the advanced stages of the disease,48 which implies that this CAP may play a role in non-

AD neurodegenerative conditions. The CCA confirmed a connection between CAP4 and 

atypical ATN patterns. The reduction in spatial similarity observed between the group-

averaged CAP4 of atypical cases compared to controls and typical clusters further reinforces 

the findings that CAP4 could serve as a distinctive 'fingerprint' for these atypical ATN patients. 

Overall, these results suggest that PCC may serve as a central hub for both typical and 

atypical ATN patterns. However, distinct dynamic patterns likely underlie and differentiate 

specific profiles within this framework. 

The results of our data-driven analysis, which identified three stable groups of patients, 

suggest that MCI/AD patients with non-AD-NC tend to cluster around a single group that may 

be more homogeneous than one might assume. This homogeneity is indicated not only by the 

robust identification of three main clusters but also by the dFC results highlighting specific 

differences. This raises questions about the nature of this atypical group. Although highly 

speculative, the atypical profile might resemble LATE-NC, characterized by memory 

impairment and medial temporal lobe degeneration without significant tau pathology.26 The 

advanced age of the patients within this cluster might support this speculation, as LATE-NC 

is often observed in older individuals.26,49 Recently, Tazwar et al.50 demonstrated lower 
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transverse relaxation rate by combining ex-vivo MRI and histopathology, in a spatial pattern 

mainly involving the occipito-temporal cortex in LATE, in line with our dFC results. Moreover, 

Young and colleagues in a preliminary study investigated pathological progression patterns of 

TDP-43 in several neurodegenerative diseases reporting a subtype labelled ‘corticolimbic 

predominant’ with greater TDP-43 deposition in temporal regions and the occipital cortex.51 

To validate these findings, additional studies incorporating histopathology are necessary to 

ascertain whether atypical patients represent a well-defined pathophysiological condition or 

whether dFC alterations could represent a generic feature for distinguishing ATN typical and 

atypical patients. Indeed, additional pathophysiological features can be linked with this atypical 

cluster, such as vascular abnormalities or comorbidity with different pathological conditions, 

such as α-synuclein. Landau et al. assessed cognitively impaired patients categorized into 

A+T+ or A+T-. Their findings suggested a relation between α-synuclein and poorer cognition, 

particularly in cases when tau levels was low.52  

This study has both limitations and strengths. One notable strength is that it applies a data-

driven methodology to an extensive patient database within the clinical AD continuum, 

incorporating ATN and rs-fMRI data. However, it is important to acknowledge that our results’ 

interpretation regarding the atypical cluster remain speculative due to the absence of 

histological data. To address this gap in knowledge, future investigations should aim to 

examine whether the observed dFC alterations in the time-varying domain of the PCC align 

with specific histopathological findings. The length of ADNI rsfMRI data time series (around 

200 volumes), although in line with most clinical studies, might not be optimal and further 

studies are needed to evaluate the stability of the reported CAPs. Finally, in this study we 

limited the analysis to the PCC, due to its vulnerability in AD,30 and its role as main connectivity 

hub of the brain53, while other regions could show similar divergent patterns within the ATN 

continuum. 

In conclusion, by examining the relationships between ATN measures and dFC patterns, we 

can gain insights into the mechanisms driving disease progression and potentially identify 

biomarkers that differentiate typical and atypical clinical AD patients. We also suggest that 

dFC might be useful to characterize patients in the AD continuum. By means of functional 

connectivity (F), a new ATN(F) framework could help to unravel patients with a clinical 

manifestation of AD linked with non-AD pathological pathways. 
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Table 1. Main sociodemographic characteristics of patients and controls 

included in the study. 

 

 Patients Controls p-value 

Numerosity 334 152 / 

Age 74.1 ± 10 74.4 ± 9.0  0.806 

Education a 16.9 ± 2.4  16.10 ± 2.6 0.004 

Gender (F) 43% 56% 0.017 

a) Data not available in 5 patients and in 10 healthy controls 
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Table 2. ATN profile of patients’ subgroups. Data are shown as z-score according 

to the healthy control sample included in the analysis. Aβ was inverted for congruency 

with the amyloid-PET measures (high values indicative of higher brain Aβ 

accumulation).  

  Typical 
cluster 

Early cluster Atypical 
cluster 

p-value 

CSF Aβb 0.98 ± 0.43 -0.16 ± 0.91 * -0.25 ± 1.10 * <0.001  

CSF tau 0.98 ± 1.34 -0.36 ± 0.83 * -0.11 ± 0.74 * <0.001  

CSF ptau 1.11 ± 1.43 -0.52 ± 1.61 * -0 26 ± 0.58 *  <0.001 

A outcome 

Whole brain 
composite Amyloid-

PET  

0.83 ± 0.68 -0.51 ± 0.52 * -0.82 ± 0.22 * <0.001 

CMF gyrus 1.28 ± 0.90 -0.42 ± 0.67 * -0.84 ± 0.28 * <0.001 

EC 1.38 ± 2.00 -0.23 ± 0.86 * -1.36 ± 1.05 *# <0.001 

Amygdala 1.44 ± -0.82 -0.09 ± 0.75 * -1.08 ± 0.48 *# <0.001 

Hippocampus 0.84 ± 1.42 0.39 ± 0.84 -1.50 ± 0.80 *# <0.001 

T outcome 

Whole brain 
composite Tau-PET  

2.60 ± 1.93 -0.43 ± 0.83 * -0.11 ± 0.92 * <0.001 

CMF gyrus 1.91 ± 3.84 -0.15 ± 0.80 * -0.34 ± 0.66 * <0.001 

EC 2.89 ± 1.59 -0.53 ± 0.70 * 0.31 ± 1.33 *# <0.001 

Amygdala 2.47 ± 1.46 -0.45 ± 0.76 * 0.12 ± 0.92 * <0.001 

Hippocampus 1.60 ± 1.09 -0.37 ± 0.89 * -0.28 ± 0.79 * <0.001 

N outcome 

Meta-ROI FDG-PET -0.84 ± 1.10 0.29 ± 0.87 * -1.20 ± 0.70 #  <0.001 

CMF gyrus -0.05 ± 0.78 0.07 ± 0.80 -0.31 ± 0.75  0.211 

EC -0.47 ± 1.17 0.30 ± 0.78 * 1.11 ± 1.34 #  <0.001 

Amygdala -0.65 ± 1.05 0.58 ± 0.79 * -1.19 ± 0.95 #  <0.001 

Hippocampus 0.62 ± 0.87 0.40 ± 0.87 * -1.29 ± 0.77 *#  <0.001 

# marks differences from the early cluster: * marks significant differences from the 
typical cluster. Abbreviations: A: amyloid; CMF: caudal middle frontal; CDR-SOB: 
clinical dementia rating – sum of boxes; CSF: cerebrospinal fluid; EC: entorhinal 
cortex; N: neurodegeneration; ROI: region of interest; T: tau 
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Figure 1. Workflow of the analysis. 

Panel 1: Resting-state fMRI data (rsfMRI) were preprocessed and (panel 2) co-activation 

patterns (CAPS) extracted from the whole cohort of controls and then projected to the patient’s 

cohort. Panel 3: molecular and anatomical data from patients were selected, including tau-

PET outcomes (3A), amyloid-PET data (3B), volume measures (3C), brain metabolism (3D), 

and CSF values for amyloid, total tau and ptau (3E). Panel 4: dimensionality reduction (UMAP) 

and K-means clustering were performed in patients, identifying three main sub-groups within 

the clinical AD continuum. Panel 5: A complete set of statistical analyses were performed to 

assess differences in both ATN and CAPs metrics across patients’ clusters. 
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Figure 2. Posterior cingulate cortex CAPs in cognitively unimpaired controls and 

patients. 

CAPs for healthy controls (left panel) and patients within the clinical AD continuum (right panel) 

mapped onto the inflated cortical surface (32k vertices). Patients’ CAPs were obtained by 

averaging the PCC-activation frames assigned to one of the healthy control CAP (no clustering 

was run on patients rs-fMRI). High spatial correlations were reported for each CAP between 

groups (scatter plots and Pearson’s correlation (R) values are reported in the bottom panel), 

suggesting a high spatial stability of the PCC CAPs in the ageing and AD continuum. 
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Figure 3. ATN measures factorial analysis. 

Top panels: factorial analysis of ATN measures in the ATN cohort. Amyloid, tau, structural, 

metabolism and CSF measures were z-scored according to mean and standard deviation of 

the control cohort before entering the factorial analysis. Panel A: eigenvalues and cumulative 

inter-individual variance explained by the latent factors. Panel B: loading matrix of the first 

three latent factors. On the right, different color lines are used to group the ATN variables 

(orange: CSF measures; red: amyloid-PET; green: tau-PET; blue: FDG-PET and brain 

volumetry from structural MRI (sMRI). Bottom panel: significant differences were reported 

between the three factors across the identified clusters. ** marks p < 0.001; * marks p<0.05. 
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Figure 4. Metabolism and cerebral tau accumulation relation for patients’ clusters. 

Panel A: the relationship between neurodegeneration ('N’, assessed with FDG-PET MetaROI) 

and tau load (‘T’, assessed with whole brain composite tau-PET SUVR) showed typical 

trajectories in the early (orange) and typical (blue) cluster, while a third cluster ('atypical’; 

green) showed no relationship between T and N. When data were grouped two by two, the 

best polynomial fit (indicative of a U-shaped inversion typical of AD pathology) was reported 

when early and typical clusters were combined (R2=0.336; panel B). Lower values were 

reported when considering atypical clusters (panel C and panel D). 
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Figure 5. Clinical and cognitive comparison across patient clusters.  

Clinical and cognitive outcomes are reported as uncorrected data, while statistical analysis 

was performed on the age-corrected outcomes to account for potential age effects. ** marks 

p < 0.001; * marks p<0.05. 
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Figure 6. Dynamic connectivity differences across patient clusters.  

Left-top panel: significant differences in CAP4-temporal latent factors between patients’ 

clusters; each dot represents a patient; * marks significant post-hoc differences. Left-bottom 

panel: voxel-wise spatial differences within CAP4 between typical and atypical clusters 

(p<0.05, FWE corrected). Reduced similarity between group averaged CAP4 in the atypical 

group compared to controls is reported; each dot represents a voxel value from the group 

averaged CAP4 map. Right panel: Test set classification results applying a random forest 

classifier on CAPs temporal patterns (latent factors; see Fig. 4). CAP1 and CAP4 showed the 

highest performance in classifying typical and atypical patterns according to the UMAP-

Kmeans algorithm applied to ATN measures (assessed with balanced accuracy and F1-

scores). Result for CAP4 was confirmed by means of a linear logistic regression (both 

accuracy and f1 scores around 80%; all the other CAPs showed scores around 60%). 
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