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Abstract 
 
In the study of neuro-electrophysiological recordings, aperiodic neural activity – activity with no 
characteristic frequency – has increasingly become a common feature of study. This interest has 
rapidly extended to clinical work, with many reports investigating aperiodic activity from patients 
from a broad range of clinical disorders. This work typically seeks to evaluate aperiodic activity 
as a putative biomarker relating to diagnosis or treatment response, and/or as a potential marker 
of underlying physiological activity. There is thus far no clear consensus on if and how aperiodic 
neural activity relates to clinical disorders, nor on the best practices for how to study it in clinical 
research. To address this, this systematic literature review, following PRISMA guidelines, 
examines reports of aperiodic activity in electrophysiological recordings with human patients 
with psychiatric and/or neurological disorders, finding 143 reports across 35 distinct disorders. 
Reports within and across disorders are summarized to evaluate current findings and examine 
what can be learned as pertains to the analysis, interpretations, and overall utility of aperiodic 
neural activity in clinical investigations. Aperiodic activity is commonly reported to relate to 
clinical diagnoses, with 31 of 35 disorders reporting a significant effect in diagnostic and/or 
treatment related studies. However, there is variation in the consistency of results across 
disorders, with the heterogeneity of patient groups, disease etiologies, and treatment status 
arising as common themes across different disorders. Overall, the current variability of results, 
potentially confounding covariates, and limitations in current understanding of aperiodic activity 
suggests further work is needed before aperiodic activity can be established as a potential 
biomarker and/or marker of underlying pathological physiology. Finally, a series of 
recommendations are proposed, based on the findings, limitations, and key discussion topics of 
the current literature to assist with guiding productive future work on the clinical utility of 
studying aperiodic neural activity. 
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EEG: electroencephalography; MEG: magnetoencephalography; iEEG: intracranial EEG; DBS: 
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Introduction 
 

There is a long history of using neuro-electrophysiological recordings from methods such 
as electroencephalography (EEG), magnetoencephalography (MEG), and in some cases, invasive 
recordings to investigate clinical disorders across psychiatry and neurology (Babiloni et al., 2020; 
Başar & Güntekin, 2008; Donoghue & Voytek, 2022; Newson & Thiagarajan, 2019). Recently, 
work exploring different methods for analyzing such data has led to a rapid increase in the 
popularity of the study of aperiodic neural activity as a feature of interest. Aperiodic activity is 
defined by a lack of a characteristic frequency, as compared to oscillatory (rhythmic) activity that 
has a reoccurring pattern. Aperiodic activity can be examined by measuring the aperiodic 
exponent (equivalently, the spectral slope) from the neural power spectrum (Figure 1A-B). 
Aperiodic neural activity is a dynamic physiological signal, and has been shown to vary 
systematically through development and in aging (Stanyard et al., 2024; Voytek et al., 2015), 
across sleep and wake stages (Ameen et al., 2024; Lendner et al., 2020), and during cognitive 
tasks (Gyurkovics et al., 2022; Waschke et al., 2021). 
 

Methodologically, a key motivation for measuring aperiodic activity is due to its potential 
for confounding more traditional measures of oscillatory activity (Figure 1C-D). Specifically, 
analyses designed to examine oscillatory activity may actually reflect aperiodic activity, which 
can lead to erroneous conclusions and interpretations (Donoghue, Dominguez, et al., 2020). This 
is important as clinical research has often sought to examine band-specific changes in putative 
oscillatory activity, some of which may be driven instead by changes in aperiodic activity (Newson 
& Thiagarajan, 2019). To address this, explicitly separating and measuring both aperiodic and 
oscillatory measures together is necessary to properly adjudicate which features vary with clinical 
measures of interest (Donoghue, Haller, et al., 2020). Practically, the recent development of 
numerous methodological approaches that can separate and measure aperiodic and oscillatory 
activity has allowed for explicitly examining which features relate to cognitive and clinical 
correlates of interest (Donoghue & Watrous, 2023).  
 

Collectively, these recent developments have led to a rapid adoption of measures of 
aperiodic activity in clinical applications, including examining if aperiodic activity may underlie 
previously reported findings. Much, though not all, of this work is also in the context of seeking 
‘biomarkers’, meaning biological measurements that can be used to assist in diagnosis, 
prognosis, or treatment evaluation of clinical disorders (Aronson & Ferner, 2017; Califf, 2018). In 
addition to the aforementioned methodological considerations, aperiodic activity is also of 
interest due to its putative physiological interpretations, which offer the potential for 
investigating underlying mechanisms of clinical disorders. One such interpretation is its potential 
relationship with excitatory and inhibitory balance, whereby a steeper aperiodic component is 
thought to be related to increased inhibitory activity (Gao et al., 2017). 
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Collectively, this recent work on aperiodic neural activity has led to a rapidly expanding 
literature analyzing aperiodic neuro-electrophysiological features in clinical recordings, across a 
wide range of different diagnoses (Figure 2A). This systematic review examines this emerging 
literature, collecting clinically related investigations of aperiodic activity across disorders in order 
to evaluate and integrate information within and across disorders. To do so, this review aims to 
provide brief overviews of key findings within each disorder, as well as a summary of the current 
practices, consistencies, and differences across disorders. In reviewing reported results, this 
review finds that there is substantial evidence for differences in aperiodic neural activity across 
clinical diagnoses – such that this ubiquity of differences itself raises questions about the 
specificity and interpretations of such changes. Based on this, the main findings, key questions, 
and shared difficulties of this work are discussed and used to make recommendations to assist 
with future work investigating aperiodic neural activity in clinical contexts. This includes 
highlighting several common themes that are discussed and summarized in order to contribute 
suggested guidelines for future research on aperiodic activity in clinical investigations. 
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Figure 1) Schematic introducing features of neuro-electrophysiological recordings. A) An example 
(simulated) time series, with a combination of aperiodic activity and a bursty 10 Hz oscillation. B) The 
annotated power spectrum for the signal in (A), showing the estimated power of the signal (black) as 
well as the measured aperiodic component (blue). Frequency ranges are shaded by typical oscillation 
band ranges - theta: 3-8 Hz, alpha: 8-13 Hz, and beta: 13-35 Hz. C) An example comparison of two 
power spectra. In this comparison, the difference in the two power spectra was simulated as a change 
in the aperiodic exponent. D) The quantified parameter differences for the example spectra in (B). 
When measuring power across pre-defined oscillations bands, there is what appears to be a pattern of 
changes across bands. However, this can be explained by a change in the aperiodic exponent, which 
is the parameter that was actually changed in this simulation.  
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Methods 
  
 This project is a systematic review of clinically related work that measures aperiodic neural 
activity in neuro-electrophysiological recordings. To introduce key concepts, example 
simulations were made with the neurodsp Python module (Cole et al., 2019) for time-domain 
simulations and the spectral parameterization (specparam; formerly fooof) Python module 
(Donoghue, Haller, et al., 2020) for frequency domain simulations. This project followed the 
PRISMA 2020 guidelines for systematic reviews (Page et al., 2021). The literature collection was 
done using curated search terms with explicit inclusion and exclusion terms, through a 
combination of manual search and extraction with the automated ‘literate scanner’ (lisc) Python 
tool (Donoghue, 2019). Automated searches collected references from the Pubmed database, 
using search terms for each disorder combined with terms related to aperiodic activity (details 
below). Features of interest were systematically extracted from all included reports, and analyzed 
within and across disorders, with key themes and discussions topics also collected from across 
the literature dataset. PRISMA checklists and project materials including lists of search terms, 
information on the collected literature data, and code for simulations, literature collections, and 
analyses are available in the project repository 
(https://github.com/TomDonoghue/AperiodicClinical). 
 
 Literature searches were done in a two-step process, the first to identify studies 
examining aperiodic activity in clinical disorders using general terms, which was then used to 
curate a list of disorders that was used in a second phase searching per disorder. Studies that 
met criteria from either search were included in the analysis. For both phases the following terms 
were used as search terms for aperiodic neural activity: ‘aperiodic exponent’, ‘aperiodic slope’, 
‘spectral exponent’, ‘spectral slope’, ‘1/f slope’, ‘1/f exponent’. In the first phase, these search 
terms were combined with the ‘or’ search operator and separately searched with the each of the 
following terms: ‘clinical’, ‘disorder’, ‘disease’, ‘biomarker’, ‘diagnosis’, ‘diagnostic’, ‘treatment’. 
From this original search, for any report added to dataset, the name of the disorder was added 
to a list of disorders that have been examined in relation to aperiodic activity. A second set of 
searches was then run combining the same aperiodic search terms with each of the disorders, to 
search for additional reports. The set of disorder terms is included in the Appendix. Further 
reports were found and added through reference searches of already included reports. 
 
 For the literature analyses, reports were included if they examined electrical field 
recordings (M/EEG, iEEG, DBS, RNS) from human participants that included patients with a 
clinical diagnosis as a topic of study and/or at-risk participants with later evaluations for clinical 
diagnoses. Specifically, reports were included if they reported an analysis of aperiodic activity as 
measured from the frequency domain, comparing between clinical group(s) and/or a control 
group (between subject analyses), and/or if they included analyses within clinical patients, 
including analyses across clinical events, anatomical areas, or treatment regimens (within subject 
analyses). Excluded from this review are reports that investigate topics without an explicit 
diagnosis (e.g. acute intoxication or anesthesia), investigations that only employ time domain 
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methods that cannot be easily compared to frequency domain measures, investigations in animal 
models, and conference abstracts or conference papers. All reports were screened for inclusion 
by the author. All reports that met inclusions criteria that were available as published articles or 
as preprints by July 1st, 2024 were included. 
 

To be included, a report had to analyze aperiodic parameters, for example, examining 
aperiodic activity in relation to a clinical diagnosis, symptomology, and/or treatment. Reports 
that measured aperiodic activity in the process of examining another feature – for example, being 
used to normalize measures of neural oscillations without also reporting aperiodic features – 
were not included. Relevant analyses were restricted to the aperiodic exponent as it is the most 
analyzed parameter of aperiodic neural activity. No reports were excluded based on only 
reporting another aperiodic parameter, but some reports do additionally discuss other aperiodic 
parameters, the details of which are not included here. This review consistently uses the term 
‘aperiodic exponent’ (reflecting the ! parameter in the 1/fx formulation), though note that 
included reports were not required to use this same terminology. For example, the ‘spectral 
slope’ (b), when referring the slope of the log-log power spectrum, is an equivalent measure 
(whereby ! = -b), and investigations of this measure are included. For clarity and consistency, in 
this report all measured values are discussed as exponents (using the conversion above if 
needed), such that all values are reported as positive, with a value of 0 reflecting white noise 
(uniform power across all frequencies), and a value of 1 reflects pink noise (decreasing power 
across increasing frequencies). With this terminology, an increase in the magnitude of the 
exponent reflects a steepening of the aperiodic component and a decrease in the exponent 
reflects a flattening of the aperiodic component.  

 
 For each included report, extracted information included clinical information (clinical 
disorder(s) under study); bibliographic information (title, authors, journal, month and year of 
publication, DOI); dataset information (within or between subject analysis, analysis design, 
number of patients, number of control participants, ages); recording information (recording 
modality, what type of data was analyzed (e.g. rest, task, etc.), amount of data (time) analyzed); 
analysis information (analysis method used to analyze aperiodic activity, the frequency range that 
was fit, and whether settings and/or goodness of fit measures were reported for the fit method); 
and results information (the reported results, if and which effect size measures were reported, 
reported interpretation, and whether this study discusses aperiodic measures as potential 
biomarkers). In addition, any additional notes about the study were logged, including notes 
specific to the report and/or relating to discussion topics raised by the report. The full set of this 
information is available in the dataset as published in the project repository, including a full 
description of how information is coded for each feature.  
 
 After collecting and extracting the literature, this review sought to synthesize results 
within individual diagnoses, where possible, as well as collate themes across the entire literature. 
For clinical diagnoses for which there were at least 5 individual reports (8 disorders), a mini review 
of the findings for the disorder was performed. These brief overviews had the goal of 
summarizing the main results and noting the consistency of findings as well as any key discussion 
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topics from within the literature. Note that these within-disorder summaries seek to synthesize 
results across studies, but are not meta-analyses, and do not include any methods to assess bias 
or quality, for example weighting of reports by their sample size, or any other quantitative 
evaluation of the evidence across reports. For diagnoses with fewer than 5 reports each (27 
disorders), a synthesis of results within each disorder was not attempted, with this work briefly 
summarized collectively.  
 
 Across the entire literature dataset, patterns were also examined across time, by 
organizing reports by publication year. As there is an uneven number of reports across different 
time periods, with all but the recent years having too few reports to compute summary metrics 
across individual years, publications prior to 2021 were grouped together, and compared to 
subsequent reports grouped by individual year. From across all reports, key themes were also 
identified (such as patterns of findings, difficulties of analyses, overlapping discussion points), to 
examine the commonalities across disorders. Note that while this narrative overview includes 
some basic quantifications of the literature data (for example, the number of reports reporting 
specific findings), it overall reflects a largely qualitative overview of the available literature. 
Finally, based on a combination of the systematically extracted variables as well as the themes 
identified across reports, a set of recommendations and best practice guidelines for future work 
investigating aperiodic activity in clinical contexts is presented.  
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Results 
 

From the literature search, 143 reports were found including 35 different clinical disorders 
(Figure 2A-B). This literature was published across 77 distinct journals and also included 17 
preprints. In total, 8892 clinical patients were reported in this literature (5438 control 
participants), with a median patient group size of 34 [range: 1-1038] (control: median 35, range: 
[6-732]). In terms of recording modality, the majority (>60%) of the investigations use EEG 
(93/143; 65%), with MEG (20; 14%), DBS (20;14%), iEEG (6; 4%), and RNS (2: 1%) comprising the 
remainder (Figure 2C). Most investigations analyzed resting state data (87; 61%; Figure 2D). The 
most common analysis design was investigating diagnosis related differences (74; 52%), with 
additional designs including treatment response and predicting specific disease states (Figure 
2E). Accordingly, most reports employed or included a between-subject group comparison 
approach (98/143 reports; 69%), with the remaining reports also / instead examining within-
subject designs (53/143; 37%). 

A Literature B C D EModalities

ReportingFit Method

Disorders

F G H I J

Analyzed Data

Interpretation

Analysis Design

Comparison

Effect Size Biomarker

Clinical Paper

143 Reports 
35 Disorders

Frequency Ranges

Figure 2) Summary results of the collected literature data. A) Literature reporting on the analysis of 
aperiodic activity in human clinical populations was collected, with 143 reports across 35 disorders 
found. B) Most studied disorders in the literature dataset. C) Recording modalities. D) State of the 
recorded data. E) Main analysis design of the study. F) Analysis design - comparison within or between 
subjects. G) Analysis method used to analyze the aperiodic activity. H) Frequency ranges, showing 
the proportion of reported frequency ranges that include each frequency, for the 110 reports that 
report a single frequency range. Gray dashed line show thresholds for indicating frequencies included 
in 50% of analyzed frequency ranges (1-43 Hz) and for frequencies included in 85% of all analyzed 
frequency ranges (3-30 Hz). I) Reported information of the reports, including whether they report an 
effect size measure, and whether they discuss the aperiodic activity as a potential biomarker. J) The 
main stated interpretation of aperiodic activity. 
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In terms of estimation methods (Figure 2G), the most common method is spectral 
parameterization (specparam; formerly ̀ fooof`; 96/143; 67%; Donoghue, Haller, et al., 2020), with 
some usage of other specific algorithms and procedures, including the irasa algorithm (6; 4%; 
Wen & Liu, 2016), the Colombo procedure (7; 5%; Colombo et al., 2019), the eBOSC algorithm 
(3; 2%; Kosciessa et al., 2020), and the Bódizs procedure (2; 1%; Bódizs et al., 2021), as well as a 
significant number that use a simple linear regression approach (27; 19%). A notable source of 
variation across reports is the frequency range that is examined – with 56 different specific ranges 
used within reports that use a single frequency range and an additional 9 reports using multiple 
different ranges across analyses. However, clustering the related frequency ranges (grouping, for 
example, ranges 1-40 and 2-40 as similar), shows more commonality across reports. To examine 
this, the proportion of reported frequency ranges that included each frequency was computed 
across the full range of frequencies included in any reported frequency range (Figure 2H). This 
shows a relative consistency in analyzing a broad range of predominantly low frequencies, with 
the frequencies from 1-43 Hz being included in 50% of all analyzed ranges, and the frequencies 
from 3-30 Hz being included in 85% of all reported ranges. This summary analysis is consistent 
with 1-40 Hz being the most reported range (11 reports; 8%). Other than this common range, 
subsets of reports examine shorter ranges (e.g. 1-20 Hz or similar), broader ranges (e.g. 2-55 Hz 
or similar) and/or ranges starting at higher frequencies (e.g. 20-45 or similar). Notably, 24 (17%) 
reports have an unclear (not explicitly reported) frequency range. 
 

Additional information was extracted on the reporting of the methods and results (Figure 
2I). For the methods, this included noting if the report included a report of the method settings 
and goodness of fit evaluations, which was specifically evaluated for the use of the specparam 
method for which doing so is recommended as best practice (Donoghue, Haller, et al., 2020; 
Ostlund et al., 2022). This analysis revealed that of reports using specparam, only 54/96 (56%) 
included a partial or full note of settings that were used, and only 29/96 (30%) reported goodness 
of fit evaluations. Across the results, there was not a consistent direction of reported differences 
– in diagnostic analyses across groups, 30/86 (35%) reported an increase in the aperiodic 
exponent in the clinical group, 27 (31%) reported a decrease, 26 (30%) reported no difference, 
and 3 (3%) did not clearly report the direction of difference. Across all reports, only 39/143 (27%) 
included a measure of standardized effect size – most commonly Cohen’s d. In addition, of 86 
reports that included the analysis of group differences between clinical and control groups, in 
only 20 (23%) were the measured exponent values clearly reported. A majority of reports (82/143; 
57%) discuss the analyzed features as possible biomarkers (indicating the report discussed 
aperiodic activity as a potential biomarker, though not necessarily including the conclusion that 
it is a good biomarker candidate). In terms of the stated interpretations of aperiodic activity 
(Figure 2J), the most common stated interpretation is E/I balance (82/143; 57%), with a notable 
minority not explicitly stating a specific interpretation of aperiodic activity (29/143; 20%).  
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We also examined the literature dataset across time, to examine potential trends in 
research across time. Overall, there is a rapid rise in research (Figure 3A), with the majority of the 
research conducted in the last several years and the most current year on track to have more 
reports than the last several years combined. To examine features across time while addressing 
the uneven number of reports, we grouped reports from prior to 2021 and compared them to 
reports in more recent years. This shows that the number of distinct disorders examined per year 
has risen (Figure 3B), consistent with the expansion of this literature. The average sample sizes 
per report looks to be higher in recent reports (Figure 3C). Methodologically, recent method 
developments such as specparam appear to be replacing the use of simpler linear regression 
methods (Figure 3D). Examining motivations and interpretations, the discussion of aperiodic 
activity as a biomarker and/or as a potential marker of E/I ratio appears to be increasing slightly 
across time (Figure 3E).  
 

In the following, brief summaries of disorders for which there is a sufficient number of 
reports (>= 5) are presented (8 disorders; total of 102 reports), ordered by the number of reports 
per disorder. A summary of these disorders including the main findings and key discussions 
points is reported in Table 1. The remaining reports, covering an additional 27 disorders (41 
reports), are then briefly discussed. The entire set of included reports, including reference 
information and listings of properties, analyses, and results per report is presented in Table 2. 
 
 
 

A Publication Dates Disorders Sample Sizes Fit Methods MotivationsB C D E

Figure 3) Results Across time. A) Publication years of the literature dataset. Each datapoint represents 
a 6 month time interval. B-E) Properties of the dataset across time, showing B) number of disorders 
studied, C) median sample sizes, D) fit methods, comparing spectral parameterization (specparam) and 
linear regression methods and E) reported motivations and interpretations, reporting if proportion of 
reports interpreting aperiodic activity as related to E/I ratio and the proportion discussing aperiodic 
activity as a possible biomarker. Note that in B-E, each time intervals is not an equal length, as papers 
prior to 2021 are grouped together (due to the low number of papers per year during this time), and 
the year 2024 including only the first 6 months of the year. 
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Table 1: Summary of literature in the most studied disorders 

 
 
 
 
 
 
 
Parkinson’s 
 Parkinson’s disease is the most studied disorder in the collected literature, with 25 reports 
(median # patients: 24 [range: 7-146]), across M/EEG and DBS, investigating diagnostic, 
prognostic, treatment, or symptom-related hypotheses. For diagnostic comparisons, there is a 
fair amount of consistency – of 10 clinical to control group comparisons, 8 report an increased 
exponent in Parkinson’s, 1 reports a decreased exponent, and 1 reports no difference. 
Investigations relating aperiodic activity to treatment status and symptoms are more variable. 
Comparisons between on and off medication include 4 reports of no difference and 3 reporting 
an increased exponent when on medication. Symptom comparisons include 3 reports finding no 
relationship to cognitive or motor symptoms, and 2 reporting a correlation between increased 
exponent and worse clinical scores. The variability in the later comparisons may relate to 
differences across recording modalities, treatment details, and symptom measures, with some 
reports also investigating and discussing regional differences. A common theme across this 
literature is that the motivation for measuring aperiodic activity was often noted as including the 
goal of better isolating beta oscillations, which are also implicated in Parkinson’s disease. Overall, 
reports that investigated both aperiodic and periodic features broadly report that they both 
relate to disease status, and that separating the components assists with investigating the 
relationships of each to clinical features. Collectively, this literature suggests a generally 
consistent relationship of an increased (steepened) exponent relating to Parkinson’s disease with 
somewhat less consistency when examining to what extent this relates to treatment status and 
symptom measures. 
 

Disorder # Modalities Design #/D Main Findings Discussion Topics 
Parkinson’s 25 DBS, EEG, 

MEG 
diagnostic 
treatment 
symptoms 

10 
6 
2 

⬆ clinical vs. control (8/10) 
inconsistent w medication (4∅; 3⬆) 
inconsistent w symptom (3 yes; 2 no) 

Δ across modality / subject groups 
Δ across symptoms measures 

Epilepsy 22 
EEG, iEEG, 
MEG, DBS, 

RNS 
state 

treatment 
region 

14 
3 
2 

⬆ prior / during seizure (n=11) 
⬇ with treatment 
⬆ in seizure onset zones 

Δ across events / brain state 
Δ across anatomical locations 
Δ across frequency ranges 

ADHD 14 EEG diagnostic 
treatment 

13 
4 

⬇ clinical vs. control (8⬇; 3⬆; 2∅) 
varies with treatment - inconsistent 

Δ across age / development  
Δ with treatment / condition 

Autism 11 EEG, MEG diagnostic 
symptoms 

9 
3 

inconsistent (5∅; 1⬆; 3⬇) 
relates to symptoms, idiosyncratically 

Δ across age / development 
Δ with specific symptoms 

Alzheimer’s 9 EEG, MEG diagnostic 
region 

8 
3 

inconsistent (4∅; 2⬆; 2⬇) 
report region specific differences 

Δ across etiology / progression 
Δ across anatomical locations 

DOC 7 EEG diagnostic 
prognosis 

4 
3 

⬆ clinical vs. control (3/4) 
⬇ ~improved clinical scores 

Δ across etiology / progression 
Δ in analysis methods / ranges 

Depression 7 EEG, DBS diagnostic 
treatment 

2 
4 

inconsistent (1⬇;1∅) 
⬆ with treatment (3/4) Δ in modality / subject groups 

Schizophrenia 7 EEG diagnostic 7 inconsistent (4∅; 2⬆; 1⬇) Δ across recording state (tasks) 

For disorders with more than 5 individual reports, a summary across reports was performed. 
Abbreviations: #: number of reports for each disorder; #/D: number of reports per research design. 
Modalities are listed in order of occurrence (most used first). Symbols: ⬆ an increase in aperiodic 
exponent was reported; ⬇ a decrease in aperiodic exponent was reported; ∅ no difference in aperiodic 
exponent was reported; Δ changes or differences (across listed topic) were reported and discussed. 
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Epilepsy 
 Epilepsy is the second most examined clinical disorder (22 reports; median # patients: 18 
[range: 1-307]), as well as the one with the most longstanding interest, including most of the 
oldest reports in the dataset. In contrast to most other disorders, investigations are mostly not 
oriented around between-subjects comparisons examining diagnostic differences, but instead 
largely relate to within-subject analyses of different states (seizure detection, e.g. comparing 
differences between ictal (during) and interictal (between) seizure events). Within this work, there 
is a high degree of consistency across reports, with pre-ictal and ictal activity tending towards 
having a great aperiodic exponent – though note that there are idiosyncrasies relating to which 
particular event categories and timepoints are examined. Similarly, regional comparisons tend 
to find a greater aperiodic exponent in seizure onset zones, as compared to control regions. A 
small number of reports also suggest a decrease in the aperiodic exponent with treatment (across 
different kinds of treatment). Interestingly, in epilepsy there is some work explicitly comparing 
different frequency ranges, including reports of different findings across different frequency 
ranges. Collectively, the work in epilepsy is broadly consistent with temporally and regionally 
specific changes in aperiodic activity systematically relating to seizure activity.  
 
ADHD 
 The study of ADHD is focused on reports using EEG to compare clinical populations to 
control groups to examine diagnosis-related differences in aperiodic activity (14 reports; median 
# patients: 68 [range: 23-1038]). Collectively, the diagnostic results across these reports are 
somewhat variable, with 8 reports reporting a lower aperiodic exponent in the ADHD group, 3 
reports reporting a higher exponent, and 2 reporting no difference. What is emerging across this 
research is the variable nature of aperiodic activity in this population – results are reported to 
interact with demographics such as age, treatment status, and task condition of the recording. 
Age appears to explain some of the differences across reports, as well as patient group 
characteristics, including several reports demonstrating an effect of medication status on 
aperiodic exponent, which is not limited to acute status and can persist after drug washout. There 
is thus far only minimal work that evaluates aperiodic activity in relation to symptoms. 
Collectively, the literature on ADHD suggests a complex pattern of differences in aperiodic 
activity and suggests that the heterogeneity of the populations under study – including variation 
in age, treatment status, and symptomology – contributes to variability that needs to be 
considered and addressed in order to examine differences in more targeted sub-groups.  
 
Autism 
 The investigation of autism (11 reports; median # patients: 71 [range: 15-421]) includes 
mostly EEG investigations comparing clinical patients to control patients, including some work 
on at-risk populations comparing measured parameters to future diagnoses. The results across 
these reports are variable – while 3 report a decreased exponent in autistic individuals or those 
who are later diagnosed as autistic, 1 reports an increase, and 5 report no difference. Two at risk 
studies report an increased exponent relating to later clinical measures, but using different 
measures. This variability perhaps relates to the heterogeneity of autism – 2 reports examining 
relationships to symptom scores reported relationships of aperiodic activity to specific symptom 
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measures, even in the absence of group level diagnostic differences. There is also a high 
variability of age ranges across reports, including distinct developmental stages ranging from 
infancy to adulthood, and age-related effects / confounds are discussed in this literature. Overall, 
the available evidence in autism therefore suggests that there is not a clear and consistent 
pattern of aperiodic activity across all diagnosed individuals, though there may be more nuanced 
relationships between subgroups of patients and/or to specific symptoms of the disorder.  
 
Alzheimer’s Disease 
 The study of Alzheimer’s Disease includes 9 reports (median # patients: 47 [range: 36-
120]) that examine differences between clinical and non-clinical groups in MEG and EEG 
analyses, all of resting or baseline data. The results of comparisons between patients with 
Alzheimer’s and control groups are quite variable, including 4 reports finding no differences, 2 
reporting a lower exponent in the clinical group, and 2 reporting a higher exponent in the clinical 
group. One key consideration that may relate to the variable findings are differences in disease 
etiology and progression, as analyses comparing different disease states (e.g. MCI vs. AD) and/or 
including comparisons to other dementia-related diagnoses report differences between distinct 
clinical groups. This suggests differences in aperiodic activity may be dynamic across disease 
progression and/or specific to disease etiology. Several investigations also reported region-
specific differences, such that differences in modality and analyzed areas may contribute to the 
reported differences. Collectively, the study of Alzheimer’s dementia does not suggest a clear 
and consistent difference in such patients (as compared to control), though the broader 
comparison of dementia suggests potential differences that may be specific to progression, 
etiology, and/or anatomical regions. 
 
Disorders of Consciousness 
 In disorders of consciousness research (7 reports; median # patients: 49 [range: 8-260]), 
key research questions include examining whether aperiodic activity can help dissociate between 
different diagnoses (e.g. vegetative state vs. locked in syndrome) and/or predict future recovery. 
Reports examining the aperiodic exponent are quite consistent in suggesting an increased 
exponent is related to disorders of consciousness, and that a lower exponent is related to better 
clinical scores and treatment response. Notably, however, recent investigations have 
emphasized that this is not a ubiquitous finding across all DOC patients, with notable differences 
across different etiologies, in particular comparing between anoxic and non-anoxic patients. 
Across this work, there have been multiple different frequency ranges, analysis methods, and 
patient groups examined, such that the precise details of which specific measures vary in which 
specific groups is still a topic of ongoing research. Collectively, this work suggests that when 
addressing differences in etiology of DOCs, the aperiodic exponent has a fairly consistent 
relationship to both diagnosis and clinical measures.  
 
Depression 
 The work on depression (7 reports; median # patients: 9 [range: 4-119]) includes some 
diagnosis related comparisons, with the most common analyses being in relation to treatment 
responses. Notable across this literature is the variation in recording modality, with a mix of EEG 
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and DBS, which have significant differences in the anatomical locations and sources of the 
recorded data. Many of the examined treatments are stimulation based (DBS, ECT, TMS), which 
are generally consistent in reporting increases in the aperiodic exponent with stimulation 
treatment. This is also consistent with one diagnostic study that reported a decreased exponent 
in patients as compared to controls – though another reported no difference between groups, 
and 2 reports examining clinical severity scores instead suggest a flattening of the exponent 
correlates with decreased clinical severity. Overall, the literature in depression includes a high 
degree of variation of modalities and designs that are difficult to compare (not only due to 
modality differences themselves but the likelihood that, for example, differences in patients who 
are eligible for invasive treatments such as DBS as compared to those on standard care), with a 
suggestion overall that treatment for depression may increase the aperiodic exponent.  
 
Schizophrenia 
 The study of aperiodic activity in schizophrenia (7 reports; median # patients: 36 [range: 
14-58]) is all with EEG, and mostly focused on examining diagnostic differences. Reported 
diagnostic results are overall inconsistent, with two reporting increased exponent in 
schizophrenic patients as compared to controls, two reporting a decreased exponent, and two 
reporting no difference. Despite the consistency in recording modality and subject 
demographics (all young adults), there are considerable differences in the analyzed data, with 
multiple different tasks being analyzed, potentially relating to the differences in results across 
reports. There is thus far limited evidence on the effect of pharmacological treatment, with one 
study reporting a treatment-related decrease of exponent in schizophrenic patients, and limited 
investigation of symptoms or cognitive measures. Overall, the literature in schizophrenia does 
not suggest a clear and consistent difference across all patients, with potential impacts of the 
recording state of the data, treatment status, and symptom dimensions currently unclear. 
 
Other 
 Beyond the reports summarized thus far, an additional 41 reports across a further 27 
disorders were collected in the literature dataset, including diagnoses relating to sleep disorders, 
genetic disorders, anxiety related disorders, neurodegenerative diseases, brain injury related 
disorders, movement disorders, pain related disorders, glioma, and other disorders (median # 
patients: 28 [range: 1-413]). The number of distinct diagnoses – including 17 diagnoses with a 
single report each – further emphasizes the breadth of aperiodic-related investigations in clinical 
contexts. Across this additional literature, the majority of investigations (23/27) report at least 
one significant difference between groups and/or a treatment related effect of aperiodic activity. 
Largely due to the large number of different examined disorders (and the small number of reports 
per disorder) there are no clear patterns to note – with diagnostic differences being reported as 
both increases and decreases, as well as multiple and variable relationships reported across 
treatment-related, prognosis-related, and regional comparisons. Several reports also include 
multiple different clinical groups that are compared together. Common discussion points include 
the heterogeneity of clinical groups and variation across diagnoses, treatments, modalities, and 
regions, which is overall consistent with discussion points raised within individual disorder 
evaluations. Combining across all disorders, 31 out of the 35 diagnoses included in this 
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Table 2: Dataset of all reports investigating aperiodic neural activity with clinical populations 

Disorder Reference Mod State CP Analysis #CL #CT Method FR Result BM Interp. 
Parkinson’s Disease 

Parkinson’s Martin et al., 2018 DBS rest btwn symptoms 13 - regression 8-90 ∅ w symptoms yes E/I ratio 
Parkinson’s Mostile et al., 2019 EEG rest btwn diagnostic 34 18 regression unclear ⬇ clinical vs. control yes complexity 
Parkinson’s Vinding et al., 2020 MEG rest btwn diagnostic 19 19 specparam 1-48 ⬆ clinical vs. control no unstated 

Parkinson’s Belova et al., 2021 DBS rest w/in state 
symptoms 22 - specparam unclear ⬇ w movement 

Δ ~motor symptoms no E/I ratio 

Parkinson’s Z. Wang et al., 2022 EEG rest w/in treatment 15 16 specparam 2-40 ⬆ on vs. off medication yes E/I ratio 
Parkinson’s Zhang et al., 2022 EEG rest w/in treatment 15 - Colombo 2-45 ⬆ on vs. off medication yes E/I ratio 
Parkinson’s Bernasconi et al., 2023 EEG rest btwn symptoms 75 - specparam 2-45 ∅ w cognitive symptoms no unstated 
Parkinson’s Clark et al., 2023 DBS intra-op w/in symptoms 19 - specparam 2-50 ∅ w motor symptoms yes E/I ratio 

Parkinson’s Darmani et al., 2023 DBS rest w/in treatment 
prognosis 10 - irasa 13-35 ∅ on vs. off medication 

⬆ over time with DBS yes E/I ratio 

Parkinson’s Gimenez-Aparisi et al., 2023 EEG rest btwn diagnostic 13 20 Colombo 2.5-45 ⬆ clinical vs. control yes E/I ratio 

Parkinson’s Helson et al., 2023 MEG rest btwn diagnostic 17 20 specparam 1-45 ⬆ clinical vs. control 
∅ on vs. off medication no E/I ratio 

Parkinson’s Monchy et al., 2023 EEG task btwn diagnostic 30 30 specparam 1-40 ∅ clinical vs. control yes E/I ratio 

Parkinson’s Rosenblum, Shiner, et al., 
2023 EEG rest btwn diagnostic 22 

21 28 irasa 1-26 ⬆ Parkinson’s vs. controls 
⬆ DLB vs. Parkinson’s yes E/I ratio 

Parkinson’s Wiesman et al., 2023 MEG rest btwn diagnostic 79 65 specparam 2-40 ⬆ clinical vs. controls 
⬆ ~worse clinical scores no slowing 

Parkinson’s Wiest et al., 2023 DBS rest w/in treatment 24 - specparam 40-90 
10-50 

⬆ w medication 
⬆ w stimulation [DBS] yes E/I ratio 

Parkinson’s Wu et al., 2023 DBS intra-op btwn diagnostic 61 - specparam 2-45 ⬇ early onset vs. late onset yes E/I ratio 
Parkinson’s Bush et al., 2024 DBS intra-op btwn symptoms 29 - specparam 1-50 ⬆ ~worse clinical scores yes unstated 

Parkinson’s Da Silva Castanheira et al., 
2024 MEG rest btwn diagnostic 79 54 specparam 2-40 reduced differentiation clinical 

individuals vs. controls yes E/I ratio 

Parkinson’s Joshi et al., 2024 DBS rest w/in prognosis 7 - specparam 4-60 Δ w exercise training no E/I ratio 
Parkinson’s X. Liu et al., 2024 DBS intra-op w/in region 146 - specparam 3-70 Δ across STN sub-regions yes E/I ratio 

Parkinson’s McKeown et al., 2024 EEG rest btwn diagnostic 
treatment 26 26 specparam 2-40 ⬆ clinical vs. control 

∅ on vs. off medication yes E/I ratio 

Parkinson’s Pardo‐Valencia et al., 2024 DBS rest w/in treatment 21 - specparam 1-95 ∅ on vs. off medication yes E/I ratio 
Parkinson’s Peng et al., 2024 DBS rest w/in prognosis 15 - specparam 1-38 ⬇ over time / after surgery no E/I ratio 
Parkinson’s Vinding et al., 2024 MEG rest btwn diagnostic 78 60 specparam 0.5-40 ⬆ clinical vs. control yes E/I ratio 

Parkinson’s Wiesman, Madge, et al., 
2024 MEG rest btwn diagnostic 58 65 specparam 2-40 ⬆ clinical vs. control yes E/I ratio 

Epilepsy 
Epilepsy Inouye et al., 1994 EEG rest w/in state 10 - regression 0-35 ⬆ before seizure no unstated 
Epilepsy Janjarasjitt & Loparo, 2013 iEEG events w/in state 5 - regression unclear ⬆ during seizure no self-sim 
Epilepsy Janjarasjitt & Loparo, 2014 iEEG events w/in state 5 - regression unclear ⬇ during seizure no self-sim 

Epilepsy Janjarasjitt, 2015 iEEG events w/in state 5 - regression low 
high 

⬇ during seizure [low range] 
⬆ during seizure [high range] no self-sim 

Epilepsy Janjarasjitt & Loparo, 2015 iEEG events w/in state 1 - regression unclear ⬆ during seizure no self-sim 
Epilepsy Meisenhelter et al., 2021 iEEG task w/in state 307 - regression 2-120 ⬆ after IEDs no unstated 
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Disorder Reference Mod State CP Analysis #CL #CT Method FR Result BM Interp. 
Epilepsy van Heumen et al., 2021 MEG sleep w/in state 1 - specparam 1-70 ⬆ in SOZ prior / during seizure no synchro 
Epilepsy Armstrong et al., 2022 EEG rest w/in treatment 47 - unclear unclear ⬇ w medication yes synchro 
Epilepsy Coa et al., 2022 EEG rest w/in treatment 10 - unclear unclear ⬇ w stimulation [VNS] no unstated 
Epilepsy Jiang et al., 2022 iEEG rest w/in region 27 - specparam 1-250 ⬆ in SOZ vs. non-SOZ yes E/I ratio 
Epilepsy Kaur et al., 2023 MEG rest btwn symptoms 36 - specparam 1-47.5 Δ ~increased seizure severity no E/I ratio 

Epilepsy Kluger et al., 2023 MEG rest btwn 
 w/in 

state 
state 1 40 specparam 1-40 Δ pattern respiration coupling 

⬇ during inter-ictal spikes no E/I ratio 

Epilepsy Kundu et al., 2023 RNS samples w/in prognosis 1 - specparam unclear ⬇ over time after surgery yes E/I ratio 
Epilepsy S. Liu et al., 2023 EEG events w/in state 28 - specparam unclear can predict ictal vs. interictal yes unstated 
Epilepsy Y. Yang et al., 2023 EEG unclear w/in treatment 8 - specparam 1-40 ⬇ w stimulation [TMS] no E/I ratio 
Epilepsy A. I. Yang et al., 2023 DBS events w/in state 14 - specparam unclear ⬆ during seizure yes E/I ratio 

Epilepsy Charlebois et al., 2024 RNS samples w/in state 24 - specparam 4-75 ⬆ during seizure 
Δ sleep / wake ~ seizures yes E/I ratio 

Epilepsy Duma et al., 2024 EEG rest btwn diagnostic 67 35 specparam 1-35 ⬆ clinical vs. control yes E/I ratio 

Epilepsy Kozma et al., 2024 iEEG 
MEG rest w/in treatment 63 

33 
234 
70 specparam 1-30 ∅ across surgical outcomes yes unstated 

Epilepsy H. Li et al., 2024 EEG events w/in state 25 - specparam unclear ⬆ preictal vs. interictal yes unstated 
Epilepsy Liao et al., 2024 EEG events w/in state 23 - specparam 0.5-30 ⬆ ictal vs. interictal no unstated 

Epilepsy Yu et al., 2024 DBS events w/in state 39 - regression 1-15 
15-45 

⬇ during seizure [low range] 
⬆ during seizure [high range] yes unstated 

Attention Deficit Hyperactivity Disorder (ADHD) 

ADHD Robertson et al., 2019 EEG rest btwn diagnostic 76 78 specparam 4-50 ⬆ clinical vs. control 
⬇ w medication 

yes E/I ratio 

ADHD Pertermann et al., 2019 EEG task btwn diagnostic 29 32 regression 0.5-20 ⬇ clinical vs. control 
⬆ w medication 

no neural noise 

ADHD Ostlund et al., 2021 EEG rest btwn diagnostic 87 97 specparam 2-50 ⬇ clinical vs. control no E/I ratio 
ADHD Arnett, Rutter, et al., 2022  EEG video btwn diagnostic 29 30 specparam 1-50 ⬇ clinical [non-responders] yes oscillations 
ADHD Arnett, Fearey, et al., 2022  EEG video btwn diagnostic 88 29 specparam 1-50 ⬇ clinical [condition specific] yes integration 
ADHD Arnett, Peisch, et al., 2022  EEG base btwn diagnostic 82 28 specparam 1-50 ⬇ clinical vs. control yes oscillations 

ADHD Karalunas et al., 2022 EEG rest btwn 
w/in 

diagnostic 
at risk 

107 
69 152 specparam 2-50 

1-30 
⬇ ~ADHD diagnosis [teens] 
⬆ ~ADHD history [infants] yes E/I ratio 

ADHD Tröndle et al., 2022 EEG rest btwn diagnostic 1038 732 specparam 2-40 ∅ clinical vs. control no E/I ratio 
ADHD Dakwar-Kawar et al., 2023 EEG rest btwn treatment 23 - specparam 1-40 ⬇ w stimulation [tRNS] no E/I ratio 
ADHD Chen et al., 2024 EEG rest btwn diagnostic 62 52 specparam unclear ⬇ clinical vs. control yes unstated 
ADHD Dakwar-Kawar et al., 2024 EEG rest btwn diagnostic 33 33 specparam 1-40 ⬆ clinical vs. control yes E/I ratio 
ADHD Peisch & Arnett, 2024 EEG rest btwn diagnostic 75 29 specparam 1-50 ⬇ clinical vs. control no oscillations 
ADHD Peisch et al., 2024  EEG rest btwn diagnostic 37 15 specparam 1-50 ⬆ clinical vs. control yes oscillations 
ADHD Snipes et al., 2024  EEG task btwn diagnostic 58 105 specparam 2-35 ∅ clinical vs. control no E/I ratio 

Autism Spectrum Disorder (ASD) 
Autism Q. Li, Weiland, et al., 2022 EEG rest btwn diagnostic 95 91 specparam unclear ∅ clinical vs. control yes unstated 
Autism Manyukhina et al., 2022 MEG rest btwn diagnostic 49 49 regression 35-45 ⬇ clinical vs. control yes E/I ratio 
Autism Shuffrey et al., 2022 EEG sleep w/in at risk 71 - specparam 1-20 ⬆ ~subsequent autism scores yes E/I ratio 
Autism Dede et al., 2023 EEG rest btwn diagnostic 421 338 regression 2-24 ∅ clinical vs. control yes unstated 
Autism Ellis et al., 2023 EEG rest btwn diagnostic 15 25 specparam 3-28 ∅ clinical vs. control no E/I ratio 
Autism Martinez & Chen, 2023 EEG sleep btwn diagnostic 149 197 specparam unclear ⬇ clinical vs. control yes E/I ratio 
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Disorder Reference Mod State CP Analysis #CL #CT Method FR Result BM Interp. 
Autism Webb et al., 2023 EEG video btwn diagnostic 280 119 regression 2-50 ∅ clinical vs. control yes E/I ratio 
Autism Arutiunian et al., 2024 MEG base btwn diagnostic 20 20 specparam 1-35 ⬇ clinical vs. control no E/I ratio 
Autism Carter Leno et al., 2024 EEG video btwn at risk 76 26 specparam 1-20 ⬆ ~hyperresponsivity symptoms no E/I ratio 

Autism Chung et al., 2024 EEG video btwn diagnostic 
symtoms 25 80 specparam 2.5-50 ∅ future diagnosed vs. not 

⬇ ~future repetitive behaviors no E/I ratio 

Autism McCleod et al., 2024 EEG rest btwn diagnostic 19 23 irasa unclear ⬆ clinical vs. control no unstated 
Alzheimer’s Disease 

Alzheimer’s Vyšata et al., 2014 EEG rest btwn diagnostic 120 120 regression 0.5-60 ⬇ clinical vs. control yes criticality 
Alzheimer’s Springer et al., 2022 MEG base btwn diagnostic 38 20 specparam 4-50 ∅ clinical vs. control no unstated 
Alzheimer’s Azami et al., 2023 EEG rest btwn diagnostic 41 44 specparam 1-45 ∅ clinical vs. control no E/I ratio 

Alzheimer’s Martínez‐Cañada et al., 
2023 

EEG 
MEG rest btwn diagnostic 26 

50 
114 
51 specparam 1-40 ∅ AD vs. control [EEG] 

⬇ MCI vs. control [MEG] yes E/I ratio 

Alzheimer’s Van Nifterick et al., 2023 MEG rest btwn diagnostic 
symptoms 51 45 specparam 30-48 ⬇ clinical vs. control [AD] 

⬇ ~worse cognitive scores no E/I ratio 

Alzheimer’s Burelo et al., 2024 EEG rest btwn diagnostic 64 21 specparam 1-45 Δ in different diagnoses no slowing 
Alzheimer’s Kopčanová et al., 2024 EEG rest btwn diagnostic 47 42 specparam 3-40 ∅ clinical vs. control yes slowing 
Alzheimer’s Z. Wang et al., 2024 EEG rest btwn diagnostic 36 29 specparam 2-40 ⬆ clinical vs. control yes E/I ratio 

Alzheimer’s Wiesman, Gallego-Rudolf, 
et al., 2024 MEG rest btwn diagnostic 38 20 specparam 1-40 ⬆ clinical vs. control no unstated 

Depression 
Depression Veerakumar et al., 2019 DBS rest w/in treatment 4 - regression 2-48 ⬆ w stimulation [DBS] yes E/I ratio 
Depression Sonkusare et al., 2022 DBS rest w/in symptoms 6 - specparam 1-36 ⬆ ~severity scores yes E/I ratio 

Depression Rosenblum, Bovy, et al., 
2023 EEG sleep btwn 

w/in 
diagnostic 
treatment 38 38 irasa 0.2-48 ⬇ clinical vs. control 

⬇ w medication yes E/I ratio 

Depression Hacker et al., 2023 DBS rest w/in treatment 5 - regression 20-45 ⬇ w reduced severity yes E/I ratio 
Depression Smith, Ma, et al., 2023 EEG rest w/in treatment 9 - specparam 1-30 ⬆ w stimulation [ECT] no E/I ratio 
Depression Smith, Kosik, et al., 2023 EEG rest w/in treatment 44 - specparam 0.5-30 ⬆ w stimulation [ECT & MST] yes E/I ratio 
Depression Stolz et al., 2023 EEG rest btwn diagnostic 119 36 specparam unclear ∅ clinical vs. control yes E/I ratio 

Disorders of Consciousness (DOC) 
DOC Zilio et al., 2021 EEG uncon btwn diagnostic 49 23 regression mult ⬆ clinical vs. control no timescale 

DOC Alnes et al., 2021 EEG task btwn diagnostic 
prognosis 67 13 regression mult ⬇ clinical vs. control [20-40 Hz] 

∅ survivor vs. non-survivor no neural noise 

DOC Colombo et al., 2023 EEG uncon btwn diagnostic 87 65 Colombo 1-40 ⬆ ~less conscious [non-anoxic] no slowing 

DOC Maschke et al., 2023 EEG uncon btwn symptoms 43 - specparam 1-45 
30-45 

⬆ ~worse clinical scores 
Δ w anesthesia ~ clinical scores no E/I ratio 

DOC Zilio et al., 2023 EEG uncon btwn diagnostic 10 6 regression mult ⬆ clinical vs. control yes timescale 

DOC Maschke et al., 2024 EEG uncon btwn 
 w/in 

symptoms 
prognosis 260 - specparam 1-45 ⬆ ~clinical scores [non-anoxic] 

⬆ ~prob. of recovery [anoxic] no unstated 

DOC Y. Wang et al., 2024 EEG uncon w/in treatment 8 - Colombo 1-40 ⬇ over time / w tDCS treatment no E/I ratio 
Schizophrenia 

Schizophrenia Molina et al., 2020 EEG task btwn 
 w/in 

diagnostic 
treatment 36 31 specparam 4-50 ⬆ clinical vs. control 

⬇ w medication yes E/I ratio 

Schizophrenia Racz et al., 2021 EEG rest btwn diagnostic 14 14 irasa mult. ∅ clinical vs. control yes criticality 
Schizophrenia Jacob et al., 2023 EEG rest btwn diagnostic 57 46 specparam 1-50 ∅ clinical vs. control yes E/I ratio 
Schizophrenia Peterson et al., 2023 EEG task btwn diagnostic 24 36 specparam 4-50 ⬆ clinical vs. control yes E/I ratio 
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Disorder Reference Mod State CP Analysis #CL #CT Method FR Result BM Interp. 
Schizophrenia Spencer et al., 2023 EEG task btwn diagnostic 24 24 specparam unclear ⬇ clinical vs. control no E/I ratio 
Schizophrenia Boudewyn et al., 2024 EEG task btwn diagnostic 58 98 specparam unclear ∅ clinical vs. control yes E/I ratio 
Schizophrenia Earl et al., 2024 EEG rest btwn diagnostic 43 23 specparam 3-50 ∅ clinical vs. control no E/I ratio 

Genetic Disorders 
22q.11.2 Donnelly et al., 2022 EEG sleep btwn diagnostic 28 17 irasa 0.25-20 ∅ clinical vs. control yes unstated 
CDKL5 Saby et al., 2022 EEG rest btwn diagnostic 26 18 regression unclear ⬆ clinical vs. control yes unstated 
Down 

Syndrome Geiger et al., 2024 EEG video btwn diagnostic 29 87 specparam 2-55 ⬇ clinical vs. control no E/I ratio 

Fragile X C. L. Wilkinson & Nelson, 
2021 EEG rest btwn diagnostic 11 24 specparam 2-55 ⬇ clinical vs. control yes E/I ratio 

NF1 Carter Leno et al., 2022 EEG video btwn diagnostic 21 24 specparam 1-10 ⬆ clinical vs. control no E/I ratio 
Rett Syndrome Roche et al., 2019 EEG rest btwn diagnostic 57 37 regression 2-24 ⬆ clinical vs. control yes E/I ratio 
Rett Syndrome Saby et al., 2024 EEG rest btwn diagnostic 60 26 regression 2-20 ⬆ clinical vs. control yes slowing 

STXBP1 Houtman et al., 2021 EEG rest btwn diagnostic 14 50 specparam 1-30 ⬆ clinical vs. control no E/I ratio 
TSC Clements et al., 2024 EEG rest btwn diagnostic 49 49 specparam 2-55 ∅ clinical vs. control yes unstated 

Neurodegenerative Disorders 
ALS Trubshaw et al., 2024 MEG rest btwn diagnostic 36 51 specparam 1-70 ⬇ clinical vs. control yes E/I ratio 

Huntington’s Davis, Fitzgerald, et al., 
2023 EEG rest w/in treatment 22 20 eBOSC unclear ⬇ w stimulation [tACS] no E/I ratio 

Huntington’s Davis, Hill, et al., 2023 EEG rest btwn diagnostic 22 20 eBOSC unclear ∅ clinical vs. control yes unstated 

MS Akbarian et al., 2023 MEG rest btwn diagnostic  
treatment 95 44 specparam 20-45 ⬆ clinical vs. control 

⬆ w medication yes E/I ratio 

MS Akbarian et al., 2024 MEG task btwn diagnostic 79 38 specparam 3-45 ⬇ clinical vs. control yes E/I ratio 
Sleep Disorders 

Insomnia Andrillon et al., 2020 EEG sleep btwn diagnostic 347 89 specparam unclear ⬇ clinical vs. control no E/I ratio 
NREM 

parasomnia Pani et al., 2021 EEG sleep btwn diagnostic 16 - specparam 0.5-50 ⬆ NREM parasomnia vs SHE yes unstated 

REM-SBD Roascio et al., 2022 EEG rest btwn 
 w/in 

diagnostic 
prognosis 18 10 specparam 1-30 ∅ clinical vs. control 

∅ within subject timepoints yes unstated 

REM-SBD Hernandez et al., 2024 EEG rest w/in prognosis 81 - Bódizs 0.5-32 ⬆ patients who convert yes E/I ratio 
Brain Injuries 

Concussion Makale, Nybo, et al., 2023 EEG rest w/in treatment 185 - regression 2-20 ⬇ w stimulation [TMS] yes neurotrans 
TBI Hussain et al., 2023 EEG rest btwn treatment 19 - specparam 0.5-55 ⬆ ~TMS motor threshold no E/I ratio 
TBI Tewarie et al., 2023 EEG samples btwn prognosis 55 49 specparam unclear significant prediction outcomes no E/I ratio 
TBI Nwakamma et al., 2024 EEG rest btwn diagnostic 56 32 specparam 1-50 ∅ clinical vs. control yes unstated 

Stroke  
Stroke C. M. Wilkinson et al., 2020 EEG rest btwn diagnostic 16 9 specparam 0.5-30 ∅ clinical vs. control no unstated 

Stroke Lanzone et al., 2022 EEG rest 
btwn 
 w/in  
 w/in 

diagnostic 
region 

prognosis 
18 16 Colombo 1-40 

⬆ clinical vs. control 
⬆ affected hemisphere 
⬇ over time 

no slowing 

Stroke Johnston et al., 2023 MEG rest btwn 
 w/in 

diagnostic 
region 23 23 specparam 1-50 ⬆ clinical vs. control 

⬆ affected hemisphere no slowing 

Stroke Lanzone et al., 2024 EEG rest w/in region 
prognosis 13 - Colombo 1-20 ⬆ affected hemisphere  

⬇ over time yes slowing 

Anxiety-Related Disorders 
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All reports identified and included in the literature dataset are listed, organized by disorder. Disorders are organized by grouping, and have the 
following fields: Disorder: the clinical diagnosis under investigation in each report. Reference: the bibliographic reference for the report. Mod 
(Modality): the recording modality of the data. State: the recording state of the data. CP (Comparison): the analysis design as within (w/in) or 
between (btwn) subjects. Analysis: the main analysis design of the report. #CL: the number of clinical participants. #CT: the number of control 
participants (if relevant). Method: the analysis method used to measure aperiodic activity. FR (Fit Range): the frequency fit range, in Hz, the method 
was applied to. Result: the main aperiodic exponent related result(s) of the report. BM (Biomarker): whether the report discusses aperiodic activity 
as a potential biomarker. Interp (Interpretation): the main interpretation of aperiodic activity discussed by the report. Abbreviations - Disorder 
column: 22q.11.2: 22q.11.2 Deletion Syndrome; ADHD: attention deficit hyperactivity disorder; CDKL5: CDKL5 Deficiency Disorder; MS: multiple 
sclerosis; NF1: Neurofibromatosis type 1; OCD: obsessive-compulsive disorder; PTSD: post-traumatic stress disorder;  REM-SBD: REM Sleep 
Behavior Disorder; TBI: traumatic brain injury; TSC: tuberous sclerosis complex. State column: base: baseline; intra-op: intraoperative; move: 
movement; mult: multiple; uncon: unconscious. Modality column: DBS: deep brain stimulation; EEG: electroencephalography; iEEG: intracranial 
EEG; MEG: magnetoencephalography; RNS: responsive neurostimulation. Result column: AD: Alzhiemer’s dementia; DLB: Dementia with Lewy 
Bodies; ECT: electro-convulsive therapy; IED: interictal epileptiform discharges; MCI: mild cognitive impairment; MST: magnetic seizure therapy; 
SHE: sleep-related hypermotor epilepsy; SOZ: seizure onset zone; STN: subthalamic nucleus; tACS: transcranial alternating current stimulation; 
TMS: transcranial magnetic stimulation; tRNS: transcranial random noise stimulation; VNS: vagal nerve stimulation. Interpretation column: 
neurotrans: neurostransmission; self-sim: self-similarity; synchro: synchronicity. 

Disorder Reference Mod State CP Analysis #CL #CT Method FR Result BM Interp. 
Anxiety Blaskovich et al., 2024 EEG sleep btwn diagnostic 47 36 Bódizs 2-30 ∅ clinical vs. control yes unstated 
PTSD Q. Li, Coulson et al., 2022 EEG rest btwn diagnostic 107 95 specparam 2-40 predicts clinical label yes unstated 

PTSD Makale, Abbasi, et al., 2023 EEG rest w/in treatment 185 - regression 2-20 ⬆ w stim [TMS; responders] 
⬇ w stim [TMS; nonresponders] yes synchro 

OCD Perera et al., 2023 EEG rest btwn diagnostic 25 27 eBOSC unclear ∅ clinical vs. control yes unstated 
Movement Disorders 

Dystonia Semenova et al., 2021 DBS intra-op w/in region 9 - regression 30-70 ⬆ affected hemisphere no E/I ratio 
Dystonia Averna et al., 2023 DBS move w/in state 2 - Colombo 7-45 ⬆ during walking yes E/I ratio 

Dystonia Wiest, Morgante, et al., 
2023 DBS rest w/in treatment 7 - specparam 5-50 ⬆ w stimulation [DBS] no E/I ratio 

Pain-Related Disorders 
Chronic Pain Lopez Ramos et al., 2024 DBS events w/in state 1 - specparam 0-40 ⬇ during pain events yes E/I ratio 
Fibromyalgia González-Villar et al., 2017 EEG task btwn diagnostic 18 22 regression 3-30 ⬇ clinical vs. control no neural noise 

Glioma 
Glioma Numan et al., 2021 MEG rest btwn diagnostic 45 36 specparam 0.5-48 ⬆ clinical vs. control no E/I ratio 

Glioma Numan et al., 2022 MEG rest btwn region 413 65 specparam 0.5-48 ⬆ ~tumor occurrence 
 Δ ~tumor type subgroups no E/I ratio 

Other Disorders 
Dyslexia Turri et al., 2023 EEG rest btwn diagnostic 26 31 specparam 1-40 ⬇ clinical vs. control yes E/I ratio 
Dyslexia Glica et al., 2024 EEG rest btwn diagnostic 60 60 specparam 1-43 ∅ clinical vs. control yes neural noise 
Tinnitus To et al., 2021 EEG rest btwn diagnostic 120 120 regression 1-43 ⬇ clinical vs. control no complexity 

Tourettes Adelhöfer et al., 2021 EEG task btwn diagnostic 74 74 specparam 2-40 ⬇ clinical vs. control no neural noise 
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investigation include at least one report reporting a relationship between aperiodic activity and 
disease status, treatment, or symptoms – showing that differences in aperiodic activity are a 
common aspect of clinical disorders. 
 

Discussion 
 

This literature review examined investigations of aperiodic neural activity in clinical 
contexts, summarizing 143 reports across 35 distinct clinical diagnoses. The consistency of results 
across disorders varies, with the most studied disorders of Parkinson’s and epilepsy having 
arguably the most consistency in their results. By comparison, the psychiatric reports appear to 
generally have less consistent results, consistent with the longstanding difficulty in identifying 
consistent biomarkers in psychiatric conditions (García-Gutiérrez et al., 2020; 
Venkatasubramanian & Keshavan, 2016). Most of the included diagnoses currently included too 
few individual reports to examine the results across reports. By examining across the different 
disorders, several themes have arisen across multiple different disorders – of heterogeneity, 
notable covariates, limitations in current methodological practice, and discussion of 
interpretations of aperiodic activity – that can be used to develop recommendations for best 
practices to pursue further work evaluating aperiodic neural activity in clinical contexts.  
 

A key pattern is the heterogeneity within and across disorders – related but different 
diagnoses, subject demographics, disease etiologies, symptom clusters, or brain states during 
recording have been shown to have differing findings. This was noted in reports of autism, 
ADHD, DOC, dementia, depression, and schizophrenia – disorders in which there are variable 
findings across reports. This heterogeneity has different forms – for example, in the case of DOC 
and dementia, findings suggest different diagnoses, etiologies and/or disease progression can 
have different relationships with aperiodic activity; in ADHD and potentially autism there appears 
to be differences across age / developmental stages; in schizophrenia as well as ADHD there is 
some suggestion of differences in task conditions relating to differences in results; and 
differences in findings in depression may relate to difference in the subject populations that 
participate in different treatments. Ultimately, across many different diagnoses, the pattern that 
is emerging is that it appears to be common for clinically-related differences in aperiodic activity 
to be moderated by subject demographics, clinical etiology, disease progression and/or 
symptom clusters – motivating these considerations as key factors for designing robust analysis 
strategies – rather than differences in aperiodic activity reflecting a simple binary difference of 
with vs. without diagnoses.  
 

Another key theme is the effect of treatment, whereby direct investigations of treatment-
related effects as well as investigations comparing clinical to control groups (and not aimed at 
examining treatment response) have often noted an effect of treatment (pharmacological or 
otherwise) on measured aperiodic activity. The effect of pharmacological medication is most 
persistently discussed in reports of ADHD and Parkinson’s disease, as well as some work in 
schizophrenia and depression, and includes evidence that such differences can extend beyond 
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acute drug effect’s such that they are not necessarily addressed by research designs that use a 
drug washout period prior to recording. There are also numerous investigations showing 
differences in non-pharmacological treatments, including invasive and non-invasive brain 
stimulation. These findings emphasize the importance of employing approaches that can seek 
to delineate differences due to the disorder vs. differences due to treatment.  

 
Across investigations and disorders, there is also the topic of anatomical specificity. In 

disorders such as Parkinson’s and epilepsy, for which there are hypotheses about focal origins of 
disordered activity, there is evidence for regional specificity in aperiodic differences (for example, 
across different regions of the basal ganglia in Parkinson’s or within and outside the seizure onset 
zone in epilepsy). This may also relate to differences in aperiodic activity between cortical and 
sub-cortical locations (Bush et al., 2024). Notably, many of the surveyed investigations average 
results across electrodes / regions, including some reports which average all electrodes across 
the whole head. Further research is needed to evaluate if and when such averaging is 
appropriate, and/or if it may be sub-optimal due to potentially masking region-specific 
differences, and/or increase susceptibility to artifact sources such as muscle noise in peripheral 
electrodes. An additional consideration is potential differences based on different modalities – 
while this review included reports from across multiple different recording modalities, if and how 
the differences in recording modality (their spatial specificity and differences in sensitivity) relates 
to recorded aperiodic features is currently unknown. Future non-clinical work on the spatial 
properties of aperiodic activity would be of great benefit – including examining the spatial 
properties of aperiodic activity, modality related differences, and best-practices for if and how 
to average results across channels and regions. Within clinical applications, future work may 
benefit from more systematically considering anatomical variation within and between groups. 
 

Collectively, a general theme across the examined clinical investigations suggests several 
key dimensions of variability, including clinical heterogeneity, impacts of treatment effects, and 
differences across anatomical regions. As well as the relative consistency in Parkinson’s and 
epilepsy, disorders of consciousness also have quite consistent results (when controlling for 
differences in disease etiology). This suggests increased consistency of findings in diagnoses for 
which there is relatively greater understanding of hypothesized regions of interest and 
physiological underpinnings. The relative preponderance of invasive recording modalities in 
Parkinson’s and epilepsy may also relate to increased consistency, not due to the regional 
specificity and increased SNR of invasive recordings, but also, speculatively, due to the increased 
similarity of patient populations who meet criteria as surgical candidates. By comparison, while 
extracranial recordings, and in particular EEG, are by far more common, and have been applied 
to a large number of mostly psychiatric disorders (for which, broadly speaking, there are not 
robust physiological descriptions), the results thus far do not support clear diagnosis related 
differences, but rather more complex interactions of differences in aperiodic activity that may 
vary with other patients characteristics (e.g. age, treatment status, etiology, disease progression). 
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Methodological Related Discussion Points 
 One of the key motivating factors for studying aperiodic activity, as stated explicitly in 
many of the examined reports, is for methodological validation of whether reported differences 
between clinical and control groups reflect oscillatory or aperiodic features. Recent reviews and 
methodological investigations have noted that many reported clinical findings could reflect 
aperiodic activity, for example a common pattern of increased power at low frequencies and 
decreased power at high frequencies (Newson & Thiagarajan, 2019) and/or a change in 
measured ‘band ratios’ of power across low and high frequency ranges (Donoghue, Dominguez, 
et al., 2020; Finley et al., 2022). As established across the examined literature, there is now 
evidence that in many disorders there is indeed evidence for differences in aperiodic activity. In 
some cases, these findings have been evaluated to potentially ‘explain away’ previous reports 
on predefined oscillation bands, for example in ADHD where differences in aperiodic activity 
may explain previous reports of differences in theta / beta ratio. It’s important to emphasize, 
however, that there is not a general answer to whether oscillatory and/or aperiodic features relate 
to clinical diagnoses, and it needs to be evaluated on a per case basis. Results in Parkinson’s and 
Alzheimer’s, for example, have established that measuring and controlling for aperiodic activity 
assists in isolating oscillatory activity and improves associations between aperiodic-adjusted 
oscillatory features and clinical features of interest, even in reports that also report associations 
with aperiodic activity. This also emphasizes the importance and relevance of evaluating and 
reporting null results for aperiodic activity, as this may be instrumental for investigating other 
features, such as neural oscillations (Donoghue et al., 2022). Collectively, the findings here are 
consistent with noting the importance of separating and measuring aperiodic and oscillatory 
power together, to best adjudicate which features correlate with measures of interest.  
 
 The recent emphasis on investigating aperiodic features and separating them from 
oscillatory activity is reflected in multiple recently developed analysis methods (Donoghue & 
Watrous, 2023), many of which were used in the examined literature. Broadly speaking, while 
comparisons of methods such as specparam and irasa have found that these methods are similar 
in their performance, simple linear regression approaches, which are quite common in the 
examined literature, are generally worse performing (Donoghue et al., 2024) and should be 
avoided in future work. This review also focused explicitly on reports that explicitly measure and 
interpret aperiodic components as measured from the power spectrum. There are also numerous 
other measures of complexity, entropy, and similar measures that highly overlap with spectral 
measures of the aperiodic component (Donoghue et al., 2024). Collectively this suggests that 
beyond this rapidly growing research on frequency domain measures of aperiodic activity, many 
other reports using related measures likely reflect similar and/or overlapping dynamics in the 
data, and future work should seek to compare to and integrate these findings. 
 

Regardless of which analysis method is used, there needs to be consistent and clear 
protocols and reporting guidelines to ensure consistent quality control and reporting such that 
results can be further integrated and meta-analyzed. In the collected literature, one of the most 
variable aspects of the analysis is the examined frequency range. This is an important source of 
variation – it quite plausible that some inconsistencies in reported results may reflect differences 
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in the measured frequency range of the data. Notably, if electrophysiological recordings were 
strictly 1/f distributed, it would not matter what range was analyzed, as all ranges would be self-
similar. However, in practice such data is not strictly 1/f (hence the term 1/f-like), and the 
presence of oscillatory peaks, artifacts sources, filters, and various other features can lead to the 
examined range having significant impact on the measured parameters. The variability in 
frequency range also relates to considering the interpretations of aperiodic activity – for example, 
the relationship to E/I is proposed to be most strongly related to a specific range of frequencies 
(Chini et al., 2022; Gao et al., 2017). In addition, aperiodic components can have ‘knees’, regions 
where there is a change in the 1/f scaling, which appears as a bend in the log-log spectrum (Gao 
et al., 2020), with some evidence that variations in knees, if not accounted for, may underlie 
measured changes in the exponent when analyzing short frequency ranges (Ameen et al., 2024).  
 
 Measuring aperiodic neural activity also raises its own set of methodological questions. 
Most of the reports involved resting state recordings with relatively short amounts of data 
(median: 5 minutes, range: [30 seconds - 40 minutes]). The evidence thus far (in MEG) suggests 
that aperiodic estimates are stable with about one minute of data (Wiesman et al., 2022), 
suggesting current practice in terms of amount of data is likely adequate, though more work, 
including with clinical populations, is needed on this topic. Another consideration for the 
potential use of aperiodic neural activity as a potential biomarker is the test-retest reliability of 
such measures. There has recently been a series of investigations examining test-retest reliability 
of aperiodic parameters in healthy adult subjects (McKeown et al., 2024; Pathania et al., 2021; 
Pauls et al., 2024; Tröndle et al., 2023), which all reported intra-class correlations above 0.7, and 
some much higher, reflecting high reliability. Notably, the aforementioned investigations were 
done in healthy, adult participants. In clinical contexts, investigations of children with autism have 
reported good, though lower, ICCs in the range of 0.5-0.7 (Levin et al., 2020, Webb et al, 2023). 
Future work should continue to validate test / retest reliability scores for aperiodic exponent 
estimation across broader age ranges (including children), and across more clinical populations. 
 
 Methodologically, a key goal for continued work on aperiodic neural activity in clinical 
contexts should be the development of normative measures of key features across large 
populations of clinical and non-clinical participants that can be used to compare to clinical 
groups. There is already some research on this topic, including evaluations of aperiodic 
parameters across large, primarily non-clinical datasets (>1000 participants) that help to establish 
norms (Hernandez et al., 2024; Tröndle et al., 2023). It’s also important to consider that many 
clinical populations are young (infant and early childhood, for developmental disorders) or older 
adults (for late-in-life diseases). Such age groups may not be well-represented in non-clinical 
work that often examines healthy young adults, thus requiring dedicated work to examine such 
populations, with some existing large-sample investigations of young (McSweeney et al., 2023) 
and old (Cesnaite et al., 2023) populations. In addition, there has recently been an investigation 
of aperiodic activity in a large dataset of clinical recordings that sought to establish clinical norms 
(Leroy et al., 2024). Collectively, this work is starting to provide information on expected values 
and ranges that future clinical work can compare to, with further work needed for establishing 
normative values for clinical and non-clinical populations. 
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Interpretations of Aperiodic Neural Activity in Clinical Reports 
Being able to record population activity, especially non-invasively, and infer circuit 

properties is a key goal – but also a difficult problem – for cognitive, computational, and clinical 
neuroscience (Ahmad et al., 2022; Cohen, 2017; Martínez-Cañada et al., 2021; Pesaran et al., 
2018). One such circuit property of interest, E/I balance, is hypothesized to relate to numerous 
clinical disorders (Ferguson & Gao, 2018; Foss-Feig et al., 2017; Gao & Penzes, 2015; Selten et 
al., 2018; Sohal & Rubenstein, 2019). The interpretation of aperiodic neural activity as a potential 
marker of E/I balance is clearly a driving factor of clinical work, being by far the most common 
stated interpretation in the reviewed clinical reports – though note that different potential 
interpretations of aperiodic activity are not necessarily mutually exclusive, so this does not imply 
other interpretations are invalid or any less relevant.  
 

Evidence for the link between the aperiodic exponent and E/I balance comes from 
computational models (Chini et al., 2022; Gao et al., 2017; Lombardi et al., 2017; Trakoshis et 
al., 2020) and empirical demonstrations of patterns of aperiodic activity across sleep, anesthesia, 
and task engagement are broadly consistent with the expected pattern given this interpretation 
(Colombo et al., 2019; Gao et al., 2017; Lendner et al., 2020; Waschke et al., 2021). However, 
there is still a relative lack of direct evidence from physiological manipulations that clearly 
establishes this link, and the available evidence is not definitive. Invasive animal model 
recordings including optogenetic stimulation show that increasing or reducing inhibitory activity 
leads to changes in activity consistent with changes in the aperiodic exponent (Chini et al., 2022), 
as do pharmacological approaches that increase inhibition (Gonzalez-Burgos et al., 2023). 
However, subsequent work with pharmacological and optogenetic manipulations found that 
while an increase in inhibition does lead to an increase in the exponent, an increase in excitation 
does not reliably decrease the exponent (Salvatore et al., 2024). Manipulations of dopamine 
have also been reported to flatten the aperiodic exponent in animal models (Kim et al., 2022; 
Valencia et al., 2012), though such effects may not be as robust in human patients (see 
Parkinson’s section on medication effects). A flattening of the exponent in response to dopamine 
manipulation could be interpreted as an increase in excitation – however, that dopamine, a 
neuromodulator, influences the exponent in such a way when more direct manipulations of 
excitatory neurotransmitters do not is overall not entirely consistent with the E/I balance 
interpretation of the aperiodic exponent.  

 
Collectively, the evidence motivates that while physiological manipulations do impact 

aperiodic activity – consistent with its biological relevance – they do not do so entirely 
consistently with the predictions of simple models of excitation and inhibition. While driving 
inhibition more consistently evokes the expected effect on aperiodic activity, the effect of 
excitation is less clear, with a lack of demonstration of expected effects of increased excitation 
through direct manipulations of excitatory activity and/or transmitters, while flattening is 
observed with neuromodulators such as dopamine. Notably, E/I balance, while clearly a powerful 
and important concept, is also a complex one, with further specification needed in specific cases 
to define whether differences in E/I balance are expected in terms of the number of neurons, the 
amount of different neurotransmitters, and/or the activity patterns across neurons (Ahmad et al., 
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2022). This can be inferred from considering the reviewed clinical literature whereby discussions 
of changes in E/I balance include cell death (e.g. in DOC & stroke), neurotransmitter availability 
(e.g. ADHD & Parkinson’s), and differences in connectivity (e.g. autism & epilepsy). In addition, 
there are other proposals for underlying factors that can relate to the measured aperiodic 
exponent, for example oscillation damping (Evertz et al., 2022).  

 
Combining the above discussion of the empirical data, with this broader discussion of 

E/I, emphasizes some key points about the E/I balance interpretation of the aperiodic exponent, 
including that i) differences in E/I balance (and therefore aperiodic exponent, in so far as it reflects 
E/I) can reflect multiple, distinct underlying physiological changes; ii) not all changes in E/I 
balance have the expected impact on measured aperiodic exponent, suggesting it is not a clear 
one-to-one mapping; and iii) aperiodic activity is a coarse, global measure, and observed 
relationships between it and E/I do not preclude that other, non-E/I related changes may also 
impact the measured exponent. Collectively, this suggests that given the current evidence, a 
change in aperiodic activity may or may not reflect a change in E/I balance, the lack of a change 
in the aperiodic exponent does not imply the lack of a change in E/I balance, and the same 
change in aperiodic exponent can likely arise from different underlying changes in E/I related or 
non-E/I related features. As such, a change in aperiodic activity, by itself, should not be strongly 
interpreted as a direct marker of E/I balance.  

 
While this lack of a clear general relationship between the aperiodic exponent and E/I 

complicates simple interpretations of changes in aperiodic activity, it also helps explain how 
seemingly similar patterns of differences can be seen across such a range of disparate disorders. 
The causes of the noted changes in aperiodic activity across a broad range of clinical disorders 
are likely underdetermined – varying across disorders – and may relate to variable underlying 
differences in E/I balance, from various sources, and/or to other aspects of neural function. Better 
understanding these underlying changes better understanding the underlying sources of 
aperiodic activity. Notably, recent work is working to address this complexity, for example 
modeling approaches that can examine more detailed biophysical interpretations of changes in 
power spectrum structure (Bloniasz et al., 2024). Overall, the current research suggests that more 
nuanced interpretations concepts such as E/I, motivated by more detailed modelling of changes 
in power spectrum changes are needed – with future work needed to integrate recent advances 
into the discussion and interpretation of changes in aperiodic activity seen in clinical disorders.  
 
Aperiodic Activity as a Potential Biomarker 
 Given these methodological and scientific considerations, it’s worth revisiting the idea of 
the aperiodic exponent as a potential biomarker, as discussed by many of the included reports. 
The term ‘biomarker’, while rapidly increasing in use in the literature, is used in variable ways and 
is often poorly defined (Aronson & Ferner, 2017; Califf, 2018). Notably, few of the included 
reports explicitly define what is meant by ‘biomarker’ in each of their respective usages. In 
psychiatry in particular, there have been longstanding attempts, but little progress in developing 
objective biomarkers, which has been the topic of much debate (García-Gutiérrez et al., 2020; 
Venkatasubramanian & Keshavan, 2016). The exploration of aperiodic activity as a potential 
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biomarker should learn from this background – presenting clear and specific definitions that 
clarify how the term is being used, how it is envisioned as contributing to clinical practice, and 
doing so considering the history of similar attempts and detailing how known problems and 
limitations will be addressed. 
 

In most cases in the collected literature, the term biomarker is used in relation to 
examining diagnostic related differences between groups. It’s important to note that examining 
mean group difference between groups – the most common approach taken – is insufficient to 
evaluate a measure as a diagnostic  biomarker, as this approach does not consider the variability 
within each group (Loth et al., 2021). Relatedly, the frequent lack of standardized effect size 
measures limits the consideration of findings as potential biomarkers. Additionally, almost all 
reports examine only one diagnosis, but across the literature many disorders are reported to 
have differences in aperiodic activity – with 31/ 35 disorders included in this investigation 
including at least one report of a relationship between aperiodic activity and disease status, 
treatment, or symptoms. This lack of specificity of differences in aperiodic activity, as well as 
diagnostic comorbidity and the difficulty this poses for prediction from electrophysiological 
features (Langer et al., 2022), suggests that while non-normative measures of aperiodic may 
reflect a general indicator of abnormal activity, it is not currently established that aperiodic 
activity has the reliability or specificity to serve a biomarker to assist with differential diagnoses.  
 

Importantly, many of the mentions of biomarkers were not diagnostic related, but rather 
relate to symptom scores and/or within-subject prediction of future state, for example, in 
discussions of treatment response (to pharmacology or stimulation) and/or in examining 
prognosis. Such cases may be more promising for the potential use of aperiodic measures as 
markers for examining treatment response and/or tracking disease progression – with more 
longitudinal research needed for such cases. Additionally, addressing the sources of 
heterogeneity mentioned across this literature will also be key for discussions of biomarkers – 
considering, for example, aperiodic activity in particular regions and/or as related to particular 
symptoms in appropriately curated subgroups of patients with similar disease progressions 
and/or etiologies may reveal currently elusive levels of reliability and specificity.  
 

Given that much of the reviewed literature motivates the study of aperiodic activity due 
to its potential as a measure of E/I balance and/or as a putative biomarker, both of which have 
limitations, it is worth considering the future of examining aperiodic activity in clinical work. First, 
as discussed, measuring and controlling for aperiodic activity is important for adjudicating which 
features vary in neuro-electrophysiological recordings, and so measures of aperiodic activity 
should still be included as part of methodological best practice. In doing so, while our current 
understanding of the physiological underpinnings of aperiodic neural activity is incomplete, the 
available evidence does support that it relates to properties of underlying circuits — even if our 
current simple models do not fully capture how it does so — such that ongoing and future work 
on the physiological underpinnings of aperiodic activity holds promise for contributing to further 
understanding the neurophysiology of neurological and psychiatric pathologies (Bloniasz et al., 
2024). Additionally, the limitations highlighted here should not eclipse that many of the included 
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analyses do report promising findings regarding diagnostic, treatment, and/or state related 
differences in aperiodic activity that may well be clinically useful, and work within and across 
different disorders is productively highlighting considerations to improve the robustness and 
interpretability of future studies such that it’s potential use as biomarker for certain applications 
is still plausible. Notably, most of the literature included in this review reflects work across just a 
few years as methods and ideas have rapidly developed, setting the stage for future work to 
build on this work, address current limitations, and further evaluate the utility of measuring 
aperiodic neural activity in clinical disorders. 

 
Table 3: Checklist of recommendations for clinical investigations of aperiodic activity 

Topic Recommendation(s)  

Goal Specify a clear goal for the analysis (e.g., search for biomarker? search for mechanisms?).  
State key definitions (e.g., what is meant by biomarker? what constitutes a mechanism?). ☐ 

Terminology Choose, define, and use a consistent terminology for describing aperiodic features  
(e.g., slope vs. exponent; 1/f vs. aperiodic). Note relation to other common terms. ☐ 

Design Clearly define plans for between and/or within subject analyses and consider sample sizes. 
Design a priori analysis selections (e.g., electrode choice) and/or report as exploratory. ☐ 

Sample 
Evaluate and report sample characteristics for covariates of interest, e.g., age, treatment  
status, treatment history, symptom measures, disease progression, disease etiology, etc. ☐ 

Methods 
Choose methods with appropriate properties for measuring aperiodic activity in the dataset.  

Consider and evaluate model forms. Report frequency range and all method settings. ☐ 

Quality Control 
Evaluate and report goodness-of-fit metrics for model fits and compare between 

 groups / conditions. Visualize example power spectra demonstrating model fit quality. ☐ 

Results Report measured parameter values and standardized effect sizes. Visualize measured  
parameters and/or power spectra demonstrating differences between conditions / groups. ☐ 

Interpretation Note if results are consistent with original hypotheses and other work on the disorder.  
Evaluate current findings on aperiodic activity and consider alternate explanations. ☐ 

Conclusions Based on stated goal, revisit conclusions based on findings (e.g., is it a plausible biomarker,  
is the mechanistic insight compelling), considering effect size / alternative explanations. ☐ 

 
 
 
 
 
Recommendations for Future Work 
 To best be able to engage in productive future work on aperiodic activity in clinical 
disorders, this systematic review suggests some key recommendations based on its review of 
clinical findings and the ensuing discussion of the methodological and scientific themes. These 
recommendations are also summarized in a checklist (Table 3), drawing from the summarized 
literature to assist with developing best practices for continued work in this area. At the level of 
individual reports, it is important to establish clearly defined goals for the investigation – whether 
it is, for example, an explicit search for a biomarker for diagnosis and/or treatment (including 
clarifications of what is meant by biomarker) and/or a study to examine potential mechanisms 
(including clarification on how the exponent is being interpreted). In designing experiments, 
collecting data samples, and creating analyses, it’s important to consider topics that have arisen 
in this literature – for example, confounds of age / development, variation across etiology / 

Each topic includes a summary of recommendations to check / consider for research investigating 
aperiodic activity in clinically related investigations. Note that not all recommendations are relevant for 
all research designs. See main text for further details.  
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severity, medication-related changes in aperiodic, regional differences, etc. – to ensure that 
research designs are best suited to examine questions of interest. 
 
 One aspect that would benefit from improved consistency and clarity is terminology. This 
review included reports that discuss aperiodic activity described in multiple ways, including the 
terms ‘aperiodic exponent’ and ‘spectral slope’. Either description is a valid description which 
are ultimately functionally equivalent (whereby exponent x = -b). There are however reports that 
use both, sometimes interchangeably, which can be confusing and create interpretational issues 
– since slope values are negative and exponent values positive, the report of a decrease / 
increase of the aperiodic parameter is ambiguous if the unit / value is not clearly established 
(since a decrease of 2 to 1 exponent values is a flattening, whereas a decrease of -1 to -2 of slope 
is a steepening, though this is also complicated by some reports seeming to discuss increases / 
decreases of slope magnitude rather than of actual value). In cases where actual values are not 
reported and/or results are not visualized, the actual results can be quite unclear. Terms such as 
“flattening” and “steepening” are useful as they are unambiguous regardless of the measured 
quantity. Reports are recommended to consistently employ a single, consistent description of 
aperiodic activity, and clearly and consistently report data values and directions of changes. 
 

Methodologically, the reviewed literature includes multiple different analysis methods 
and high variability in the reporting standards for describing the use of these methods. Most 
notably, the analyzed frequency range must be properly reported, as well as any settings for the 
chosen method. There is also a lack of reporting of goodness-of-fit measures that can help to 
establish the quality of the model fits, and limitations in the reporting of measured parameter 
values. In designing and applying analyses, consider possible anatomical differences and choose 
included electrodes and regions of interest, avoiding approaches such as averaging across all 
electrodes which may neglect regional differences, and which may be more susceptible to 
artifacts. For quality control of measures, use of model fitting methods such as specparam should 
include the evaluation and reporting of goodness-of-fit measures, including evaluating potential 
group differences in model fit quality and checking for and potentially excluding outliers. It is 
also useful to examine and provide example and/or group average model fits, which can be used 
to demonstrate model fit quality and to visualize differences that are quantified by the models.  
 

In terms of results reporting, when possible, it is useful to report parameter values per 
group / condition. This allows for evaluating if the values are in an expected range, as more 
reports of normative values become available, and makes such values available for inclusion in 
future meta-analyses and comparisons to future datasets. Where appropriate, the calculation and 
reporting of standardized effect sizes of group / condition differences can help to evaluate the 
magnitude of effects and discriminability of patients based on such features, beyond only 
reporting if there are significant differences. Reports should also include clear statements on how 
individual parameters relate to diagnostic and/or treatment related features of interest ensuring, 
for example, that prediction-based analyses that mainly report accuracy include information on 
the direction of differences between groups / conditions. In reporting the results, interpretations, 
and conclusions, reports should make a clear connection between the analysis results and the 
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original goals and hypotheses, while considering the magnitude of effects, the current status of 
research on interpretations of aperiodic activity, and possible alternate explanations. 

 
 To best support the investigations of aperiodic activity in clinical conditions, the above 
noted recommendations should be supplemented by the continued development of 
standardized guidelines and protocols for investigating aperiodic neural activity. There also 
needs to be consistent communication between clinical and non-clinical work – with clinical 
investigations having both much to contribute to the broader understanding of aperiodic neural 
activity and its interpretations, and much to gain from non-clinical methodological, cognitive, 
and physiological investigations. In particular, the research field as a whole will benefit from work 
continuing to pursue large-scale norming studies, with and without clinical subjects, to establish 
clearer definitions of normative values for aperiodic activity; methodological work continuing to 
evaluate method-related best-practices, the impact of methodological choices such as frequency 
range and different model forms, and relationship(s) between distinct methods; physiological 
work probing the underlying circuit mechanisms that drive changes in aperiodic activity; and 
ultimately, the development of standardized and evidence-based protocols for best-practices to 
measure aperiodic activity.  
 
Limitations 
 There are some limitations to the approach taken in this systematic review. Perhaps most 
notably is the high-level overview of a large number of reports covering a broad range of 
investigations in this study. This approach – reducing reports to a single or small number of 
briefly summarized key results – necessarily ignores many details of the investigations, limits the 
nuances of the results that are discussed, and may miss notable details that could help explain 
findings and patterns within and across diagnoses. The inclusions of many different disorders, 
and many different research designs (e.g. diagnostic, treatment-related, symptom-related, etc.) 
also precludes more systematic and quantitative meta-analytic approaches, such that the overall 
approach here includes multiple mini-reviews within disorders as well as a largely qualitative 
overview across the entire literature. In addition, the organization of reports based on a single 
diagnosis does not fully reflect the details of a small number of reports that included multiple 
different diagnoses and/or comorbid diagnoses, nor does it integrate information across 
different but similar or related diagnoses. Accordingly, this investigation should only serve as a 
general summary across the clinical work at large, whereby future work should be dedicated to 
more fully examining the details of investigations within individual disorders and/or related 
groups. 
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Conclusion 
 
 Aperiodic neural activity has rapidly emerged as a feature of interest in clinical research, 
as evidence by the rapid rise in the number of reports across time. This research has made many 
contributions, including methodological work evaluating which neural features relate to clinical 
disorders and providing potential markers to track treatment and prognosis; and scientific work, 
probing potential physiological interpretations of disease-related changes or differences in 
neural function. However, some caution is warranted, as across fields and disorders there are 
common issues and discussion points that often complicate the conclusions; overlapping 
findings across disorders that suggest a lack of specificity in the results; and ongoing discussions 
of the interpretations of aperiodic activity that complicate it’s straight-forward interpretation as 
a biomarker and in relation to underlying circuit activity. Future work can hopefully use this 
interim check-in on the status of clinically related reports of aperiodic neural activity to guide 
future work on how to examine and interpret this feature in clinical work. 
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Appendix: Literature Search Terms 
 

The following details the search terms used for the literature collection. For further details 
on how these terms were used, see the Methods section. For the use of these search terms in 
automated literature searches, see the Project Repository.  
 
Aperiodic activity search terms (used for all searches):  

'aperiodic exponent', 'aperiodic slope', 'spectral exponent', 'spectral slope', '1/f slope', 
'1/f exponent'. 

 
Phase 1 search terms for clinically related reports on aperiodic activity:  

'clinical', 'disorder', 'disease', 'biomarker', 'diagnosis', 'diagnostic', 'treatment'. 
 
Phase 2 search terms for reports per disorder:  

"parkinson's";  'epilepsy', 'seizure'; 'ADHD', 'attention deficit hyperactivity disorder'; 
'autism', 'ASD'; 'alzheimers', 'dementia'; 'disorders of consciousness', 'coma', 'locked-in'; 
'depression', 'MDD', 'major depressive disorder'; 'schizophrenia'; 'stroke'; 'dystonia'; 
'TBI', 'traumatic brain injury'; 'dyslexia'; 'glioma'; "huntington's"; 'multiple sclerosis'; 
'PTSD', 'post traumatic stress disorder'; 'REM sleep behavior disorder'; 'rett syndrome'; 
'22q.11.2'; 'ALS', 'amyotrophic lateral sclerosis', "Lou Gehrig's disease"; 'anxiety'; 
'CDKL5 deficiency disorder'; 'chronic pain'; 'concussion'; 'down syndrome'; 
'fibromyalgia'; 'fragile X'; 'insomnia'; 'NF1'; 'NREM parasomina'; 'OCD', 'obsessive 
compulsive disorder'; 'STXBP1'; 'tinnitus'; 'tourette'; 'tuberous sclerosis complex'; 

 
Exclusion terms, used to ignore unrelated literature:  

'acid', 'protein', 'ion', 'enzyme', 'ultrasound', 'cancer', 'halide', 'spectroscopy', 'iodide', 
'tissue'. 
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