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Abstract12

Numerous studies assessing the effectiveness of non-pharmaceutical interventions (NPIs)13

against COVID-19 have produced conflicting results, partly due to methodological differ-14

ences. This study aims to clarify these discrepancies by comparing two frequently used15

approaches in terms of parameter bias and confidence interval coverage of NPI effective-16

ness parameters. We compared two-step approaches, where NPI effects are regressed on17

by-products of a first analysis, such as the effective reproduction number Rt, with more18

integrated models that jointly estimate NPI effects and transmission rates in a single-step19

approach. We simulated datasets with mechanistic and an agent-based models and ana-20

lyzed them with both mechanistic models and a two-step regression procedure. In the latter,21

Rt was estimated first and then used as the outcome in a linear regression with NPI vari-22

ables as predictors. Mechanistic models consistently outperformed two-step regressions,23

exhibiting minimal bias (0-5%) and accurate confidence interval coverage. Conversely, the24

two-step regression showed up to 25% bias, with significantly lower-than-nominal confi-25

dence interval coverage, reflecting challenges in uncertainty propagation. We identified26

additional challenges in the two-step regression method, such high depletion of suscepti-27

bles and time lags in observational data. Our findings suggest caution when using two-step28
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regression methods for estimating NPI effectiveness.29

30
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number, non-linear mixed effects models32
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1 Introduction33

The emergence of novel infectious agents, such as the SARS-CoV-2 virus responsible for the34

COVID-19 pandemic, has highlighted the importance of non-pharmaceutical interventions (NPIs)35

in mitigating the impact of infectious diseases. NPIs encompass a wide range of public health36

measures, including social distancing, quarantine, mask-wearing, and school closures, all imple-37

mented with the primary goal of reducing disease transmission. The effectiveness of NPIs as a38

means to mitigate pandemics has been the subject of extensive research during the COVID-1939

pandemic. 1–3 Insights from these studies are crucial in guiding evidence-based public health40

responses to future pandemics. Various methods and models have been devised to assess NPI41

impact on disease transmission, ranging from straightforward descriptive techniques4,5 and42

regression models6,7 to advanced dynamic models8,9 and machine learning approaches. 10,1143

While this diversity of approaches contributes to the robustness of the estimates, it can intro-44

duce bias in systematic reviews and meta-analyses if a significant proportion of the methods45

are potentially unreliable. For example, different estimates of lockdown effectiveness have been46

found during the first wave in the United States, ranging from no reduction in case growth rates47

to a reduction by > 50%, 10,12–14 which can at least partially be attributed to different method-48

ologies being used.49

One systematic review reported that the most frequently used methodologies are descriptions50

of change over time (48% of reviewed studies), non-mechanistic models such as regression51

models (27%), and mechanistic models (15%). 15 Among the latter two, many approaches involve52

the estimation of intermediary outcomes, primarily the effective reproductive number Rt, from53

raw epidemiological data. These intermediary outcomes are then typically used in regression54

analyses to derive an estimate of NPI effectiveness. This strategy, which we call ”two-step55

regression approach,”, has been used across a range of studies. 16–20 Dividing the estimation56

process into two steps has the advantage of reducing model complexity. However, in addition to57

the challenges of estimatingRt, this approach fails to propagate the uncertainty associated with58

Rt estimation in the first step to the final estimates. Despite the frequent application of two-59

step models, the impact of chaining two analysis steps on confidence interval (CI) coverage and60

parameter bias has not been explored. Moreover, the performance of the one-step approach61

in estimating NPI effectiveness in mechanistic models remains an open area of investigation,62

both in terms of parameter bias and correct estimation of uncertainty.21 Here, we describe an63
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extensive methodological study of the two approaches in the context of COVID-19 pandemic64

inspired by previous results on French data.8,1965

2 Methods66

2.1 Study design67

Our primary objective was to construct a straightforward example for a meaningful compari-68

son of two methodological approaches. We generated epidemic data both with mechanistic69

Susceptible-Infected-Recovered (SIR)-type models and agent-based models (ABM) and then70

compared the performance of mechanistic models with two-step regression models on the71

simulated data. With each simulation method, we generated a total of 100 datasets, each com-72

prising 94 distinct geographical regions.8,19 With both data generation models, we assumed73

entirely susceptible closed populations. The population sizes for each region were set to the74

respective population sizes of French departments (range 80k - 2.6 million, median 560k). We75

created scenarios comparable to the first months of an epidemic, with a first NPI, comparable in76

strength to a lockdown, followed by a second NPI, comparable to a post-lockdown intervention77

(Figures S4 and S2). Both NPIs were assumed to abruptly reduce transmission on a multiplica-78

tive scale, with an immediate and constant effect throughout their implementation.79

Data generation with a SIR model We generated data with a SIR model, which consisted of80

a mathematical model using ordinary differential equations (ODEs) to describe the dynamics of81

SARS-CoV-2 transmission according to equation 1 and a linear mixed model that determined82

the transmission rate as a function of NPIs according to equation 2. To allow the basic transmis-83

sion rate to vary across regions, we included a random intercept.22 No measurement error was84

added to the generated observations. We generated 100 datasets each under five conditions85

of depletion of susceptibles (2%, 10%, 20%, 40% and 60% depletion of susceptibles before86

implementation of NPI 1). For parameters used in each scenario, refer to Table S1. The true87

Rt was calculated as btSt
γN , where b represents the transmission rate, γ the recovery rate, S the88

number of susceptibles, and N the total population.89
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Ṡ = −bSI

N

İ =
bSI

N
− I

DI

Ṙ =
I

DI

(1)

log(bi(t)) = log(b0) + β1NPI1(t) + β2NPI2(t) + ubi

ubi ∼ N(0, ωb)

(2)

Data generation with a SEIRAHD model To create more realistic scenarios, we generated90

data with a mechanistic SEIRAHD model, which has been used previously to estimate NPI91

and vaccine effectiveness.8,22 Equation 2 was again used to model the transmission rate as a92

function of NPIs, and the mathematical model to describe the dynamics of SARS-CoV-2 trans-93

mission is presented in equation 3. The mathematical model comprised 7 compartments (Sus-94

ceptible, latently Exposed, symptomatically Infected, Asymptomatically infected, Hospitalized,95

Recovered, and Deceased), encompassing various stages of infection (see Figure S1). For a96

description of the data generation, see Supplementary Methods Section 1.2 and for model pa-97

rameters, see Table S2. To more closely represent real-life data, we added measurement error98

to the simulated observations (see Table S3). We kept the initial numbers of infected individuals99

low in order to have a very low depletion of susceptibles (<2% before implementation of NPI100

1).101

Ṡ = −bS
I + αA

N

Ė = bS
I + αA

N
− E

DE
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rEE

DE
− rHI

DQ
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DI
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DE
− A

DI
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DQ
− (1− fr)H

DH
− frH

DD

Ṙ =
(1− fr)H

DH
+

(1− rH)I +A

DI

Ḋ =
frH

DD

(3)

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.14.24314896doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.14.24314896
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data generation with agent-based model We generated data with an ABM under two differ-102

ent scenarios: in the random mixing scenario, every agent had an equal probability of coming103

into contact with any other agent in the population, with an equal probability of transmission for104

each contact. Conversely, in the multi-layer scenario, interactions were divided into layers of105

school, workplace, households, and community encounters, with varying transmission probabil-106

ities. In the multi-layer scenarios, we assumed that NPIs did not affect household transmission,107

and disease progression was age-specific. The population size mirrored French departments,108

and for the multi-layer scenarios, the age distribution and contact structure were set according109

to the French population. For both scenarios, epidemics were seeded by sampling the number110

of initially infected agents and the basic viral transmissibility per contact (vt) from lognormal111

distributions (see table S2). Similar to the SEIRAHD models, we kept the depletion of suscep-112

tibles very low (2-3%) before the first NPI implementation.113

2.2 Parameter estimation with mechanistic models114

The SIR-generated data were analyzed with the corresponding SIR model. The SEIRAHD-115

generated data were analyzed both with the full SEIRAHD model and a reduced SEIR model116

(described in equation 4).117

Ṡ = −bSI

N

Ė =
bSI

N
− E

DE

İ =
E

DE
− I

DI

Ṙ =
I

DI

(4)

To increase comparability across geographical regions and therefore facilitate estimation, inci-118

dence data were scaled to 10,000 population. We fixed the progression parameters in the ODEs119

(DI , DE , etc.) to their respective true values, while the transmission rate and initial condition120

of I compartment (SIR model) or E compartment (SEIR/SEIRAHD model) were estimated from121

the data with random effects, as well as the NPI parameters with fixed effects.122

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.14.24314896doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.14.24314896
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.3 Parameter estimation with two-step regression123

The approach for the Rt regression was based on Paireau et al. 19 First, we estimated Rt from124

incident infections or hospital admissions, separately for each simulated region, with a smooth-125

ing window of 7 days. In the SIR-generated datasets, we applied no smoothing because the126

data were generated without measurement error. The approach requires the input of a genera-127

tion interval. In the SIR model, the generation interval is equal to theDI parameter, i.e. 5 days.128

For the data generated with the SEIRAHD model, case and hospitalization data (i.e. entries into129

the I and H compartments) were used as observations. For both, we calculated a generation130

interval with a mean of 10.1 days and a standard deviation of 8.75 days according to Wallinga131

et al.23 (for details, see Supplementary Methods Section 1.3). In the ABMs, we only used symp-132

tom onset data for the analysis, and the distribution of the generation interval was calculated133

directly during simulation, with a mean of 8.45 and a standard deviation of 4.45 for random134

mixing models and 7.8 and 4.4 for multi-layer models. Second, we ran a mixed-effects regres-135

sion with the point estimate of the derived log(Rt) as outcome and the two NPIs as predictors.136

Using discretization, for region i = 1...94 at weekly time points j = 1...17, we modeled:137

log(Ri(tij)) = log(R0pop) + β1NPI1(tij) + β2NPI2(tij) + uRi + ϵij

uRi ∼ N(0, ωR)

ϵij ∼ N(0, σ)

(5)

When using data generated with an incubation period (SEIRAHD models and ABMs), we lagged138

NPIs by 5 days for Rt estimated from cases, and by 10 days for Rt estimated from hospitaliza-139

tions, to account for transition periods. We performed sensitivity analyses with different lagging140

periods. We reported the 95% CI using the Normal Distribution, i.e. the mean plus or minus141

1.96 times the standard error.142

To take into account the uncertainty from the Rt estimation in the regression step, we also143

implemented a bootstrap procedure by repeatedly sampling from theRt distribution (details in144

Supplementary Methods Section 1.4).145

2.4 Performance evaluation146

For comparison of methods, we compared the absolute and relative bias, which we calculated as147

|β̂ − β| and |β̂−β|
β , respectively. Additionally, we assessed 95% CI coverage as the percentage148
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of datasets where the 95% CI contained the true value, separately for each estimated NPI149

parameter.150

2.5 Implementation151

We used the Simulx software version 2021 R224 to simulate the mechanistic model datasets.152

We used the Python package Covasim version 3.1.425 for ABM simulations, with ”new infectious153

cases” as observations for further analysis. In the mechanistic model approach, parameters154

were estimated using maximum likelihood estimation using a stochastic approximation expec-155

tation maximization (SAEM) algorithm implemented in Monolix.24 Standard errors for calculat-156

ing 95% CIs were derived from 100 bootstrap samples (by resampling on the 94 geographical157

regions and varying the algorithm starting point).158

The two-step regression analysis was conducted in R version 4.2.326 with the packages EpiEs-159

tim27,28 using recommendations from references29 and30 to estimate Rt and lme431 for the160

mixed effects regression. All code is publicly available on GitHub (https://github.com/sistm).161

2.6 Bias exploration162

To detect possible issues in the regression step, we ran linear mixed models with the trueRt as163

the outcome variable. In the SEIRAHD-created datsets, the true Rt was calculated as a linear164

transformation of the transmission parameter, using the next generation matrix approach (see165

Supplementary Methods Section 1.5).32 In the ABM datasets, Rt was computed directly during166

the simulation as the quotient of new infections on day t over the number of infectious agents167

on the same day, multiplied by the average duration of infectiousness.25168

To investigate the potential impact of NPI strength and implementation time on the two-step169

model performance, we simulated data with diverse NPI implementation times (ranging from a170

20-day to a 60-day NPI-free period) and varied NPI 1 strengths (coefficients ranging from -0.5171

to -2, corresponding to a percentage reduction in transmission between 39% and 86%).172
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3 Results173

3.1 Exploring bias in the two-step regression models174

Data created with SIR model First, we analyzed data generated with a simple SIR model,175

and different scenarios of depletion of susceptibles (ranging from 2% to 60%). We found that176

the bias in NPI effect estimations from the two-step regression model increased with greater177

depletion of susceptibles, whereas the mechanistic model consistently estimated the correct178

value (Table 1). For example, with a 2% depletion of susceptibles, the bias of the two-step179

regression model in estimating NPI 1 was 1%, which increased to 15% at 20% depletion of180

susceptibles and 45% at 60% depletion of susceptibles. Moreover, the 95% CI of the mech-181

anistic model covered the true value in all 100 simulated datasets. In contrast, the CIs from182

the two-step regression procedure were consistently too narrow, failing to cover the true value183

even in scenarios with little bias. The CI width was improved by bootstrapping the two-step184

regression procedure, but adequate coverage was only achieved in the scenario with the least185

bias. Of note, in the 40% and 60% depletion of susceptible scenarios, the 95% CIs for NPI186

2 showed good coverage despite a large bias. This anomaly can be attributed to the absence187

of viral transmission during the NPI 2 period, due to the high prior depletion of susceptibles188

(illustrated in Figure S5). Consequently, NPI 2 could only be estimated with high uncertainty,189

with 95% CIs ranging from -2.57 to -0.37, corresponding to a percentage reduction in trans-190

mission from 31% to 92%, making the CIs so wide that they are practically meaningless (Figure191

S6).192

The influence of the depletion of susceptibles on the bias of estimates can be understood193

analytically. In the two-step regression procedure, NPI effects were estimated using the Rt194

estimated in the first step according to equation 5. With R(t) = b(t)S(t)
γN and replacing b by195

equation 2, we derive:196

log(Ri(tij)) = log(b0)− log(γN) + log(S(t)) + β1NPI1(tij) + β2NPI2(tij) + ui + ϵij (6)

In this equation, log(b0) and log(γN) are constants and thus included in the intercept term. In197

contrast, log(S(t)) is time-varying and thus has the potential to bias the estimated NPI effects,198

with a greater depletion of susceptibles over the estimation period leading to an increased bias.199

200
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Depletion of S 2% 10% 20% 40% 60%
Reg. Mech. Reg. Mech. Reg. Mech. Reg. Mech. Reg. Mech.

NPI 1
Absolute bias -0.02 0.00 0.10 0 0.21 0 0.40 0 0.65 0
Relative bias (%) 1.2 0.2 7.0 0 14.8 0 27.4 0 45.0 0
95% CI (%) 0 - 0 - 0 - 0 - 0 -
95% bootstrap CI (%) 100 100 0 100 0 100 0 100 0 100
NPI 2
Absolute bias 0.05 0 0.20 0 0.33 0 0.42 0 0.48 0
Relative bias (%) 6.6 0.1 24.5 0 40.9 0 51.9 0 59.5 0
95% CI (%) 0 - 0 - 0 - 0 - 0 -
95% bootstrap CI (%) 100 100 0 100 0 100 100 100 100 100

Table 1: Evaluation metrics from SIR simulation. For each scenario of depletion of susceptibles,
the mean absolute and relative bias and percentage of CIs covering the true value across 100
simulated datasets are shown. The columns indicate the analysis model. The CI rows show the
percentage of datasets where the 95% CI covers the true value. The 95% CI of the mechanistic
model was always determined with bootstrap.
Reg. two-step regression model, Mech. mechanistic model, CI confidence interval, NPI non-
pharmaceutical intervention

Data created with SEIRAHD model While the SIR scenarios are useful to understand the201

general underlying challenges of the two-step regression procedure, the SIR model’s simplicity202

does not capture the complexity of real-world scenarios. The data generated by the SEIRAHD203

model address this limitation by offering a more realistic representation of an epidemic. The204

point estimates from the two-step regression models displayed substantial bias, particularly205

pronounced for the first NPI (relative bias ranging from 18-25%) compared to the second NPI206

(approximately 14-18%, see Table 2). Throughout all datasets, using hospitalizations for Rt207

estimation and subsequent regression consistently resulted in higher bias compared to using208

case data. Moreover, the CIs derived from these models consistently failed to include the true209

NPI values. When the two-step regression procedure was bootstrapped, the CIs were wider and210

included the true value for NPI 2, but not for NPI 1.211

In contrast, the 95% CIs for both NPIs derived with the mechanistic models covered the true212

value in all 100 datasets, while the point estimates exhibited only minimal absolute and relative213

bias (<1% for both NPIs, detailed in Table 2). The exceptional accuracy of the SEIRAHD model214

was anticipated, as it was the model used for data generation.215

3.2 Origins of bias216

In light of the substantial bias observed in the two-step regression model when a more realistic217

model was used for data generation, we investigated in depth the origins of this issue. Firstly,218

we examined the regression analysis step by running the linear mixed-effects model with the219
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Metric SEIR model SEIRAHD model Regression model
cases

Regression model
hosp.

NPI 1
Absolute bias 0.00 0.01 -0.26 -0.37
Relative bias (%) 0.3 0.4 18.3 25.4
95% CI (%) - - 0 0
95% bootstrap CI (%) 100 100 0 0
NPI 2
Absolute bias 0.01 0.00 -0.11 -0.15
Relative bias (%) 0.8 0.7 13.7 18.5
95% CI (%) - - 0 0
95% bootstrap CI (%) 100 100 99 100

Table 2: Evaluation metrics over 100 datasets created with the mechanistic SEIRAHD model.
The columns indicate the analysis model. The CI rows show the percentage of datasets where
the 95% CI covers the true value. The 95% CI of the mechanistic model was always determined
with bootstrap.
CI confidence interval, hosp. hospitalization, NPI non-pharmaceutical intervention

true Rt values as the outcome variable. While the regression model fitted the true Rt almost220

perfectly and estimated NPI effects with only slight bias for data generated by the SEIRAHD221

model (Table S4 and Figure 1A), the CIs failed to cover the true values due to the estimation of222

extremely small standard errors. However, based on these findings, we ruled out the regression223

step as the primary contributor to the bias.224

Comparing the Rt curves estimated in the two-step procedure to the true Rt from the mech-225

anistic SEIRAHD model, we identified discrepancies at the onset of the epidemic and a lag in226

Rt estimation by EpiEstim when the true Rt underwent sudden changes resulting from the im-227

plementation or lifting of NPIs (Figure 1B). These lags led to an underestimation of the strength228

of NPI 1 and overestimation of NPI 2, as the regression model estimated an average of the229

NPI periods. The pronounced decline in the first days contributed to the regression model230

consistently overestimating R0, i.e. Rt at the onset of the epidemic.231

We proceeded to investigate whether NPI strength had any discernible impact on the bias in232

Rt estimation. For NPI 1, we observed that both absolute and relative bias increased with the233

rise in NPI strength. Regarding NPI 2, the bias followed a U-shaped pattern with increasing234

NPI 1 strength, with an underestimation ofRt during the NPI 2 period by all models (Figures S8235

and S9). A more gradual NPI implementation period, involving a linear increase and decrease236

of NPIs from 0 to 1 over 1 or 2 weeks, did not improve Rt estimation nor the bias in regression237

coefficients (Figure S10 and Table S5).238

Since the SIR model produced accurate results in the scenarios with low depletion of suscepti-239

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.14.24314896doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.14.24314896
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: 2-step regression bias exploration. A: Regression fits of true Rt in three randomly
selected regions. Each panel represents one geographic region with data generated by the
mechanistic SEIRAHD model. The true Rt is depicted in blue and the corresponding regres-
sion fit in red. The panels on top show the respective case time series.
B:Rt fits by the two-step procedure and subsequent regression for data generated by the mech-
anistic SEIRAHDmodel. Each panel represents one geographic region. The highlighted regions
indicate which NPI was active at which time. The top panels the respective case time series.
Note that we followed EpiEstim guidelines in terms of not estimating Rt before 2 generation
times after the start of the epidemic, but these 2 weeks are cut off from the plot.
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bles, we hypothesized that a potential source of error in the two-step procedure could stem from240

the convolution of the time series. For an optimal Rt estimation, the most pertinent data are241

the dates of infection, aligning with the entry into the E compartment in our model, thereby cap-242

turing real-time transmission dynamics. EstimatingRt based on newly infected (corresponding243

to entry into the E compartment) instead of newly symptomatic (entry into I compartment) re-244

sulted in a notable reduction in relative bias for NPI 1, diminishing to 4.5%. However, the bias245

in NPI 2 estimation increased to 22.9% (see Table S6).246

3.3 Limitations of the mechanistic approach in the context of misspecified247

models248

To assess the robustness of the mechanistic model approach in the face of model misspecifi-249

cation, we generated data with ABMs, which include more heterogeneous individual behavior250

and population interactions, and a different underlying disease progression than assumed in251

the SEIRAHD model. We observed that even within the ABM framework, the mechanistic SEIR252

model in general demonstrated superior performance in terms of bias and coverage compared253

to the two-step regression model. The SEIR model effectively estimated NPI 1 with minimal254

bias around 2% and 95% CIs covered the true value in more than 95% of datasets, regard-255

less of whether the data were generated using random mixing or the multi-layer ABM (Table 3).256

However, for NPI 2, CI estimated by the SEIR model covered the true value in only 71% of the257

random mixing datasets but 100% of the multi-layer datasets. For NPI 1, the CIs derived from258

the regression model (both bootstrapped and non-bootstrapped) systematically failed to cover259

the values and displayed significant underestimation (relative bias of 12% for random mixing260

and 19% for multi-layer). However, the bias for NPI 2 was substantially lower (5% for random261

mixing and 1% for multi-layer).262

4 Discussion263

We evaluated and contrasted the performance of mechanistic models with two-stepRt estima-264

tion and subsequent regression modelling for estimating the relative reduction in viral transmis-265

sion caused by NPIs. Mechanistic models consistently outperformed the two-step procedure266

both in terms of bias and coverage. The two-step procedure consistently underestimated stan-267

dard errors of the parameter estimates across all analyses. This issue stems from the failure to268
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SEIR random
mixing

SEIR multi-layer Reg model
random mixing

Reg model
multi-layer

NPI 1
Absolute bias 0.04 -0.02 -0.18 -0.27
Relative bias (%) 2.6 1.3 12.2 18.7
95% CI (%) - - 0 0
95% bootstrap CI (%) 100 100 0 0
NPI 2
Absolute bias -0.04 0.02 -0.0.5 -0.01
Relative bias (%) 4.7 3.2 5.7 1.5
95% CI (%) - - 0 91
95% bootstrap CI (%) 71 100 0 95

Table 3: Evaluation metrics for 100 datasets created with the agent-based model. The CI rows
show the percentage of datasets where the 95% CI covers the true value. The 95% CI of the
mechanistic model was always determined with bootstrap.
ABM agent-based model, CI confidence interval, NPI non-pharmaceutical intervention, reg re-
gression

propagate the error inRt estimation into the final estimate, compounded by the overconfidence269

of the regression procedure, as observed in regressions with known Rt as the outcome vari-270

able. We showed that this issue could be improved by repeatedly sampling from the posterior271

distribution of the Rt estimated in the two-step procedure.272

Similar to Gostic et al.,30 we found that in a basic SIR scenario without weekly smoothing of273

observations and low depletion of susceptibles, Rt was estimated accurately, leading to nearly274

unbiased NPI effectiveness parameters. This result suggests that the parameter bias observed275

in the two-step regression model was not uniform across scenarios. However, in scenarios with276

higher depletion of susceptibles, the bias increased substantially. As an epidemic progresses,277

the number of susceptibles diminishes, resulting in a reduction ofRt. While not problematic for278

Rt estimation itself, the regression procedure will attribute the decrease in Rt to the NPI, thus279

making them appear more effective than they truly are, with the bias increasing as the depletion280

of susceptibles increases.281

In the more realistic scenarios, such as those generated by the SEIRAHD and ABM models as282

compared to the scenarios generated by SIR models, we observed greater bias in the point es-283

timates produced by the two-step regression procedure, particularly for the first NPI. This bias284

can be attributed to several factors. First, the representation of the natural history of infection in285

the SEIRAHD model and ABM differs from that assumed by EpiEstim. If we had generated data286

with a mechanism more consistent with EpiEstim, i.e., with the generation time distribution as287

an input parameter, estimation with the SEIRAHD model would likely have resulted in bias for288

the mechanistic models. This is because misspecification of the generation time distribution289
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can bias estimates of the reproduction number, regardless of the approach used.23 However, it290

remains debatable which approach is more realistic: simulating with the generation time as an291

input parameter or simulating with an underlying compartmental structure.292

Second, the inability to replicate the sharp decline induced by NPI implementation can be at-293

tributed to the long smoothing time window (7 days) coupled with a lengthy generation interval294

(10.1 days in SEIRAHD models). This gradual convergence of the estimated to the true Rt fol-295

lowing NPI implementation, led to inaccurate estimations of NPI impact, as regression models296

fit an average across the entire NPI period. However, we found that gradually implementing297

NPIs did not reduce the bias in regression estimates. Moreover, smoothing is necessary to298

manage measurements errors and other irregularities in the observational data.299

Third, the lag in observational time series behind real-time transmission might contribute to the300

bias, as symptomatic infections or hospitalizations capture transmission events that occurred301

in the past. This delay cannot be rectified by merely lagging the NPIs, and could explain why302

estimates from hospitalizations were less accurate than estimations from cases, as we only303

shifted NPI periods without considering the deconvolution of the time series.30 Indeed, using304

transmission-related observations directly (entry into the E compartment) helped reduce this305

bias. Several R packages for back-calculating transmission events from cases or hospitaliza-306

tions are now available, such as EpiNow2 and EstimateR.33,34307

Using regression analyses without accounting for the depletion of susceptibles also precludes308

strong causal conclusions about the effect of NPIs. Mechanistic models, which explicitly con-309

sider viral transmissionmechanisms and therefore depletion of susceptibles, offer an alternative310

for causal interpretation,21 but require detailed data and time to develop and estimate models.311

Running 100 bootstrap repetitions on 100 SIR datasets parallelized on 20 high-performance312

computing nodes took approximately 42 hours. Since the two methodologies were run on dif-313

ferent computing platforms, their computing times are hard to compare. Nevertheless, the314

two-step regression procedure, parallelized on 16 conventional laptop cores, required only four315

hours of computing time. In an early epidemic or pandemic setting, timely results are of great316

importance, so this trade-off between speed and accuracy of the results needs to be taken317

into account when deciding on a model. Therefore, developing user-friendly software for rapid318

epidemiological modeling in such scenarios is essential.319

Our study comes with limitations that need to be acknowledged. First, it is important to note that320
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our simulations do not prove that the mechanistic approach will always be unbiased. Indeed,321

in estimating parameters in datasets created by ABMs, we observed a reduced CI coverage322

with mechanistic models. Second, our simulated datasets did not consider various system-323

atic biases, such as reporting delays, significant under-reporting or missing observations. The324

only measurement error present was random noise on observations, and we did not incorporate325

weekly trends or seasonal changes in transmission. Moreover, we simulated only two consec-326

utive NPIs with no overlap. Our most realistic scenarios were therefore simpler than real-life327

scenarios during the COVID-19 pandemic, with spatial structures, multiple overlapping NPIs328

implemented to varying degrees, behavioural dynamics, and more. It is likely that in a real-329

life scenario, the problem could be even more exacerbated because of practical identifiability330

issues. However, our primary objective was to illustrate and compare the performance of two331

analysis methods under close-to-optimal conditions, and these limitations to not threaten the332

validity of our results. To address some of these simplifications, we included simulations us-333

ing ABM. However, we acknowledge that when analyzing real-world data, misspecification of334

the mechanistic model (for example, assumptions about the natural history of infection) might335

equally lead to bias. This is particularly true in the context of real-time modelling of emerging336

pathogens.337

Improving the public health response during an epidemic depends on informed decision-making338

about NPIs. Our findings have significant implications for refining the methodology used to339

estimate the effectiveness of NPIs. Our findings highlight the potential for a systematic un-340

derestimation of uncertainty in the two-step regression procedure, raising concerns about the341

reliability of its effectiveness estimates across different scenarios. While compartmental mod-342

els demonstrate superior performance over simpler models, their resource requirements, as343

they also require more time and expertise to implement, must be weighed against their bene-344

fits.345
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