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 2 

ABSTRACT 23 

Gene discoveries in obesity have largely been based on European cohorts, leading to an ancestral 24 

bias, that limits their generalizability across populations. We performed a gene-based rare variant 25 

association study of 721,941 individuals and identified 116 novel BMI-associated genes with 26 

consistent effects across ancestries, including 50 risk-conferring and 66 protective genes against 27 

obesity. Protective genes such as DCUN1D3 and NEUROD6 had effect sizes comparable to 28 

high-risk genes such as MC4R and BSN, and nearly twice that of known protective genes such as 29 

GPR75, which, along with five other genes, showed strong European bias. Notably, 82 of the 30 

116 genes showed functional relevance to obesity including adiposity, energy homeostasis, and 31 

glucose metabolism. While polygenic risks or an obesogenic lifestyle amplified the effect of 15 32 

genes on BMI, including the combination of low physical activity and MACROD1, 23 genes 33 

including VIRMA, AQP3, and PML retained protective effects even at high polygenic scores. Our 34 

findings provide further insights into the genetic basis of obesity that is conserved across 35 

ancestries and their interactions with obesogenic factors. 36 

 37 
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MAIN 39 

Obesity is a complex, heritable disorder with significant global impact, contributing to numerous 40 

comorbidities and public health challenges1. It is influenced by a combination of genetic and 41 

lifestyle factors2,3, yet the genetic component underlying the etiology of obesity remains a key 42 

area of investigation. While large-scale studies have identified roles for common variants4, 43 

including significant effects of polygenic risk scores (PGS)5, and rare protein-truncating variants 44 

in obesity risk genes such as MC4R and BSN6–9, as well as protective genes such as GPR759, 45 

these studies have predominantly focused on populations of European ancestry. Non-European 46 

populations are often underrepresented or included only for replication purposes6–8. This lack of 47 

diversity in genetic studies has resulted in two major issues: a bias in gene discovery towards a 48 

specific ancestry, and a limited ability to detect associations that may be significant in non-49 

Europeans but lack statistical power in predominantly European cohorts10. For example, 50 

clinically significant variants in APOL1 and PCSK9 associated with kidney disease and low LDL 51 

cholesterol, respectively, were both discovered in populations of African ancestry11,12. The 52 

consequences of this bias extend beyond gene discovery, affecting the generalizability of 53 

obesity-related findings to the broader global population and potentially limiting the 54 

effectiveness of precision medicine approaches13.  55 

Here, we conducted a rare variant association analysis of body-mass index (BMI) using 56 

genetic and phenotypic data from 721,941 adults of diverse ancestries, leveraging cohorts from 57 

the UK Biobank (UKB) and the All of Us (AoU) initiative. Unlike previous rare variant 58 

association studies of BMI that prioritized European populations for discovery and non-59 

Europeans for replication, we adopted a discovery approach in non-European populations as 60 

well. Combining statistics across populations, we identified 121 genes, 116 of which have not 61 

been previously linked to BMI in the context of rare variants, that showed consistent risk-62 

conferring and protective effects across ancestries. Our findings also revealed a strong European 63 

bias in previously identified obesity genes, with effect sizes varying significantly in non-64 

European populations. These disparities highlight the critical need for more inclusive genomic 65 

studies to ensure equitable obesity interventions. 66 

  67 
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RESULTS 68 

Cross-ancestry analysis to identify BMI-associated genes 69 

We analyzed genetic and electronic health record data of 721,941 adults from the UKB and AoU 70 

cohorts representing six ancestries14,15. We divided the cohorts into five populations, each with at 71 

least 50,000 individuals (Table 1). We used REGENIE v3.316 to perform gene-burden 72 

association tests by collapsing ultra-rare (minor allele frequency <0.1%) protein truncating 73 

variants (PTVs, defined as predicted loss of function or deleterious missense variants) for each 74 

gene and measuring their effect on BMI for each independent population. Using Bonferroni 75 

multiple testing correction (P<8.34 x 10-7, 20,000 genes, and three variant collapsing models, see 76 

Methods) and sample size (N≥20) thresholds, we identified a total of 11 BMI-associated genes 77 

from the UKB British (MC4R, PCSK1, DIDO1, BSN, UBR2, ATP5PO, APBA1, SLC12A5, and 78 

ATP13A1) and AoU European (MC4R, HECTD4 and YLPM1) populations, while no significant 79 

genes were found in the UKB non-British, AoU African, or AoU mixed populations, potentially 80 

due to insufficient statistical power to detect any association (Supplementary Table 1). 81 

Therefore, to identify genetic associations that are consistent across populations, we performed 82 

random-effect inverse variance weighted meta-analysis17 by aggregating summary statistics from 83 

each population into European (UKB British and AoU European populations), non-European 84 

(UKB non-British, AoU African, and AoU mixed populations), and combined (all five 85 

populations) results. Gene-burden associations that passed multiple testing correction in either 86 

the European or non-European meta-analysis, as well as in the combined result, were considered 87 

to be significant gene-BMI associations across ancestries. In contrast to previous cross-ancestry 88 

studies of BMI where European meta-analysis was typically used for discovery and non-89 

European analysis for replication, we did not define a single discovery population. Instead, we 90 

applied the same discovery approach in both populations, such that discoveries in Europeans 91 

were replicated in non-Europeans, and vice versa. This strategy allowed us to detect association 92 

signals for BMI in both populations, with consistent effect sizes.  93 

Using our cross-ancestry approach, we discovered 116 novel genes (50 associated with 94 

increased BMI and 66 with decreased BMI), along with five genes (APBA1, BSN, MC4R, 95 

ROBO1, and UBR2) that were previously identified in rare-variant studies on BMI6,7,9,18 (Fig. 1, 96 

Supplementary Tables 2, 3 and 4). We found that 28 out of the 33 known BMI-associated 97 

genes did not pass the exome-wide significance threshold, including six genes (GPR75, PTPRG, 98 
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SPARC, RAB21, ATP13A1, and DIDO1) that were only significant in Europeans but not in the 99 

combined meta-analysis (Supplementary Table 5). This result is consistent with a recent study 100 

by Zhao and colleagues where the association of ATP13A1 with BMI did not replicate in a non-101 

European cohort7. In contrast, we found that GIPR showed a significant effect in non-Europeans 102 

(β=-1.12 kg/m2, 95% CI: -1.54, -0.70, P=1.67x10-7) but not in Europeans (β=-0.44 kg/m2, 95% 103 

CI: -0.89, 0.05, P=0.09). We did not find significance for some genes such as KSR2, ZFHX3, 104 

and RAPGEF3, where previous associations were driven by specific protein-altering variants6, 105 

while for other genes such as ANO4, DPP9, and TOX4 cohort-specific biases may have driven 106 

previous associations. For instance, Zhao and colleagues failed to replicate the association of 107 

TOX4 in a non-European cohort7 (Supplementary Fig. 1, Supplementary Table 5). 108 

 109 
Table 1: Cohort and population statistics analyzed in this study. 110 
Population European Non-European Combined 

UKB British 419,228 
 

419,228 

UKB non-British  

(includes African, East Asian, South 

Asian ancestries) 

 
68,070   68,070 

AoU European 127,644 
 

127,644 

AoU African 
 

54,865   54,865 

AoU Mixed  

(includes Latino/admixed American, 

East Asian, South Asian and Middle 

Eastern ancestries) 

 
52,134   52,134 

Meta population (N) 546,872 175,069 721,941 

 111 

In our discovered genes, MYOG (β=3.87 kg/m2, 95% CI: 3.14, 4.6, P=0), ZFC3H1 112 

(β=1.78 kg/m2, 95% CI: 1.53, 2.02, P=0), and TMEM229A (β=1.77 kg/m2, 95% CI: 1.47, 2.07, 113 

P=0) contributed to the highest increase in BMI, with effect sizes comparable to MC4R, BSN, 114 

and UBR2. In fact, we identified 40 such high-effect genes, including 24 BMI increasing and 16 115 

BMI decreasing, which contributed to at least 1 kg/m2 change in BMI (Fig. 1, Supplementary 116 

Table 4). The effect sizes of several BMI-increasing genes, including MACROD1, ICE1, ADNP, 117 

NACC2, and LPCAT4, were robust and showed minimal variability across ancestries 118 
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(interpopulation variance, Vβ<0.15) (Fig. 2, Supplementary Table 6). Similarly, BMI-119 

decreasing genes such as B3GNT2 (Vβ=0.06), SNAP29 (Vβ=0.10), VIRMA (Vβ=0.13), and CCT7 120 

(Vβ=0.13) showed more consistent effect sizes than previously reported protective genes, 121 

including GPR75 (Vβ=1.06) and GPR151 (Vβ=0.49) (Fig. 2, Supplementary Table 6). Further, 122 

the absolute effect sizes of BMI-decreasing genes, DCUN1D3 (β=-3.84 kg/m2, 95% CI: -4.6, -123 

3.09, P=0), NEUROD6 (β=-3.02 kg/m2, 95% CI: -4.16, -1.89, P=1.8x10-7), and SH3GL2 (β=-124 

2.34 kg/m2, 95% CI: -3.05, -1.63, P=1.16x10-10) were comparable to those of MC4R and BSN. 125 

These results highlight the robustness of our cross-ancestry gene discovery approach. 126 

 127 

 128 
Fig. 1: Monogenic genes contributing to at least 1.5 kg/m2 difference in BMI across 129 
ancestries. Effect sizes along with 95% confidence intervals (CI) and significance values (P 130 
value) in European, non-European, and combined meta-analysis for high-effect (>1.5 kg/m2) 131 
genes associated with (a) increased and (b) decreased BMI are shown. Three variant collapsing 132 
models were tested for each gene and the one with the lowest P value in the combined meta-133 
analysis is shown here. † indicates known BMI genes. Data for all genes contributing to change 134 
in BMI (including those contributing to >1 kg/m2) are provided in Supplementary Table 4. 135 
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 136 
Supplementary Fig. 1: Effect of previously identified BMI-associated genes across 137 
ancestries. Effect sizes along with 95% confidence intervals (CI) and significance values (P 138 
value) in European, non-European, and combined meta-analysis for genes previously associated 139 
with BMI are shown. Three variant collapsing models were tested for each gene and the one with 140 
the lowest P value in the combined meta-analysis is shown here. Extended data are available in 141 
Supplementary Table 5. 142 
  143 
 144 
 145 
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 146 
 147 
Fig. 2: Interpopulation variance of known and discovered BMI genes. Interpopulation 148 
variance plot with effect sizes along x-axis and variance of effect sizes across populations along 149 
y-axis of previously identified (in red diamond) and discovered (in purple dots) BMI genes are 150 
shown. Three variant collapsing models were tested for each gene and the one with the lowest P 151 
value in the combined meta-analysis is shown here. Extended data are available in 152 
Supplementary Table 6. 153 
 154 
 155 
Cardiometabolic profile of carriers of PTVs in BMI-associated genes 156 

We next examined whether PTV carriers in the BMI-associated genes were enriched across 157 

different obesity categories, namely, underweight/normal (BMI<25), overweight (25≤BMI<30), 158 

obese (30≤BMI<40), and severely obese (BMI≥40). Of the BMI-increasing genes, PTV carriers 159 

in 35 genes, including NCOR1 (OR=1.28, 95% CI: 1.04, 1.58, P=0.02), SEC24B (OR=1.46, 160 

95% CI: 1.04, 2.04, P=0.02), ADNP (OR=1.77, 95% CI: 1.15, 2.7, P=0.007), and ANGPT2 161 

(OR=1.62, 95% CI: 1.08, 2.42, P=0.01), showed higher odds for obesity, while PTV carriers in 162 

22 genes, including MACROD1 (OR=2.11, 95% CI: 1.31, 3.25, P=0.002), ICE1 (OR=1.74, 95% 163 

CI: 1.06, 2.73, P=0.01), and MYOG (OR=7.47, 95% CI: 1.73, 25.21, P=0.004), showed higher 164 

odds for severe obesity (Fig. 3a, Supplementary Fig. 2, Supplementary Table 7). Of the BMI-165 
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decreasing genes, PTV carriers in 15 genes, including NEUROD6 (OR=2.78, 95% CI: 1.05, 7.61, 166 

P=0.03), DCUN1D3 (OR=2.49, 95% CI: 1.00, 6.22, P=0.04), SH3GL2 (OR=2.4, 95% CI: 1.49, 167 

3.87, P=0.0001), and VIRMA (OR=1.47, 95% CI: 1.11, 1.94, P=0.006), were more likely to be 168 

underweight or normal than individuals without PTVs in those genes (Fig. 3a, Supplementary 169 

Fig. 2, Supplementary Table 7). Further, individuals with PTVs in VIRMA (OR=0.51, 95% CI: 170 

0.35, 0.73, P=7.18x10-5), RABEP1 (OR=0.53, 95% CI: 0.32, 0.85, P=0.005), CDK7 (OR=0.67, 171 

95% CI: 0.46, 0.96, P=0.03), and P2RY1 (OR=0.44, 95% CI: 0.18, 0.96, P=0.03) were less likely 172 

to be obese, while individuals with PTVs in AQP3 (OR=0.13, 95% CI: 0.003, 0.76, P=0.01) and 173 

TSPAN4 (OR=0.46, 95% CI: 0.22, 0.86, P=0.01) were also less likely to be severely obese. This 174 

analysis confirmed obesity risk and protective effects of the BMI-associated genes discovered in 175 

our study. 176 

We also found significantly altered risks for 15 obesity-related comorbidities in carriers 177 

of PTVs in both obesity-risk conferring and protective genes compared to non-carriers (Fig. 3b, 178 

Supplementary Table 8). For instance, individuals with PTVs in LPGAT1 showed higher risks 179 

for 5 out of 15 comorbidities, including aortic valve stenosis (OR=4.05, 95% CI: 1.46, 9.07, 180 

P=0.005), heart failure (OR=2.33, 95% CI: 1.17, 4.21, P=0.01), and knee osteoarthritis 181 

(OR=2.27, 95% CI: 1.40, 3.55, P=0.0006). Notably, TMEM229A, despite conferring obesity 182 

risk, showed depletion for heart failure phenotype in carriers (OR=0, 95% CI: 0, 0.93, P=0.03). 183 

Among the obesity protective genes, PTV carriers in VIRMA and SCFD1 showed reduced risk 184 

for most of the tested cardiometabolic phenotypes, including significant depletion for venous 185 

thromboembolism (OR=0, 95% CI: 0, 0.65, P=0.008) and hypertension (OR=0.49, 95% CI: 186 

0.28, 0.85, P=0.007), respectively. Further, PTV carriers in the BMI-decreasing PANK1 and 187 

P2RY1 exhibited an increased risk for type 2 diabetes (OR=1.74, 95% CI: 1.16, 2.54, P=0.005) 188 

and heart failure (OR=2.82, 95% CI: 0.87, 7.11, P=0.04), respectively. While obesity risk-189 

conferring genes typically associated with worse cardiometabolic profiles and protective genes 190 

with better profiles, notable exceptions were observed where obesity protective genes conferred 191 

risk and risk genes were protective for certain cardiometabolic phenotypes. 192 

 193 
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 194 
Fig. 3: Enrichment of obesity and cardiometabolic comorbidities in PTV carriers of the 195 
discovered BMI associated genes. (a) Top: Proportion of PTV carriers within the obesity 196 
clinical categories (underweight or normal, overweight, obese, and severely obese) that led to at 197 
least 1.5 kg/m2 increase (risk) or decrease (protective) in BMI. Bottom: Odds ratio of obesity 198 
clinical categories in carriers compared to non-carriers. *P<0.05. Extended data with the odds 199 
ratios, 95% confidence intervals and exact P values are available in Supplementary Table 7. (b) 200 
Odds ratio for obesity-related comorbidities in PTV carriers of risk or protective genes compared 201 
to non-carriers. *P<0.05, **P<0.01, ***P<0.001. Extended data with the odds ratios, 95% 202 
confidence intervals and exact P values are available in Supplementary Table 8.  203 
 204 
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 205 
Supplementary Fig. 2: Enrichment in obesity clinical categories for BMI-associated genes. 206 
Proportion of PTV carriers in obesity clinical categories that led to between 1 to 1.5 kg/m2 207 
increase (risk) or decrease (protective) in BMI. The odds ratio of being underweight or normal, 208 
overweight, obese, and severely obese among carriers compared to non-carriers is also shown in 209 
the table below (*P<0.05). All data with the odds ratio, 95% confidence intervals, and exact P 210 
values are available in Supplementary Table 7. 211 
 212 

Functional analysis of obesity-associated genes 213 

We evaluated the impact of natural variation in plasma protein levels of the discovered genes on 214 

BMI of individuals from the UK Biobank, irrespective of their PTV carrier status. Among the 215 

discovered BMI-associated genes, six had plasma protein measurements from approximately 216 

50,000 individuals. We constructed linear models using protein expression as the independent 217 

variable and BMI, corrected for covariates, as the dependent variable. All six proteins had 218 

significant model coefficients, with DNER having the highest absolute effect on BMI (Fig. 4a, 219 

Supplementary Table 9), consistent with the association of DNER PTVs with severe obesity. 220 

Protein levels of FGF2 (β=0.21, P=3.87 x 10-14) and GLOD4 (β=0.79, P=7.02 x 10-53) 221 

associated with increased BMI, supporting the observation that disruption of these genes leads to 222 

a decrease in BMI (Supplementary Fig. 3). Interestingly, increased CD27 and ROBO1 levels 223 

associated with increased BMI, contrary to the expected effect from PTVs in these genes, which 224 

resulted in increased BMI. This suggests a complex relationship between protein expression of 225 

these genes and their effect on BMI. Our results show that natural variation in protein expression 226 

levels, potentially due to other common or rare non-coding variants, of the genes identified in 227 

our study are associated with BMI. 228 
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We next assessed whether the 116 novel genes identified in our study had been 229 

previously linked to obesity or related pathways using genetic and functional approaches beyond 230 

rare variant association studies. Nineteen genes, including MACROD1, VIRMA, and RABEP1, 231 

had common variant signals associated with BMI recorded in the GWAS catalog19 232 

(Supplementary Table 10 and 11). We also queried the Common Metabolic Diseases 233 

Knowledge Portal20, which aggregates and scores genotype-phenotype relationships (Human 234 

Genetic Evidence, or HuGE scores21) based on evidence from both rare and common variant 235 

association studies. This analysis identified 16 more genes, including LAMB2, FARP2, CELSR3, 236 

and ANGPT2, that showed strong associations (HuGE score≥10) with BMI or related phenotypes 237 

such as waist-hip ratio adjusted BMI or fasting insulin-adjusted BMI (see Supplementary Table 238 

10 and 11). 239 

 We further investigated the functional effects of knocking out obesity-associated genes 240 

using data from the International Mouse Phenotyping Consortium22 and previous studies in 241 

mouse models. We found that 15 of our novel genes (five associated with risk and ten protective 242 

against obesity) exhibited directionally consistent obesity-related phenotypes in mice, such as 243 

changes in total body fat, lean mass, and glucose tolerance (Table 2). Among the obesity risk-244 

conferring genes, we found impaired glucose tolerance, and increased weight gain in mouse 245 

models of Lonrf222, Ncor123, and Gabra524, respectively. Mouse studies further highlighted the 246 

involvement of these genes in obesity-related processes such as thermogenesis (Fgf225 and 247 

Gabra524), adipogenesis (Ncor123), glucose metabolism (Abca126), fatty acid metabolism 248 

(Pml27), and skeletal muscle metabolism (Mipep28). We also found direct evidence of protective 249 

effects from homozygous knockouts of Aqp3, Kctd7, and Fgf2 in mice, resulting in increased 250 

lean mass, reduced total body fat, and resistance to obesity with a high-fat diet, respectively 251 

(Table 2). In addition, Dcun1d3 homozygous knockout mice showed a significant reduction in 252 

total body fat, increased lean mass, and improved glucose tolerance. Finally, we performed a 253 

systematic literature review and found evidence for 71 genes with functional roles in obesity, 254 

including MMP3, SLC25A1, CYP3A5, APMAP, and UCP3 (Fig. 4b, Supplementary Table 12). 255 

Overall, we found evidence linking 82 out of the 116 discovered genes to obesity or related 256 

phenotypes, based on previous association studies, plasma proteomics, and mouse models (Fig. 257 

4b, Supplementary Table 11). 258 

 259 
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Table 2: List of mouse models of BMI-associated genes showing obesity-related phenotypes. 260 
Risk gene Evidence from mouse models 
ABCA1 Increased weight gain in adipocyte specific Abca1-ad/-ad KO mouse when fed 

a high fat diet26 
GABRA5 Increased weight gain in chemogenetically inhibited (by clozapine N-oxide) 

mouse when fed a high fat diet24 
NCOR1 Increased weight gain in adipocyte specific  NCoRfl/flaP2-Cre+/– KO mouse 

when fed a high fat diet23 
LONRF2 Impaired glucose tolerance observed in Lonrf2em2(IMPC)H homozygous KO 

mouse model 
ANGPT2 Protection from high fat diet induced obesity in adipose tissue specific 

overexpressed (by doxycycline) mouse29 
Protective gene Evidence from mouse models 
DCUN1D3 Decreased total body fat mass, increased lean body mass and improved 

glucose tolerance observed in Dcun1d3em1(IMPC)Wtsi homozygous KO mouse 
AQP3 Increased lean body mass observed in Aqp3tm2b(EUCOMM)Wtsi homozygous KO 

mouse  
SNAP29 Increased lean body mass observed in Snap29tm1a(EUCOMM)Wtsi heterozygous 

KO mouse 
KCTD7 Decreased total body fat amount observed in Kctd7em2(IMPC)Bay homozygous 

KO mouse model 
FGF2 Protection from high fat diet induced obesity in Fgf2−/− homozygous KO 

mouse25 
MTFP1 Protection from high fat diet induced obesity in liver specific  Alb-

Cretg/+Mtfp1LoxP/LoxP KO mouse30 
SETX Improved glucose tolerance observed in Setxtm1b(EUCOMM)Wtsi homozygous 

KO mouse 
MIPEP Protection from high fat diet induced obesity in adipocyte specific  

miPEPflox/floxAdiponectin-Cre+/− KO mouse28 
AHNAK Improved glucose tolerance observed in Ahnaktm1b(KOMP)Mbp heterozygous 

KO mouse  
PML Protection from western diet induced obesity in Pml−/− mouse27 

 261 

 262 

 263 
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 264 
Fig. 4: Functional validation of BMI associated genes. (a) Model coefficients, with 95 % CI 265 
and P value, of a linear model constructed using plasma protein expression values of BMI-266 
associated genes as independent variable and BMI as the dependent variable. Data with exact P 267 
values, model coefficients and 95% confidence interval are available in Supplementary Table 268 
9. (b) Upset plot of evidence for a role of the identified BMI-associated genes in obesity-related 269 
functions and phenotypes. The bars represent the number of genes with functional relevance 270 
found from the respective study, which is represented by the dots. RVAS, Rare variant 271 
association study; IMPC, International mouse phenotypic consortium; GWAS: Genome wide 272 
association study; CMDKP: Common metabolic diseases knowledge portal.  273 
 274 
 275 

 276 
 277 
Supplementary Fig. 3: Relationship between plasma protein levels and BMI. Association of 278 
the plasma protein levels with BMI in the population (grey scatters) and the PTV carriers (red 279 
scatters) for (a) DNER, (b) FGF2, (c) GLOD4, (d) CD27, (e) ROBO1, (f) MMP3.  280 
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Interactions of obesity-associated genes with polygenic risk and lifestyle factors  281 

We assessed how PGS modulated the effect of the identified genes on BMI (Supplementary 282 

Fig. 4a). We used linear regression to test multiplicative interactions between PGS and each 283 

disrupted gene towards changes in BMI. We identified four scenarios where PGS contributed to 284 

the variability in BMI among individuals with PTVs in the same gene (Fig. 5a and b, 285 

Supplementary Fig. 4b). In the first scenario, BMI was synergistically increased by both PGS 286 

and PTVs in risk genes, leading to more severe obesity. For example, individuals with PTVs in 287 

TSFM, LPGAT1, FAM171A2, ICE1, TNK2, and TPRX1 and eight other genes showed a 288 

synergistic increase in BMI in concert with PGS. This pattern was more evident in carriers of 289 

BSN PTVs where a non-additive increase in BMI was observed across PGS quintiles (Fig. 5c). 290 

Second, the combined effect of PGS and PTVs in five risk genes, including UBR2 and PAM, was 291 

much lower than their expected additive effects on BMI (Fig. 5c). Third, PGS was found to 292 

override the effect of six protective genes such as SH3GL2 and APMAP, and individuals with 293 

high PGS still showed increased BMI despite carrying PTVs in BMI-decreasing genes (Fig. 5c). 294 

In the fourth scenario, we noted that 23 protective genes override the strong obesity risk-295 

conferring effect of PGS, and individuals remain protected despite carrying high polygenic risk 296 

for obesity. For example, the effect of PGS in the highest quintile among carriers of PTVs in 297 

VIRMA was 2.53 kg/m2 less than in non-carriers (Fig. 5c). We did not identify non-additive 298 

effects of PGS on other disrupted genes such as MC4R, APBA1 and ROBO1, consistent with 299 

previous reports7,9 (Supplementary Table 13). 300 

We next investigated the effect of obesity-inducing lifestyle factors on the BMI of PTV 301 

carriers after controlling for PGS. We found that the effects of PTVs in MACROD1 and VIRMA 302 

was modulated by the degree of physical activity of individuals. In particular, individuals 303 

carrying MACROD1 PTVs with low physical activity (UKB) or bad physical health (AoU) had a 304 

higher BMI compared to non-carriers, in both UKB and AoU cohorts (Fig. 5d, Supplementary 305 

Table 14). On the other hand, the protective effect of VIRMA was more pronounced in 306 

individuals with low physical activity in the UKB cohort but was diminished in individuals self-307 

reported to be in bad physical health in the AoU cohort (Supplementary Fig. 4c, 308 

Supplementary Table 14). This observation could be attributed to differences in how lifestyle 309 

factors are measured across UKB and AoU, or other cohort-specific factors. We also identified 310 

associations for carriers of MC4R, TNK2, and GADL1 PTVs with diet, sleep, and sedentary 311 
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lifestyle factors, respectively, in UKB (Supplementary Table 15), but these associations could 312 

not be tested in AoU due to the lack of comparable data. Our results underscore the influence of 313 

PGS and obesogenic factors towards the effect conferred by obesity risk and protective genes.  314 

 315 

 316 
Fig. 5: Effect of obesity-associated genes modulated by polygenic and obesogenic risk 317 
factors. (a) Interaction model coefficient plot of combined risk of PTVs in the discovered genes 318 
and PGS on BMI, categorized by the four different scenarios. Data with exact P values and other 319 
associated statistics are available in Supplementary Table 13. (b) Interaction plots showing the 320 
mean BMI of PTV carriers and non-carriers in the higher (fourth and fifth) and lower (first, 321 
second, and third) PGS quintiles are shown. The PTV carriers of genes were aggregated based on 322 
their interaction category with PGS. (c) BMI distribution across PGS quintiles of PTV carriers 323 
(blue) compared to non-carriers (grey) of the representative examples for each of the four 324 
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interaction scenarios. (d) BMI distribution of MACROD1 PTV carriers compared to non-carriers, 325 
stratified by their physical activity levels in UKB (left) and AoU (right) cohorts. 326 
 327 

 328 
Supplementary Fig. 4: Effect of obesity-associated genes modulated by polygenic and 329 
obesogenic risk factors. (a) BMI distribution of PTV carriers in high-effect obesity genes. (b) 330 
Interaction plots depicting the different scenarios through which PGS modulates the BMI of 331 
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individuals with PTVs in the discovered genes. (c) BMI distribution of carriers of PTVs in 332 
VIRMA compared to non-carriers stratified by their physical activity levels in UKB (left) and 333 
AoU (right) cohorts. 334 
 335 

DISCUSSION 336 

Here, we discovered 116 genes with consistent effects on BMI across ancestries and provide 337 

accurate estimates of effect sizes for known obesity genes. By using genetic data from both 338 

European and non-European populations, we uncovered gene-discovery biases present in 339 

previous studies particularly in genes such as DIDO1, SPARC, and RAB21 that showed 340 

significant associations only in Europeans. Typically, protective obesity genes have been more 341 

challenging to identify than risk genes, but three notable ones, GPR75, GPR151, and GIPR, have 342 

emerged more recently through rare variant association studies6,9,31. However, our findings 343 

suggest that these genes may also be influenced by ancestral biases, with variable effect sizes 344 

across populations, which could impact their potential as therapeutic targets for obesity. In 345 

contrast to previous studies, we identified genes with consistent effects across ancestries and 346 

functional evidence, such as mouse knockout models for these genes, confirm their role in 347 

obesity-related pathways. These findings emphasize the value of a cross-ancestry analysis, which 348 

enabled the discovery of several novel genes with effect sizes comparable to canonical obesity 349 

genes such as MC4R and BSN. 350 

A significant finding from our study was the identification of 66 protective genes, some 351 

of which exhibit effect sizes more than twice that of known protective genes. Notably, 352 

DCUN1D3 showed the highest effect size, with PTVs in these genes leading to approximately 353 

3.8 kg/m2 decrease in BMI. This gene is highly expressed in adipocytes, and Dcun1d3 knockout 354 

mice showed reduced fat body mass, increased lean body mass and improved glucose 355 

tolerance22. DCUN1D3 encodes a protein involved in neddylation, a post translation 356 

modification that attaches a small ubiquitin-like molecule, NEDD8, to substrate proteins, altering 357 

their properties32,33. Disruption of neddylation has been linked to impaired energy metabolism 358 

and age-related metabolic disorders34,35. While the mechanisms by which DCUN1D3 might 359 

influence these pathways or diseases are unclear, our findings suggest that its inhibition could be 360 

a therapeutic target for obesity. Similarly, VIRMA consistently led to decreased BMI, is 361 

supported by evidence from nearby common variant signals19, and individuals with PTVs in this 362 

gene displayed improved cardiometabolic health. Two other protective genes, AQP3 and FGF2, 363 
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not only showed evidence from mouse models for obesity protection but also have well-364 

established functional roles in glycerol metabolism36 and thermogenesis25. Currently, 365 

pharmacological inhibitors or negative modulators, such as Bisacodyl and Pentosan polysulfate, 366 

exist for AQP3 and FGF2; however, they are used as a laxative and for bladder pain, 367 

respectively37. We also found that Setmelanotide, the MC4R agonist used for weight loss, is also 368 

an agonist of ANGPT2, an obesity risk gene discovered in our study, with evidence from mouse 369 

models demonstrating its role in body weight regulation29,38. Thus, our discoveries provide 370 

avenues for repurposing existing drugs or devising new ones to alleviate obesity risk.  371 

While polygenic risks have been found to additively influence rare variant risk for 372 

obesity9, a recent study showed BSN and PGS interact non-additively. In addition to 373 

recapitulating the effect between BSN and PGS, we found synergistic effects of PGS on other 374 

genes, such as TSFM, LPGAT1, and FAM171A2, as well. Further, synergistic interactions 375 

between obesity causing risk factors can also exacerbate the risk of severe obesity and its 376 

associated morbidities. For instance, carriers of PTVs in MACROD1, an obesity risk gene, 377 

showed significantly higher BMI when they were physically inactive compared to carriers who 378 

were active. While previous studies have shown the adverse effect of lifestyle factors on 379 

common variants associated with BMI2, we provide evidence that rare variant risk can be 380 

modulated by obesogenic factors. Notably, carriers of PTVs in protective genes such as VIRMA 381 

and PI4KB, remained protected despite having high PGS, highlighting the complex patterns of 382 

interactions between specific obesity genes and PGS. Understanding these genetic and gene-383 

environment interactions could be key to developing more effective interventions, where lifestyle 384 

changes may mitigate genetic risk in high-risk individuals, and protective variants might offer 385 

resilience against obesogenic factors. Overall, using a multi-ancestry approach, we provide a 386 

more comprehensive view of obesity genetics, identifying novel genes, refining the effects of 387 

known genes, and demonstrating the importance of including diverse populations in genetic 388 

studies. 389 

  390 
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METHODS 391 

Variant quality control, filtering, and annotation 392 

We analyzed whole exome sequencing data of 469,835 individuals from the UK Biobank (UKB) 393 

cohort, available as multi-sample project variant call format (pVCF) files in the UKB Research 394 

Analysis Platform (RAP). The sequencing method and preparation of the pVCF files have been 395 

previously described39. Using the Hail40 platform on DNANexus, we first split multi-allelic 396 

records, and then filtered to retain rare variants with intracohort frequency <0.001. These 397 

variants were annotated using variant effect predictor41 (VEP v109) and dbNSFP v442 to identify 398 

the predicted variant effects on gene transcripts. All variants within protein coding genes in the 399 

autosomes with a call rate of 50% were used for subsequent analysis. We then annotated each 400 

variant based on their most deleterious functional impact on the transcript into three categories,  401 

from the most harmful to the least harmful, as follows: (1) Loss of function or “lof”, which 402 

included frameshift, stop gained, splice acceptor, and splice donor VEP annotations, (2) 403 

“missense strict”, which included missense variants predicted to be deleterious by nine 404 

deleteriousness prediction tools (SIFT43, LRT44, FATHMM45, PROVEAN46, MetaSVM47, 405 

MetaLR47, PrimateAI48, DEOGEN249, and MutationAssessor50) available through dbNSFP 406 

database, and (3) “missense lenient”, which included missense variants predicted to be 407 

deleterious by at least seven out of the nine deleteriousness prediction tools. All UKB analyses 408 

were performed in the DNANexus UKB RAP. 409 

 We also analyzed whole genome sequencing data of 245,388 individuals in the All of Us 410 

(AoU) cohort. Variant call files for regions overlapping with the exomes were available as a Hail 411 

matrix table in the AoU portal. After filtering the variants for intracohort frequency (<0.001), we 412 

annotated the variants using Nirvana51, available in the AoU research platform as a Hail table, 413 

and determined the functional impact of each variant using the same criteria as defined for the 414 

UKB data. All AoU analyses were performed in the Researcher Workbench of the AoU portal. 415 

 416 

Phenotype, obesogenic lifestyle, polygenic risk analyses 417 

For the UKB cohort, BMI, genetic sex (Data Field 22001), age (Data Field 21003), ethnic 418 

background (Data Field 21000), PGS (Data Field 26216), genetic kinship (Data Field 22021), 419 

and the top 40 genetic principal components (PCs; Data Field 22009) on 502,368 individuals in 420 

UKB were accessed and preprocessed through the UKB RAP. Numerical fields such as BMI and 421 
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age, measured across multiple visits, were averaged. Categorical fields such as sex and ethnic 422 

background were searched for inconsistent readings, and samples with conflicting values across 423 

multiple assessments were dropped. We further filtered samples with 10 or more third-degree 424 

relatives from our analysis based on previously published kinship estimates14. We finally divided 425 

the cohort into two populations, based on their ethnic background namely, “British” consisting of 426 

419,228 individuals self-reported to be “White British” based on the UKB data-field 21000, and 427 

the other 68,070 individuals who we categorized as “non-British” population. We note that the 428 

UKB non-British population contains individuals of European ancestry, for example, individuals 429 

with self-reported “Irish” ethnic background. Obesogenic lifestyle factors such as Metabolic 430 

Equivalent Task (MET) scores, sleep duration, alcohol consumption, or smoking habits were 431 

also accessed and preprocessed through the UKB RAP. Numerical fields were averaged and 432 

samples with categorical fields having conflicting values across multiple assessments were 433 

dropped. All fields were then binarized based on their extreme values and their potential effect 434 

on BMI as follows: Numerical fields with the potential to have a directly proportional effect on 435 

BMI, such as “time spent watching television”, were assigned as 1 for an individual, if their 436 

corresponding value was greater than 95% quantile. On the other hand, fields with inversely 437 

proportional effect on BMI, such as “consumption of cooked vegetable”, were assigned as 1 if 438 

the value was less than 5% quantile. Individuals with extreme values from ordinal fields that 439 

potentially lead to increased BMI were assigned as 1, and individuals with all other values were 440 

assigned as 0. For example, individuals who consumed alcohol daily or almost daily, the extreme 441 

category for this field, were encoded as 1 for that lifestyle factor. A full description of the 442 

lifestyle factors used in this study and the thresholds or categories used to binarize them is 443 

available in Supplementary Table 16. After binarizing, the fields were combined to define one 444 

of the six lifestyle factors, namely, (i) physical activity, (ii) alcohol, (iii) smoke, (iv) diet, (v) 445 

sleep, and (vi) sedentary lifestyle, used in this study. Binarized MET scores, alcohol 446 

consumption frequency, and sleep patterns were directly used as indicators of physical activity, 447 

alcohol, and sleep metrics, respectively. Individuals whose current or past smoking tendencies 448 

were high were considered to have the “smoke” lifestyle. Similarly, those spending more time on 449 

TV or computer were indicative of “sedentary lifestyle”. Diet was denoted as 1 if either the sum 450 

of high processed meat-, beef-, mutton-, and pork-intake binarized columns was greater than 0, 451 

or the sum of low cooked vegetable, salad, fresh fruit, dried fruit, oily fish, or non-oily fish-452 
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intake binarized columns was greater than 1. Thus, the diet field used in the study is analogous to 453 

high-meat and/or low vegetable consumption. International Classification of Disease (ICD-10) 454 

10th revision summary diagnosis codes corresponding to each individual were also extracted 455 

from the Hospital Episode Statistics (HES) data available in the UKB RAP. 456 

 For the AoU cohort, we obtained BMI, age, genetic sex, previously calculated genetic 457 

ancestry15, 16 genetic PCs, and sample IDs of related individuals from the AoU Workbench. We 458 

calculated the age based on the date of birth and the BMI measurement data concepts (“concept” 459 

defined here as a collection of similar data stored together) available in AoU. We used the “sex 460 

at birth” concept, available in AoU, to denote the genetic sex of an individual. Only individuals 461 

with BMI values between 12 and 75 kg/m2 and “sex at birth” field listed as either “Male” or 462 

“Female" were included to ensure consistency between UKB and AoU. Based on the predicted 463 

genetic ancestry, we divided the AoU data into three populations namely, (1) European 464 

(N=127,644), which included individuals predicted to be of European ancestry, (2) African 465 

(N=54,865), which included individuals predicted to be of African ancestry, and (3) Mixed 466 

(N=52,134), which included individuals predicted to be of Admixed American ancestry and 467 

other ancestries. We calculated PGS for BMI in individuals from AoU by using the GWAS 468 

summary statistics from a previous study4. Duplicate and ambiguous single nucleotide 469 

polymorphism (SNPs) were filtered from the summary statistics. Genotype data of the AoU 470 

cohort filtered for common variants (MAF>0.01) was obtained as a Hail matrix table. We further 471 

removed variants with Hardy-Weinberg Equilibrium p-value <1x10-6 and retained variants that 472 

overlapped between summary statistics data and the AoU genotyped data with a call rate greater 473 

than 0.9. We then used the predetermined effect sizes of the SNPs as Bayesian priors, weighed 474 

them based on the alternate allele frequency observed in individuals, and summed the weighted 475 

effect sizes to obtain individual-specific polygenic risk for BMI. All calculations were conducted 476 

using Hail, available in the AoU Researcher Workbench. Obesogenic lifestyle factors such as 477 

physical activity, alcohol consumption, and smoking tendency in the AoU cohort were obtained 478 

from survey questionnaires available through the AoU research portal. Individuals falling in the 479 

extreme categories for each of the three factors, (1) Physical activity: “General Physical Health: 480 

Fair” or “General Physical Health: Poor”, (2) Alcohol consumption, “Drink Frequency Past 481 

Year: 4 or More Per Week”, and (3) Smoking tendency: “Smoke Frequency: Every Day”, were 482 

annotated as 1, denoting those carrying the respective obesogenic factor, while others not falling 483 
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in these extreme categories were annotated as 0. We note that physical activity measurements in 484 

AoU were not equivalent to those in UKB, where a more rigorous assessment of an individual’s 485 

physical health was measured using International Physical Activity Questionnaire guidelines. 486 

Additionally, diet and sedentary lifestyle information was not available in AoU, while sleep data 487 

were available on less than 10% of the cohort and these lifestyle factors could not be tested in 488 

AoU. ICD-10 diagnosis codes corresponding to each individual in the AoU cohort was extracted 489 

using the researcher workbench. 490 

 491 

Gene burden association test using REGENIE 492 

We used REGENIE v3.316 to conduct gene burden association tests. Similar to most whole 493 

genome regression tools, REGENIE operates in two steps. First, it uses SNP data, preferably a 494 

genotyped array of SNPs, from across the genome to fit a null model that estimates a polygenic 495 

score for the trait to be tested (i.e., BMI in our study). This step accounts for population structure 496 

and relatedness between samples. For both UKB and AoU cohorts, we used the genotyped SNP 497 

array files available in DNANexus or Researcher workbench for this step. We lifted over the 498 

SNP array files in UKB from version hg19 to hg38 using Picard’s LiftoverVCF tool52. In the 499 

second step, REGENIE then calculates the association between the genetic variants of interest 500 

and the trait after considering the null model calculated in step 1 and other user defined 501 

covariates. In our study, we used age, genetic sex, and first ten genetic PCs obtained from both 502 

UKB and AoU cohorts as additional covariates. REGENIE is capable of collapsing variants to a 503 

gene-level with user defined masks and annotation files apart from the usual variant data as input 504 

before running association tests. We supplied our already annotated variant file based on their 505 

impact on gene transcripts and defined three variant masks to collapse variants on a gene level, 506 

namely, (a) “lof” variants only, (b) “lof” and “missense strict” variants, and (c) “lof”, “missense 507 

strict” and “missense lenient” variants. We performed gene-based association tests for all the five 508 

defined populations across both biobanks and generated statistics for all individual gene-mask 509 

pairs. 510 

 511 

Meta analysis and variance calculation 512 

We first created three meta populations from the previously defined five populations (UKB 513 

British, UKB non-British, AoU European, AoU African, and AoU Mixed), the first composed of 514 
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individuals from European ancestry (UKB British and AoU European) termed “European meta”, 515 

the second from non-European ancestry (UKB non-British, AoU African and AoU Mixed) 516 

termed “non-European meta”, and the third from all five populations termed “combined meta”. 517 

We note that a minority of individuals (approximately 15%) in the non-European population 518 

were from ethnic groups such as ‘Irish’ or ‘any other white background’, and are therefore likely 519 

to be of European ancestry. 520 

Results from the individual populations were pooled into the three meta populations 521 

using an inverse variance weighted random effects model. The meta-analysis calculation was 522 

implemented using the python package statsmodels v0.14.2. Each gene-variant mask was 523 

associated with meta statistics for three meta populations. Any gene-variant mask that passed the 524 

Bonferroni multiple testing correction threshold of 8.34x10-7, accounting for 20,000 genes and 525 

three variant collapsing models, either in the European meta or the non-European meta and in 526 

the combined meta population were considered to be significantly associated with BMI across 527 

ancestries. 528 

 We calculated the interpopulation variance in effect sizes across populations for the 529 

discovered genes passing our multiple testing criterion, as well as previously associated BMI 530 

genes, using the “var” method available in the python package, pandas v2.1.1.  531 

   532 

Odds-ratio calculation for obesity clinical categories and obesity-related disorders 533 

To calculate risk across the obesity clinical categories among carriers of PTVs in the discovered 534 

genes compared to non-carriers, we first categorized each individual into their respective clinical 535 

category based on their BMI values: underweight or normal (<25), overweight (25 to 30), obese 536 

(30 to 40) and severely obese (>40). We then created 2x2 contingency tables using their carrier 537 

status as the first variable and whether they belong to the respective obesity category as opposed 538 

to any other category as the second variable. Finally, we calculated the conditional odds ratio and 539 

the significance value using a two-sided Fisher’s exact test.  540 

To calculate risk for obesity related disorders, we obtained the specific ICD codes for 541 

comorbidities frequently associated with obesity based on previous BMI related studies and 542 

calculated the odds of PTV carriers diagnosed with the comorbidity compared to non-carriers 543 

using Fisher’s exact test. A list of the comorbidities and the ICD codes used to categorize an 544 
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individual as carrying the comorbidity is provided in Supplementary Table 17. All odds ratio 545 

calculations were conducted using the scipy v1.11.3 package available in python. 546 

 547 

Functional analysis of the discovered genes 548 

We overlapped the list of discovered genes with a BMI gene list obtained from the GWAS 549 

catalogue19, where the SNPs identified in previous BMI GWAS studies are mapped to their most 550 

likely gene targets. We further overlapped the discovered gene list with gene phenotype 551 

associations from Common Metabolic Diseases Knowledge Portal (CMDKP) database20. 552 

CMDKP aggregates information and scores genotype-phenotype relationships (Human Genetic 553 

Evidence or HuGE scores21) based on the evidence acquired from previous rare and common 554 

variant association studies for all common metabolic disorders, including obesity and related 555 

phenotypes. Any gene that showed strong associations (HuGE score≥10, indicating “strong” 556 

evidence of gene-phenotype link) with obesity, BMI, or related phenotypes, such as fasting 557 

insulin adjusted BMI, or waist hip ratio adjusted BMI, were considered an overlapping BMI 558 

related gene. Associations of the discovered genes with previous in vivo studies of knockout 559 

(KO) mouse models were first identified using data from the International Mouse Phenotyping 560 

Consortium (IMPC)22, which provides comprehensive phenotypic characterization of mouse 561 

KOs, including assessments of body weight and obesity-related traits. IMPC represents an 562 

unbiased resource for investigating the in vivo effects of novel genes that have not been studied 563 

in the context of obesity. Further, we conducted a PubMed search of each gene by searching for 564 

the gene name in the abstract or title and “obesity” in the text. This provided additional 565 

functional evidence for the novel genes, which have been phenotypically characterized using 566 

mouse models, or other complementary approaches such as human genetic studies. The BMI-567 

associated GWAS gene list was directly obtained from NHGRI-EBI catalog, while associations 568 

from CMDKP, IMPC, and PubMed were accessed programmatically through their REST API 569 

using python’s requests v2.31.0 module. 570 

 571 

Proteomics data analysis of oligogenic combinations 572 

Normalized plasma protein expression data of 1,463 proteins on 50,956 individuals were 573 

accessed through the DNANexus portal of UKB RAP. Multiple replicates of protein readouts 574 

were averaged, and protein levels of corresponding genes were identified. Using linear 575 
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regression models, the effect of protein expression levels for the discovered genes with available 576 

protein data on BMI was measured, while accounting for covariates such as age, genetic sex, ten 577 

genetic PCs, PGS, and the interaction term between the protein and the PGS. The model was 578 

trained using “ols” function from statsmodels v0.14.2 package available in python. 579 

 580 

Interaction models for obesity risk factors 581 

To assess interactive effects between each gene and PGS, we used a linear regression model to 582 

predict BMI using individual as well as interactive terms between PGS and PTV carrier status 583 

for the discovered genes while accounting for age, genetic sex, and ten genetic PCs. We obtained 584 

separate model coefficients in UKB and AoU cohorts and then used random effect meta-analysis 585 

to combine the statistics from the two cohorts. Interaction terms with meta-analysis P value less 586 

than 0.05 were considered significant gene-PGS interactions. The models were trained using 587 

“ols” function from statsmodels v0.14.2 package, available in python. 588 

To compare interactive effects between lifestyle factors and gene PTV carrier status, we 589 

conducted factorial analysis of covariance using the individual gene and lifestyle terms as well as 590 

the gene-lifestyle interaction term, while accounting for age, genetic sex, first ten genetic PCs 591 

and PGS, separately in UKB and AoU cohorts. Interaction terms that crossed the P value 592 

threshold (0.05) in both UKB and AoU were considered significant gene-lifestyle interactions. 593 

Model training and calculation of P value significance and confidence intervals were performed 594 

using “ols” and “anova_lm” function from statsmodels v0.14.2 package available in python. 595 

  596 
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