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Abstract

Monitoring the number of COVID-19 patients in hospital beds was a critical compo-
nent of Australia’s real-time surveillance strategy for the disease. From 2021–2023, we
produced short-term forecasts of bed occupancy to support public health decision
making. In this work, we present a model for forecasting the number of ward and in-
tensive care unit (ICU) beds occupied by COVID-19 cases. The model simulates the
stochastic progression of COVID-19 patients through the hospital system and is fit to
reported occupancy counts using an approximate Bayesian method. We do not directly
model infection dynamics — instead taking independently produced forecasts of case
incidence as an input — enabling the independent development of our model from
that of the underlying case forecast(s). We evaluate the performance of 21-day fore-
casts of ward and ICU occupancy across Australia’s eight states and territories between
March and September 2022, when major waves of the Omicron variant of SARS-CoV-2
were occurring throughout the country. Forecasts were on average biased downwards
immediately prior to epidemic peaks and biased upwards post-peak. Forecast per-
formance was best in jurisdictions with the largest population sizes. Our forecasts of
COVID-19 hospital burden were reported weekly to national decision-making commit-
tees to support Australia’s public health response.

Introduction

Throughout 2020–2022, SARS-CoV-2 induced large epidemic waves of infection interna-
tionally, with a considerable proportion of these infections requiring medical care. During
peak epidemic periods, the demand for hospital beds overwhelmed the capacity of health-
care systems in many settings [23, 15, 13]. The number of beds occupied by COVID-19
cases depends upon the number of new patients admitted and the length of stay of these
patients — with both quantities being products of the severity of disease and of clinical
practice. Forecasts of hospital occupancy can provide public health decision makers with
intelligence to support decision-making.

Australia’s early COVID-19 experience differed from most other countries, with only a
small proportion of the population having been infected prior to the widespread uptake of
vaccination; by December 2021, over 80% of adults had been vaccinated and less than 2%
of adults had been recorded as infected amidst intensive public health measures [14, 43].
The Omicron variant of SARS-CoV-2 emerged in November 2021, with the Omicron BA.1
lineage inducing major waves of infection across Australia and resulting in at least 17% of
the population having been infected by March 2022 [27]. We limit our study to the period
between March and September 2022, which was defined by two major waves of infection:
a wave induced by the Omicron BA.2 lineage, which peaked in March–April 2022 [10]; and
a wave induced by the Omicron BA.4 and BA.5 lineages, which peaked in late July 2022 [9].
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In this work, we describe a model for producing short-term (21-day) forecasts of hospital
occupancy. We chose daily bed occupancy as a forecast target — rather than daily admis-
sions — as occupancy more closely relates to the overall capacity of the hospital system.
Furthermore, such bed occupancy counts had been collected and publicly reported for
each state and territory of Australia on a daily basis since the early stages of the pandemic
[32]. Our forecasting model takes as input an independently produced forecast of daily
case incidence, with this incidence then transformed into ward and ICU occupancy counts
through a stochastic compartmental model, with the probabilities of hospitalisation and
of ICU admission informed by near-real-time data. The duration of time spent in each
compartment is informed by censoring-adjusted estimates of patient length of stay, with
estimation of these quantities described in our previous work [46]. Simulation outputs
are then fit to reported occupancy counts using an Approximate Bayesian Computation
approach [45].

Under the specifications of the Australian National Disease Surveillance Plan for COVID-
19 [7], forecasts from our model were reported to key national decision-making commit-
tees on a weekly basis as part of a national COVID-19 situational assessment program
[42]. We examine the performance of the forecasts throughout the study period (March
– September 2022), both qualitatively — using visual checks — and quantitatively — with
the use of formal statistical metrics [22, 2, 17, 18]. We discuss how the performance of
our occupancy forecasts changed with the epidemiological context and how it depended
upon the performance of the input case forecasts.

Methods

Summary

We produced forecasts of the number of COVID-19 cases in hospital ward and ICU beds
(i.e. the ward and ICU occupancies) on a weekly basis using a bespoke clinical forecasting
pipeline (Figure 1). We simulated the pathways taken by COVID-19 cases through a hos-
pital as flow through a compartmental model (Figure 2). Our clinical forecasting pipeline
takes in three primary inputs: an ensemble case forecast, time-varying estimates of key
epidemiological parameters (the age distribution of cases, the probability of hospital ad-
mission, and the probability of ICU admission), and estimates of patient length of stay.
The model outputs are fit to reported occupancy counts across a seven-day window prior
to the forecast start date using Approximate Bayesian Computation (ABC) [45]. We re-
ported the resultant 21-day forecasted counts of ward and ICU occupancy to public health
committees on a weekly basis.

Stochastic model of 
hospital progression
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Computation (ABC) 

inference

Age-specific probability of 
case hospitalisation

Age and variant-specific estimates 
of patient length of stay

Forecasts of 
case incidence

Case age 
distribution
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Age-specific probability of 
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Figure 1: Overview of the clinical forecasting pipeline.
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Compartmental pathways model

Our compartmental model simulates the progression of severe COVID-19 disease and cor-
responding pathways taken through a hospital (Figure 2). The design of this model was in-
formed by COVID-19 clinical progression models previously developed for the Australian
health system context [31, 39, 8]. In our model, new COVID-19 cases start in the Case com-
partment according to their date of symptom onset (inferred where not recorded). From
this compartment, some fraction of cases are admitted to hospital, according to a (time-
varying) probability of case hospitalisation. Hospitalisations start in the Ward compart-
ment, from which a patient can then develop further severe disease and be admitted to
ICU, according to a (time-varying) probability of ICU admission. Patients in the ICU com-
partment can then move to the Post-ICU ward compartment. In addition, across each of
the Ward, ICU, and Post-ICU ward compartments, we assume patients have some prob-
ability of dying or being discharged. We count the number of occupied ward beds as the
number of patients in the Ward and Post-ICU ward compartments, and the number of
occupied ICU beds as the number of patients in the ICU compartment.

Case Ward Post-ICU
ward

Died

Time-varying 
probability of case 

hospitalisation

Ensemble forecasts of 
case incidence

Time-varying 
probability of ICU 

admission

Died Died

Discharged

ICU

Discharged Discharged

Figure 2: The compartmental model of COVID-19 clinical progression used to simulate the flow of COVID-19 pa-
tients through a hospital. The probability of transition between Case and Ward and between Ward and ICU were
informed by time-varying age-specific estimates, all other probabilities were specified according to age-specific
estimates from the multi-state length of stay analysis (estimation described elsewhere [46]). The number of
occupied ward beds reported by the model is the sum of the individuals in the Ward and Post-ICU ward com-
partments, and the number of occupied ICU beds is the number of individuals in the ICU compartment.

Length of stay estimates

To simulate the flow of patients through the compartmental model, we need to specify
distributional estimates of the duration of time they will spend within a compartment be-
fore a transition occurs (i.e. their length of stay), and the probabilities of each particular
transition occurring (i.e. transition probabilities). We produced estimates of length of stay
and transition probabilities using a multi-state survival analysis approach, with methods
previously reported [46]. This survival analysis framework allowed us to (when necessary)
produce estimates across our compartmental model in near-real-time while accounting
for right-censoring, such that we could rapidly incorporate changes in length of stay or
transition probabilities that may have occurred as a result of factors such as differences in
the clinical severity of a new variant, changes in clinical practice, or vaccination [46]. We
estimated length of stay and transition probabilities using hospital data from the state of
New South Wales (see [46], Supp. Methods S4). The delay distribution for Case to Ward was
informed by estimates (not described here) from the FluCAN sentinel hospital surveillance
network study [6], as appropriate data were not available to estimate this delay in the New
South Wales dataset. The transition probabilities from the multi-state survival model were
used across all transitions in the compartmental model except for the Case to Ward and
the Ward to ICU transitions. The transition probabilities for these two transitions were
estimated as time-varying (described later) given their substantial impact upon the net
occupancy counts. The length of stay and transition probability estimates were provided
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to the simulation model as bootstrapped samples of gamma distribution shape and scale
parameters and multinomial probabilities of transition.

Case incidence

In our compartmental model (Figure 2), cases of COVID-19 begin in the Case compart-
ment. As such, we must inform the model with the number of new cases entering this
compartment each day: we achieve this through use of a time series of historically re-
ported case incidence concatenated with a trajectory of forecasted case incidence.

We received time series of historical case incidence indexed by date of symptom onset
from an external model [20]. This external model performs imputation of symptom onset
dates where they have not been recorded in the data, with the final time series being the
count of cases with a (reported or imputed) onset date on each given date. Because this
external model did not perform multiple imputation of the symptom onset date, we added
noise to capture uncertainty in the case counts via sampling from a negative binomial
distribution with a mean of the historical case count and a dispersion of k = 25.

Our method is agnostic to the case forecasting approach used as input, thus allowing us
to couple it with any independently produced forecast of case incidence. Here we used
outputs from an ensemble forecast of case incidence, which varied in model composition
during the study period (methodologies and summary outputs for the ensemble forecast
are publicly available [42]). A total of four different models were used at various stages:
two mechanistic compartmental models, one mechanistic branching process model, and
a non-mechanistic time series model (see [30, 19, 42] for details). Models within the en-
semble received ongoing development across the study period in response to changes in
our understanding of the epidemiology and biology of the virus [42].

Estimation of time-varying parameters

We specified three parameters in the compartmental model of clinical progression as time-
varying. For each forecast, we produced estimates stratified by age group a and varying
with time t of: the probability of a case being within a certain age group, page(a, t ); the
probability of a case being hospitalised, phosp(a, t ); and the probability of a hospitalised
case being admitted to ICU, pICU(a, t ). These parameters were chosen to capture phe-
nomena such as changes in case age distribution, changes in case ascertainment, differ-
ences in variant virulence and outbreaks of the disease within populations subgroups. We
defined age groups as 10-year groups from age 0 to 80, followed by a final age group com-
prising individuals of age 80 and above (i.e. 0–9, 10–19, ..., 80+).

The time-varying parameters were estimated using case data from the National Noti-
fiable Disease Surveillance System (NNDSS), which collates information on COVID-19
cases across the eight state and territories of Australia. For each case in this dataset, we
extracted the date of case notification, the recorded symptom onset date, the age of the
case, and whether or not the case had been admitted to hospital or ICU. Where symptom
onset date was not available, we assumed it to be one day prior to the date of notification
(where this was the median delay observed in the data).

For each of the three time-varying parameters, we constructed estimates using a one-
week moving-window average, with estimates for time t including all cases with a symp-
tom onset date within the period (t−7, t ]. We created 50 bootstrapped time series via sam-
pling with replacement from the linelist data such that uncertainty in these estimates was
propagated through the simulations. We calculated the first parameter page(a, t ), which
defines the multinomial age distribution of cases over time, as the proportion of cases
within each age group for an estimation window:

page(a, t ) =
∑t
τ=t−6 na(t )∑t

τ=t−6
∑

i ni (τ)
,
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where na(τ) is the number of cases in age group a with symptom onset at time τ. To cal-
culate the probability of a case being hospitalised and the probability of a hospitalised
case being admitted to ICU, we produced estimates with adjustment for right-truncation.
Here, right-truncation was present as we used near-real-time epidemiological data and in-
dexed our estimates by date of symptom onset. The most recent symptom onset dates in
our estimates thus included cases that would eventually be (but had not yet been) hospi-
talised (and similarly for cases admitted to hospital, but not yet admitted to ICU). Had we
not accounted for this right-truncation, we would have consistently underestimated the
probabilities of hospitalisation and ICU admission for the most recent dates. We describe
the maximum-likelihood estimation of the hospitalisation and ICU admission parameters
in the supplementary materials (Supp. Methods S1).

If in a given reporting week we identified a jurisdiction as having unreliable data on hos-
pitalised cases (most often, missing data on cases admitted to hospital or ICU due to data
entry delays), we replaced the local estimates with estimates produced from pooled data
across all other (reliable) jurisdictions. Changes made in this regard during the study pe-
riod are listed in the supplementary material (Supp. Methods S5).

Simulation and inference

To simulate a single trajectory of ward and ICU occupancy, we sampled: a time series of
case incidence from the ensemble; a bootstrapped time series of the time-varying param-
eters; and a sample from the bootstrapped length of stay and transition probability esti-
mates. Using these inputs, we performed simulations across the compartmental model
(Figure 2) independently across each age group and then summed across all age groups
to produce total ward and ICU counts for each day. The compartmental model simulates
the pathways of patients through the hospital at the population-scale with an efficient
agent-based approach; we provide details on this algorithm in the supplementary materi-
als (Supp. Methods S2).

To ensure that trajectories simulated from the clinical pathways model aligned with re-
ported occupancy counts, we introduce a simple rejection-sampling approximate Bayesian
method, rejecting trajectories that did not match the true reported occupancy counts
within a relative tolerance ϵ across a one-week calibration window. For each simulation
with a simulated ward occupancy count Ŵ (t ) and simulated ICU occupancy count Î (t ),
simulations were rejected where either:

∣∣W (t )−Ŵ (t )
∣∣> max(ϵW (t ),10) or

∣∣I (t )− Î (t )
∣∣> max(2ϵI (t ),10),

where W (t ) and I (t ) were the true reported occupancy counts for each date t in the fit-
ting window, with these counts retrieved from the covid19data.com.au project [32]. We
selected ϵ using a simple stepped threshold algorithm, initialising ϵ at a small value, and
continued to sample simulations until 1,000 trajectories had been accepted by the model.
If 1,000 trajectories were not accepted by the time that 100,000 simulations had been per-
formed (i.e. 100 rejections per target number of output trajectories), we increased ϵ in se-
quence from [0.1,0.2,0.3,0.5,1,10] and restarted the sampling procedure. This behaviour
was chosen to achieve a good degree of predictive performance while ensuring that report-
ing deadlines were met (typically less than 24 hours from receipt of ensemble forecasts and
relevant hospital data) even where the model was otherwise unlikely to capture hospital
occupancy at tighter degrees of tolerance

We fit simulation outputs over a calibration window defined as the seven days follow-
ing the start of the 28-day case forecast. This was chosen such that the most up-to-date
occupancy data could be used in fitting (typically data as of, or a day prior to, the date
clinical forecasts were produced). We could fit the clinical forecast over occupancy data
points which were seven days in the future relative to the start of the case forecast for two
reasons: the case forecasts were indexed by date of symptom onset and began at the date
where a majority (>90%) of cases had experienced symptom onset, adding a delay of 2–3
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days; and case forecasts were affected by reporting delays of 3–4 days (whereas occupancy
data was not lagged). We did not fit over a larger window as the seven-day window was
expected to be sufficient for our purposes and the computational requirements of model
fitting would increase exponentially with a larger window. The forecasts we reported on
a weekly basis and examine here are the model outputs across the 21 days following this
seven-day fitting window.

We introduced two additional parameters to improve the ability of the model to fit to the
reported occupancy counts. These parameters increased variance in the magnitude of the
output ward and ICU occupancy count trajectories, reducing the probability of a substan-
tial mismatch between these trajectories and the reported occupancy counts. The first
parameter added was H , a modifier on the probability of hospitalisation acting linearly
across logit-transformed values:

p∗
h = logit−1(logit(ph)+H), H ∼ N (0,σ2

hosp).

The second parameter added was L, which modified the shape of the length of stay distri-
butions across the transitions out of Case, Ward and Post-ICU Ward, acting linearly across
log-transformed values:

shape∗i = exp(log(shapei )+L), L ∼ N (0,σ2
los).

The values of H and L were sampled from normal distribution priors with means of zero
and standard deviations of σ2

hosp = 0.8 and σ2
los = 0.5 respectively. We specified these val-

ues to reduce the computational time required while ensuring the output model trajec-
tories had good coverage over the reported occupancy counts. These parameters were
changed for some jurisdictions during the study period, see the supplementary methods
for details (Supp. Methods S5).

To illustrate the effect of the H and L parameters, we simulated model outputs for an
example forecast with and without these parameters set to zero (Supp. Methods Figure 1A,
B). This demonstrates that output trajectories without the effect of H and L may already
align with the reported occupancy counts, but where this does not occur, they enable the
recent reported occupancy counts to be well captured by the fitted model outputs (Supp.
Methods Figure 1C).

Performance evaluation

We consider the performance of our forecasts produced between March and September
2022. We produced plots for the visual assessment of forecast performance (Figure 3,
Supp. Performance, Figures 5–20) which depict all forecasts across the study period with
the same presentation of uncertainty as was used in official reporting of the forecasts (with
pointwise credible intervals ranging from 20% through to 90% by steps of 10%, and re-
ported occupancy counts overlaid).

To evaluate the overall performance of our forecasts, we calculated continuous ranked
probability scores (CRPS) across log-transformed counts of occupancy. The CRPS mea-
sures the distributional accuracy of a set of forecasts against the eventual observations
[22]. The CRPS is a proper scoring rule: in the limit, where a forecast reports the true prob-
abilities of the underlying process, it will receive the greatest score. We calculated CRPS
over log-transformed counts (specifically, x∗ = loge (x + 1)) rather than over raw counts,
as this has been argued to be more meaningful given the exponential nature of epidemic
growth [2]. This transformation also allows us to interpret the resultant CRPS values as
a relative error [2], enabling comparison of the forecast performance between different
settings.

We calculated forecast bias to examine where the overall performance of our forecast was
reduced due to consistent overprediction or underprediction [17] (Figure 5). Forecast bias
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(as opposed to, for example, estimator bias [48]) ranges between −1 and 1, with a bias
greater than zero indicating overprediction and less than zero indicating underprediction.
Bias values of approximately zero are ideal, indicating a forecast which overpredicts as
often as it underpredicts (or vice versa).

We produced plots demonstrating the association between the performance of our ward
and ICU occupancy forecasts and the underlying case forecasts used as input. Specifi-
cally, we compared the case forecast performance calculated using CRPS to the bias of the
ward occupancy forecasts (Figure 6) and ICU occupancy forecasts (Supp. Performance,
Figure 3), and the bias of the case forecasts to that of the ward occupancy forecasts (Supp.
Performance, Figure 4). These values were calculated across the whole horizon of the re-
spective forecasts; it should be noted that such comparisons are inherently limited due to
the lag between onset of symptoms and admission to hospital, i.e. the performance of the
case forecast at the 28 day horizon would be expected to be of lesser influence given these
cases are less likely to be hospitalised within the time-frame of our simulation.

We produced probability integral transform (PIT) plots to evaluate the calibration of the
forecast (Supp. Performance, Figure 1). Calibration refers to the concordance between the
distribution of our forecasts and the eventual distribution of observations [18]; for exam-
ple, in a well calibrated forecast, each decile across the distribution of all forecast predic-
tions should contain approximately 10% of the eventual observations. Where overlapping
intervals contained the eventual observation (typically due to small integer counts, e.g. in
smaller population size jurisdictions), we have counted each overlapping interval as con-
taining the observation, with these down-weighted such that any given observation only
contributed a total count of one.

Version control repositories are available on GitHub for the simulation and inference
steps (http://github.com/ruarai/curvemush), the forecasting pipeline (http://github.
com/ruarai/clinical_forecasts), and performance evaluation and manuscript figure
plotting code (http://github.com/ruarai/clinical_forecasting_paper). Analysis
was performed in the R statistical computing environment (version 4.3.2) [40]. The fore-
casting pipeline was implemented using the targets package [25], with tidyverse pack-
ages used for data manipulation [50], pracma for numerical solutions of the maximum-
likelihood estimates [1], and Rcpp for interfacing with the stochastic simulation C++ code.
Forecasting performance was evaluated using thefabletools, tsibble anddistributional
packages [33, 49, 34].

Data and code availability

All code is available archived at OSF (http://osf.io/5e6ma/, DOI: 10.17605/OSF.IO/5E6MA).
Changes to the model which occurred throughout the study period (which was limited to
jurisdiction-specific modifications to σ2

hosp and σ2
los and a correction for New South Wales

case data not including cases detected via rapid antigen test) are described in the supple-
mentary materials (Supp. Methods S5).

Limited data for reproducing the figures presented in this manuscript are also available
at OSF (http://osf.io/5e6ma/, DOI: 10.17605/OSF.IO/5E6MA); this includes all model
output forecast trajectories, reported occupancy counts retrieved from covid19data.com.au
[32], case forecast performance metrics, and Approximate Bayesian Computation diag-
nostic plots as produced in the course of producing occupancy forecasts. The complete
line listed case dataset is not publicly available; for access to the raw data, a request must
be submitted to the Australian Government Department of Health and Aged Care which
will be assessed by a data committee independent of authorship group.
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Ethics

The study was undertaken as urgent public health action to support Australia’s COVID-
19 pandemic response. The study used data from the Australian National Notifiable Dis-
ease Surveillance System (NNDSS) provided to the Australian Government Department
of Health and Aged Care under the National Health Security Agreement for the purposes
of national communicable disease surveillance. Non-identifiable data from the NNDSS
were supplied to the investigator team for the purposes of provision of epidemiological
advice to government; data were securely managed to ensure patient privacy and to en-
sure the study’s compliance with the National Health and Medical Research Council’s Ethi-
cal Considerations in Quality Assurance and Evaluation Activities. Contractual obligations
established strict data protection protocols agreed between the University of Melbourne
and sub-contractors and the Australian Government Department of Health and Aged Care,
with oversight and approval for use in supporting Australia’s pandemic response and for
publication provided by the data custodians represented by the Communicable Diseases
Network of Australia. The use of these data for these purposes, including publication, was
agreed by the Department of Health with the Communicable Diseases Network of Aus-
tralia. Ethical approval for this study was also provided by The University of Melbourne’s
Human Research Ethics Committee (2024-26949-50575-3).

The study used routinely collected patient administration data from the New South Wales
(NSW) Patient Flow Portal (PFP). De-identified PFP data were securely managed to ensure
patient privacy and to ensure the study’s compliance with the National Health and Medical
Research Council’s Ethical Considerations in Quality Assurance and Evaluation Activities.
These data were provided for use in this study to support public health response under
the governance of Health Protection NSW. The NSW Public Health Act (2010) allows for
such release of data to identify and monitor risk factors for diseases and conditions that
have a substantial adverse impact on the population and to improve service delivery. Fol-
lowing review, the NSW Ministry of Health determined that this study met that threshold
and therefore provided approval for the study to proceed. Approval for publication was
provided by the NSW Ministry of Health.

Results

Visual performance assessments

We examined the qualitative performance of our ward and ICU forecasts through visual
assessment using the state of New South Wales as a case study (Figure 3). The early growth
phase of BA.2 in late March and early April 2022 (forecasts 1–3) was well predicted across
both ward and ICU counts. We see that the peak in ward occupancy induced by the BA.2
lineage in April was well predicted, with forecasts produced 2–3 weeks prior to the peak
(forecasts 4, 5) capturing the peak in their central densities. Forecasts of the declining
phase following the BA.2 peak had varied performance: the first forecast in mid-April
(forecast 6) underpredicted ward occupancy, though not ICU occupancy; this was fol-
lowed by two forecasts (forecasts 7, 8) with good predictive performance of ward occu-
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pancy (though forecast 8 predicted ICU occupancy with too little uncertainty); and the
subsequent forecast produced in early May (forecast 9) incorrectly predicted that ward
and ICU occupancy counts would increase again rather than continue to very slowly de-
cline.

New South Wales forecasts produced during the inter-epidemic period between the BA.2
and BA.4/5 waves in late May and early June underpredicted ward occupancy and marginally
underpredicted ICU occupancy (forecasts 11–14). The early growth phase of the BA.4/5
wave was not captured in our predictions until late June (forecast 15), almost a month af-
ter occupancy had begun to stabilise and then slowly increase. Similar to the BA.2 peak,
early forecasts showed very good performance in terms of predicting the magnitude of the
BA.4/5 peak in ward occupancy in mid-July (forecasts 17–18). However, these forecasts
failed to predict the timing of the peak, instead predicting that ward occupancy would
continue to increase into August. Our forecasts only correctly predicted reductions in the
occupancy counts once counts had already begun to stabilise in late July (forecasts 19–21),
though these still marginally over-predicted ward occupancy counts.

Further plots for the visual assessment of forecast performance for all other jurisdictions
are available in the supplementary materials (Supp. Performance Figures 5–20).
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Figure 3: Forecasts of ward and ICU occupancy for the state of New South Wales produced between March and
September 2022. Credible intervals from 20% through to 90% in 10% increments are displayed in progressively
lighter shading. Reported occupancy counts are overlaid. As we produced our forecasts on a weekly basis and
each forecast spans three weeks, forecasts are plotted interleaved across three rows; reported occupancy counts
are repeated across each row. Forecast start dates are displayed as vertical dashed lines. Note that forecast start
date was dependent upon that of the case forecast, and this varied slightly over time (see forecasts 5, 9, 12, and
19). The second week for each forecast (days 8–14) have background shaded in light blue. An identifier for
each forecast, 1 through 21, is displayed above each forecast start and a ^ is displayed where the upper credible
intervals of a forecast exceed the y-axis limits. Forecasts for other states and territories are provided in the sup-
plementary materials.

Quantitative performance

Measured forecast performance varied over the duration of the study period and across
Australia’s eight states and territories (Figure 4). Measuring performance aggregated by
forecast horizon (Figure 4A) shows the performance of the ward occupancy forecasts gen-
erally degraded the further into the future predictions were made. Ward occupancy perfor-
mance for the Northern Territory was particularly unstable across all days of the horizon
(Figure 4A). The drop in forecast performance as forecast horizon increased was less visi-
ble for the ICU forecasts (Figure 4C), likely reflecting the reduced scale of variation in the
ICU time series, where the effect of changes in epidemic activity were less visible.

Median ward occupancy forecast performance averaged across all horizons was best in
New South Wales (Figure 4B), possibly reflecting the use of hospital length of stay esti-
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mates derived from New South Wales data, which may not be generalisable to other ju-
risdictions. ICU occupancy forecast performance was best in Victoria, followed by New
South Wales. The states and territories with smaller populations (Tasmania, the Australian
Capital Territory and the Northern Territory) tended to have worse performance for both
ward and ICU occupancy forecasts, possibly due to a greater impact of individual-level
variation in length of stay where admission counts were low (Supp. Performance, Figures
5, 6, 9, 10, 15, 16). Although South Australia had a (marginally) worse median ward oc-
cupancy forecast CRPS than New South Wales (Figure 4B), examining performance across
the 15–21 day horizon (Figure 4A), the CRPS for South Australia exhibited a greater consis-
tency in performance.

Figure 4: Summary performance of the ward and ICU forecasts across the study period (March to September
2022) measured using CRPS across log-transformed counts. ACT is the Australian Capital Territory, NSW is New
South Wales, NT is the Northern Territory, QLD is Queensland, SA is South Australia, TAS is Tasmania, VIC is Vic-
toria, and WA is Western Australia. A, C: Forecast performance for ward (top) and ICU (bottom) by forecast hori-
zon. Median performance (in white) and intervals for 50%, 75%, 90%, 95% density (in purple or green) displayed.
Note the differing x-axis scale across the ward and ICU forecast plots. B, D: Summary forecast performance for
ward (top) and ICU (bottom) across all forecasting dates. Frequency for each state is displayed as a histogram
(in black), and density underneath (in purple or green), with median overlaid (white and black points). States
have been ordered according to median forecast performance. Note the differing x-axis scale across the ward
and ICU forecast plots. Due to the limited x-axis scales, 14 points are omitted from the histogram for ward for
the Northern Territory and 1 point for ICU for Tasmania.

Examining changes in performance of the ward occupancy forecast over the duration of
the study period (Figure 5), we note associations between forecast performance and the
epidemiological context, with ward occupancy forecasts often biased downwards during
pre-epidemic peak phases, and biased upwards during the post-epidemic peak phases.
Results for ICU occupancy forecast performance over time (Supp. Performance, Figure 2)
show similar trends, though here variation in length of stay at the individual-scale likely
has a greater influence on performance, given the low (<50) counts for occupancy across
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most jurisdictions over the study period.

Figure 5: Three week (days 15–21) horizon performance of the ward forecasts for the forecasts produced between
March and September 2022. Light blue shading indicates alternating forecast weeks. The true ward occupancy
count is displayed at the top of each panel, with vertical dashed lines indicating dates of visually distinct peaks
and troughs (dotted and dashed lines respectively) in the time series. The CRPS and bias of the forecast are
displayed below, reflecting the performance of forecasted counts for that date within the 15–21 day forecast
horizon. Upwards bias is displayed in magenta and downwards bias in blue. The CRPS is calculated over log-
transformed counts. Optimal forecasting performance is achieved where these values are nearest to zero.

We examined how the performance of the ensemble case forecast used as input to our
model affected the performance of our ward and ICU forecasts. Averaged across the hori-
zon of each of the forecasts, the mean ward forecast CRPS tended to be lower than that of
the corresponding case forecast (Figure 6). This is expected given that the case forecast is a
forecast of incidence, whereas our forecasts are of occupancy (i.e. prevalence), and as such
exhibit greater autocorrelation and hence predictability. Comparing the ICU forecast per-
formance to that of the case forecast (Supp. Performance, Figure 3) yields broadly similar
results, although ICU performance in the Australian Capital Territory notably underper-
forms in comparison to the case forecasts. Bias in the case forecasts tended to be reflected
in the ward occupancy forecasts (Supp. Performance, Figure 4), although this effect is less
clear in jurisdictions with smaller populations such as the Northern Territory (which has a
population of approximately 250,000, compared to 8.1 million for New South Wales or 6.5
million for Victoria).
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Figure 6: Performance of the ward occupancy forecasts (y-axis) in comparison to the corresponding ensemble
case forecast used as input (x-axis), where performance is measured using CRPS over log-transformed counts.
Each dot represents performance measured over a 28-day case incidence ensemble forecast and performance
measured over a corresponding 21-day occupancy forecast.

In our probability integral transform plots (Supp. Performance, Figure 1), we observe that
forecast calibration varies from good to poor between states and across the ward and ICU
forecasts. Calibration was best for the ward forecasts in South Australia and best for the
ICU forecasts in New South Wales. A few forecasts were overconfident, with Northern Ter-
ritory, Queensland and Tasmanian ward forecasts and Queensland ICU forecasts having a
substantial proportion of observations occurring in the bottom- or top-most intervals. A
similar pattern can be observed for the New South Wales ward occupancy forecasts, with
a large proportion of observations falling in the top-most interval; this was likely a conse-
quence of a string of underpredicting forecasts from late May through to early July (Figure
3, forecasts 11–14). The ICU forecasts for South Australia and Victoria had excessive levels
of uncertainty, with few observations falling in the outer intervals.

Discussion

We have presented a clinical forecasting model for forecasting the number of patients with
COVID-19 in ward and ICU beds. The model simulates the progression of patients through
a compartmental model of hospital pathways, with simulations informed by near-real-
time epidemiological data and fit to reported bed occupancy counts using Approximate
Bayesian Computation. We have evaluated the performance of our forecasting method-
ology as it was applied and reported to public health decision-makers in the Australian
context between March and September 2022 (although forecast outputs were produced
between December 2021 and March 2022, we do not consider them in this study as the
model received intensive development throughout that period). Our use of an indepen-
dently produced case forecast as input to the clinical model has allowed us to take advan-
tage of diverse case forecasting methodologies, and we have shown how the performance
of our clinical forecasts can be evaluated in terms of the input case forecast performance.

Our results show that forecasting performance was variable over the study period and
dependent upon the epidemiological context. The 15–21 day performance of the ward
forecasts was poorest across most jurisdictions during the transition from Omicron BA.2
dominance to Omicron BA.4/5 dominance between May and July 2022 (Figure 5). This
reduced performance can be observed in New South Wales from late May until early June
(Figure 3, forecasts 11–14); by late June (forecast 15) a BA.4/5 transmission advantage was
included in the mechanistic case forecasting models [42], increasing median predicted
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occupancy counts but also the uncertainty across these predictions. Forecasting during
such variant transition events has previously been noted to be challenging [44].

Accurate prediction near epidemic peaks has previously been recognised to be a particu-
larly difficult problem, both in the context of case incidence forecasts [5, 41, 4] and hospital
burden forecasts [44, 28]. In our results, forecasting performance around epidemic peaks
varied. Prior to peaks (in the epidemic growth phase) our forecasts generally performed
well, although they tended to be biased downwards (Figure 5). Examining forecasts with
start dates in the weeks prior to epidemic peaks (Supp. Performance, Figures 5–20), we see
that occupancy count at the peak was generally well captured by forecasts produced one
or two weeks prior to the point of peak occupancy. Forecasts which were produced three
weeks prior to the peak performed worse, with most predicting that occupancy would con-
tinue to grow beyond what eventuated to be the peak. However, at this three-week hori-
zon, the forecasts typically had wide credible intervals which appropriately conveyed the
uncertainty of our predictions.

Our use of an independently produced forecast of case incidence as input distinguishes
our work from previously published methods for forecasting COVID-19 clinical burden,
which often simultaneously model both infection dynamics and the subsequent pathways
taken by infected patients through the hospital system [51, 35, 24, 16] or produce statis-
tical predictions of occupancy without incorporation of causal mechanisms [37, 16]. The
decoupling of our clinical progression model from the case forecasting models allows for
greater ‘separation of concerns’ since the development of each model can occur indepen-
dently [26]. Further, Figure 6 demonstrates that the quality of our occupancy forecasts
depends upon the performance of the input case incidence forecasts (a similar result has
been previously reported for a model of hospital admissions [29]), implying that our use
of an ensemble case forecast as input has been advantageous for the performance of our
occupancy forecasts, given ensembles have repeatedly been shown to improve case fore-
casting performance [38, 12, 36, 29, 44].

Our clinical forecasting model is designed to receive outputs from forecasts of case in-
cidence as a (large) sample of trajectories. However, it has been more common for fore-
cast outputs to be summarised using prediction intervals which quantify the probability of
outcomes falling within certain ranges. Examples of this have included the collaborative
ensemble forecasts reported by the US and European COVID-19 forecast hubs [11, 44].
These prediction intervals are incompatible with our methodology as they obscure the
underlying autocorrelation in the case incidence time series — if we were to sample from
such intervals across each day of the forecast, uncertainty in the cumulative case count
would be underestimated. We recommend that collaborative ensemble forecasts of infec-
tious disease report outputs as trajectories where possible, so as to enable the appropriate
propagation of uncertainty in further applications (such as that presented here).

Infectious disease forecasting models often exhibit reduced performance when predict-
ing in low count contexts [37, 35]. In our work, we produced forecasts across low counts
of both ward and ICU occupancy, typically during inter-epidemic periods and in juris-
dictions with smaller population sizes. The performance of our forecasts as measured
through CRPS was worse in these contexts (Figure 4). However, this is in large part due
to the CRPS being calculated over log-transformed counts — effectively making it a mea-
sure of relative error. This would be expected to penalise forecasts produced in low count
contexts, where small absolute changes can produce large relative differences [3]. We also
note that the performance of our occupancy forecasts across these low count contexts
may be of lesser importance to public health decision-makers given they are typically (by
definition) distant from capacity constraints.

Since the clinical forecasting model is informed by near-real-time estimates of key quan-
tities such as probability of hospitalisation and length of stay, reasonable forecast perfor-
mance could be expected in the absence of the approximate Bayesian fitting step. While
this occasionally proved to be true in application (e.g., see Supp. Methods Figure 1, where
the model output without fitting captures the reported ward occupancy counts for the
Northern Territory), a few factors may have prevented this from being generally the case:
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firstly, we used patient length of stay distributions which were fit to data from the state
of New South Wales and these distributions may not reflect the clinical practice or re-
alised severity in other jurisdictions; secondly, the compartmental model we used may
miss some components of hospital occupancy dynamics, such as outbreaks of COVID-19
within hospitals; thirdly, we assumed that the population which was reported as hospi-
talised in the case data was the same population as that reported in the hospital occupancy
figures, which was not always the case due to differing upstream datasets (e.g. Victoria col-
lected occupancy counts as a separate census of patients [47]); finally, our near-real-time
estimates of ward and ICU admission probability were not adjusted for possible right-
truncation due to reporting lags as the date of data entry was not available within the case
dataset we had access to.

The measure of hospital burden we chose to forecast — hospital occupancy — has an
advantage over incidence measures such as daily hospital admissions since it directly re-
lates to the capacity of the healthcare system. However, it has a few disadvantages of note.
Because hospital occupancy is a prevalence measure, it is inherently slower to respond to
changes in the epidemic situation than hospital admissions and is therefore less useful as
an indicator of changes in epidemic activity. It may also be more difficult to measure at the
hospital level, given it requires either accurate accounting of admissions and discharges
or recording of individual patient stays. Ideally, both admissions and occupancy would
be monitored and reported; in such a context our model could be easily extended to fit
to and report admission counts, given admission counts are already recorded within our
simulations.

Throughout the period for which COVID-19 bed occupancy counts were collected and
reported in Australia, no nationally consistent standard specified which COVID-19 cases
should be included in the counts. As a result, distinct definitions were created and ap-
plied across jurisdictions. For example, during our study period, the state of New South
Wales counted any patient in hospital who had been diagnosed with COVID-19 either dur-
ing their hospital stay or within the 14 days prior to their admission to hospital [21]. This
broad definition had the beneficial effect of reducing false-negatives in the counting pro-
cess but resulted in the inclusion of a large number of individuals who had since recovered
from infection and/or whose stay was unrelated to the disease (with this effect then being
captured in the estimates of length of stay used in our study). This was in contrast to Victo-
ria, where COVID-19 cases were counted only until a negative test result was received [47],
reducing false positive inclusions but underestimating the total hospital burden of the dis-
ease, given COVID-19 cases may still require hospital care or be isolated for infection con-
trol reasons even when they no longer test positive. Although these differences would
not be expected to substantially affect the forecast performance given our fitting method-
ology, the development of standard definitions that could be applied in future epidemics
would allow for direct comparison of counts between jurisdictions and simplify modelling
efforts.

The modelling framework we have described here is flexible and not inherently tied to
COVID-19 hospital occupancy as the forecasting target. In general terms, our method
stochastically simulates the convolution of a time series of case incidence into time se-
ries of subsequent outcomes. As such, the methodology could be applied to measures of
other infectious diseases. Further, the framework could be used to model other outcomes
of infectious disease, such as workforce absenteeism or long-term sequelae.

We have presented a robust approach for forecasting COVID-19 hospital ward and ICU
bed occupancy and have examined the performance of this methodology as applied in the
Australian context between March and September 2022. Our approach takes as input an
independently produced forecast of case incidence and, in combination with near-real-
time estimates of epidemiological parameters, simulates the progression of patients from
case onset through to hospital ward and ICU care. Our use of independently produced
forecasts of case incidence has allowed us to both develop our model independently of the
input case forecasting models and take advantage of the performance benefits provided
by ensemble case forecasts. Our computationally efficient inference method allowed us
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to generate forecasts for multiple Australian jurisdictions in near-real-time, enabling the
rapid provision of evidence to public health decision-makers.
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T Ożański, F Rakowski, M Scholz, S Soni, A Srivastava, J Zieliński, D Zou, T Gneiting,
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