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Abstract 

INTRODUCTION: Alzheimer’s disease affects spatial abilities that are often overlooked in standard 

cognitive screening tools. We assessed whether the spatial navigation tasks in the Spatial Performance 

Assessment for Cognitive Evaluation (SPACE) can complement existing tools such as the Montreal 

Cognitive Assessment (MoCA).  

METHODS: 348 participants aged 21-76 completed the MoCA, SPACE, and sociodemographic-

health questionnaires. Regressions were used to predict MoCA scores with risk factors and SPACE 

tasks as predictors. We also conducted a factor analysis to investigate the relationships among SPACE 

tasks and the MoCA.  

RESULTS: Regressions revealed significant effects of age, gender, and SPACE tasks. No risk factors 

for dementia predicted MoCA scores. The factor analysis revealed that MoCA and perspective taking 

contributed to a separate factor from other navigation tasks in SPACE. Normative data for SPACE are 

provided.  

DISCUSSION: Our findings highlight the importance of navigation tasks for cognitive assessment 

and the early detection of cognitive impairment. 

Keywords: Cognitive impairment, Alzheimer’s disease, Ageing, Spatial ability, Navigation, Digital 

assessments. 
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1. INTRODUCTION 

Dementia affects 55 million people worldwide [1], and this number is projected to increase to 152 

million by 2050, posing a significant global threat to the healthcare system [2]. Alzheimer’s Disease 

(AD) is the most common form of dementia and ranks as the fifth leading cause of death for those 

aged 65 and older [3]. The total economic burden of AD is projected to reach $3.3 trillion by 2060 [4] 

and includes the costs of healthcare, long-term care, and informal caregiving [5,6]. The early stage of 

dementia, known as Mild Cognitive Impairment (MCI), often goes undiagnosed due to its mild 

symptoms and gradual onset and presents an opportunity to reduce economic and societal costs via 

early detection and prevention. While researchers have identified several risk factors associated with 

MCI and AD [7], other predictors, such as spatial navigation ability, may complement existing 

assessments. 

In addition to unmodifiable risk factors such as age [8,9], APOE genetic status [10], and family 

history [6,11], the Lancet Commission has identified 14 modifiable risk factors (e.g., education, 

depression, physical inactivity) that account for nearly half of the dementia cases globally [12]. 

Previous research has found that these factors and other related risks are associated with the outcomes 

of widely used clinical assessments for cognitive status, including the Montreal Cognitive Assessment 

(MoCA) [13–20] and the Mini-Mental State Examination (MMSE) [18,21–26]. Specifically, worse 

performance on clinical assessments is associated with older age [13,17,18], being female [17,18] [but 

see 13], less education [13,17], worse health status [13], physical inactivity [27], higher depression 

[13,15,17,28], more anxiety and stress [15,29], history of alcohol consumption [24,25], smoking [18], 

sleep [16,30], and lower hearing or vision [19]. The MoCA is often preferred to the MMSE because 

of its greater sensitivity in the detection of MCI and AD [18,31–33] and, in clinical practice, provides 

a cheaper and less invasive alternative to a full neuropsychological assessment and the measurement 

of biomarkers of neurodegeneration. 

Critically, biomarkers such as tau and β-amyloid (Aβ) are known to accumulate in brain regions that 

are essential for spatial navigation [34,35], especially the hippocampus and entorhinal cortex [36–40]. 
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Specifically, place cells in the hippocampus and grid cells in the entorhinal cortex have been found to 

be key components in encoding spatial locations and tracking positional changes during navigation 

[41–44]. These findings suggest that spatial ability may be an important predictor of future cognitive 

status. Indeed, previous research has shown that spatial abilities are among the first skills to 

deteriorate as a consequence of AD [45–50]. Although the MoCA and neuropsychological 

assessments emphasise working memory and executive functions and include some basic visuospatial 

tasks, a more comprehensive assessment of spatial and navigation abilities may further improve the 

sensitivity of these assessments. Notably, visuospatial tasks often focus on the relations among items 

at the micro-scale and therefore tap only on a subset of the skills required to navigate a large 

environment. Navigation in large environments requires additional skills such as the apprehension and 

integration of spatial information from multiple viewpoints and awareness of one's own movement 

through space [51,52]. Here, researchers have used several spatial tasks to predict MCI and AD with 

varying degrees of success [47,53–59] but have not systematically investigated the manner in which 

these spatial tasks can contribute to common cognitive assessments. 

In the present study, we address this limitation of the MoCA and other neuropsychological tests by 

administering the Spatial Performance Assessment for Cognitive Evaluation (SPACE). SPACE is a 

novel serious game that combines a variety of spatial tasks from previous research and is designed to 

identify deficits in spatial and navigation abilities indicative of early signs of cognitive impairment 

[60]. We tested healthy participants with a wide range of ages using SPACE and the MoCA. Apart 

from age and gender, we found that none of the common risk factors included in our study were 

significantly associated with MoCA scores. Notably, using factor analysis, we demonstrate that 

performance on some tasks in SPACE (i.e., pointing and perspective taking) predict MoCA scores. In 

comparison, worse performance on other tasks in SPACE (e.g., path integration) is distributed among 

participants with good and bad MoCA scores. Together, these results suggest that SPACE may tap 

into another dimension of spatial and navigation abilities that is not currently included in standard 

screenings of cognitive impairment. We also provide norms with respect to age and gender for each 

task in SPACE. 
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2. METHODS 

Participants 

We collected data from 348 healthy participants between 21 and 76 years of age (M=45, SD=16) who 

were recruited via social media platforms (e.g., Facebook, LinkedIn, Telegram) and community 

flyers. Individuals with neurological disorders, severe visual impairment or blindness, deafness, a 

history of seizures, epilepsy, or recent acute cardiac events were excluded from the study. Due to 

unforeseen technical issues, such as app crashes or refusal to answer questionnaires, six participants 

were entirely excluded from all analyses. Additionally, some participants had incomplete data entries, 

leading to missing values. These incomplete data were omitted from specific analyses, but the 

participants themselves were not completely excluded. Ultimately, data from 342 participants were 

included in the final analyses. Ethical approval for this study was granted by the Parkway Independent 

Ethics Committee (PIEC/2022/010) and the ETH Zurich Ethics Commission (EK 2021-N-193). 

Written informed consent was obtained from all participants prior to their involvement in the study. 

All procedures adhered to the Declaration of Helsinki. 

Materials 

Instruments 

Participants completed both the MoCA and SPACE assessments. Before and after these assessments, 

participants were asked to complete a series of questionnaires, including a digital visual acuity test, a 

sociodemographic and health questionnaire, the Santa Barbara Sense of Direction scale [61], a series 

of usability questionnaires, and a debriefing questionnaire. The digital visual acuity test was based on 

a Snellen chart and was only used to screen participants for extreme visual impairments or blindness. 

The results from the usability and debriefing questionnaires are detailed in a separate paper [60].  
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MoCA. The MoCA is a widely used cognitive screening tool designed to detect cognitive impairment. 

The MoCA is composed of a 30-point scale administered in person by a qualified examiner to assess 

various cognitive domains, including memory, executive function, visuospatial skills, language, 

attention, and orientation. A score of 25 or below typically indicates MCI. The MoCA has a 

sensitivity of 90% and a specificity of 87% for predicting cognitive impairment [20]. In addition, the 

MoCA (AUC values ranging from 0.71 to 0.99) has better diagnostic accuracy for MCI compared to 

the MMSE (AUC values ranging from 0.43 to 0.94) [32]. For detecting AD, the MoCA also 

outperforms the MMSE, with AUC values ranging from 0.87 to 0.99 for the MoCA and 0.67 to 0.99 

for the MMSE. 

SPACE. SPACE is a novel serious game designed to detect deficits in spatial navigation performance 

that may indicate signs of cognitive impairment [60]. SPACE is deployed on iPads and includes 

visuospatial training and five other spatial and navigation tasks. The visuospatial training is critical to 

minimise learning effects and ensure that performance does not reflect the ability to control the device 

[62]. In SPACE, participants navigate from a first-person perspective from one landmark to another to 

learn their relative positions as part of a path integration task. Participants are later probed on their 

spatial knowledge via pointing (Figure 1a), mapping, and associative memory tasks. Participants are 

also asked to complete a perspective taking task in which they are provided with a top-down 

representation of the landmarks (Figure 1b). These tasks are specifically developed to probe the 

acquisition of spatial knowledge at the environmental scale (Table 1).  

Table 1. The tasks in SPACE 

Visuospatial 
training 

Participants learn to rotate, translate, and integrate these movements by following a robot 
around the planet from a first-person perspective. In the final training phase, participants are 
introduced to the logic of the path integration task.  

Path 
integration 

Participants follow the robot from the rocket to two landmarks, walking along two sides of a 
triangle from a first-person perspective. At each landmark, the robot scans a different element 
that will be recalled in a later task. Participants are asked to return unguided to the original 
position of the rocket, completing the third side of the triangle. Unlike the final training phase, 
the rocket takes off at the start of each trial and stays invisible until participants signal its 
landing after completing the trial. 

Pointing Participants stand in front of a landmark or the rocket and are asked to complete a series of 
pointing trials to other landmarks encountered during the path integration task. 

Mapping Participants are asked to recreate the configuration of landmarks in the environment they 
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learned by dragging and dropping icons representing the landmarks from a top-down 
perspective. 

Associative 
memory 

Participants are presented with a corrected top-down map of the landmarks and are asked to 
drag and drop icons representing the corresponding elements scanned by the robot during the 
path integration task. 

Perspective 
taking 

Participants are provided with the correct top-down map of the environment and are asked to 
imagine standing at a landmark while facing another landmark. Their task is to indicate the 
correct bearing toward a third landmark from this perspective. 

Sociodemographic and health questionnaire. The sociodemographic and health questionnaire 

gathered information on the age, gender, education, background, handedness, tablet experience, and 

prior navigation training of participants. This questionnaire also collected data on their health status, 

including vision impairments, chronic conditions, and history of traumatic brain injury, as well as 

their psychosocial well-being, focusing on levels of depression, anxiety, and stress over the past six 

months. Additionally, the questionnaire addressed health habits, such as smoking, alcohol 

consumption, incidences of falls in the past year, daily hours of sleep, and weekly hours of walking 

and vigorous physical activity.  

Figure 1. Screenshots from the pointing and perspective taking tasks in SPACE. (a) In the pointing task, participants are 
positioned at a landmark and asked to point toward another landmark encountered during the path integration task. (b) In the 
perspective taking task, participants imagine standing at one landmark and facing another. They must then adjust the target 
icon to indicate the correct direction to a third landmark from that perspective. 

Hardware and Software 

SPACE was deployed on a 10.2-inch iPad with Wi-Fi and 256 GB memory running iOS version 

16.6.1. The vision test was conducted using the iPad app MDCalc (https://www.mdcalc.com). All 

questionnaire data were collected via the Qualtrics XM online survey platform (www.qualtrics.com) 
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on the iPad. Gait data was collected using WitMotion sensors (WT901BLECL Bluetooth 5.0 

Accelerometer, https://www.wit-motion.com). 

Procedure 

Before starting the experiment, the experimenter briefed participants on the aim of the study and 

informed them of their right to take breaks during the session and their ability to withdraw from the 

experiment at any time without providing a reason. Participants were then asked to read the 

information sheet and sign the consent form if they agreed to participate. Participants completed the 

vision test, the MoCA, and the sociodemographic and health questionnaire before playing SPACE. 

Each task in SPACE was explained verbally, and additional instructions were displayed within the 

game interface. After playing SPACE, participants filled out the System Usability Scale (SUS), User 

Experience Questionnaire (UEQ), NASA Task Load Index (NASA-TLX), Presence questionnaire, 

and a debriefing questionnaire. To collect gait data, participants walked a circuit for three minutes and 

then walked the circuit again while counting backwards for three minutes. The gait data were 

collected for future analyses and will not be included in this paper. 

Analysis 

We extracted the following performance variables from the tasks in SPACE. Visuospatial training 

performance was measured as the time (in seconds) required to complete the rotation, translation, 

circuit, and homing phases. Path integration distance error referred to the average distance between 

the participant’s final position and the target’s original position. Greater distances indicated larger 

errors. Egocentric pointing error was calculated as the average angular deviation (in degrees) between 

the participant’s estimate and the target landmark. Mapping accuracy was assessed using 

bidimensional regression [63] to determine the degree of association (R²) between the real map of the 

environment and the map created by the participant. The Associative memory score was computed as 

the percentage of correct pairings between scanned elements and landmarks. Perspective taking error 

was measured as the average angular deviation (in degrees) between the participant’s estimate and the 

target landmark. In all analyses, we excluded the associative memory task as an outcome variable 
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from our analysis because of ceiling effects, which limited variability and prevented the models from 

converging. 

Before conducting inferential statistics, we verified whether our data violated the assumptions of the 

linear regression. Since some of the assumptions were violated, we used robust statistics to reduce the 

influence of outliers on the regression estimates by giving them less weight in the model-fitting 

process [64]. We conducted three robust regression models with the MoCA score as the outcome 

variable. The first model included only age as a continuous predictor variable and gender as a 

dichotomous predictor variable. In addition to age and gender, the second model included the seven 

risk factors for dementia from the sociodemographic and health questionnaire (i.e., depression, 

anxiety, stress, alcohol intake, sleep duration, walking duration, and physical activity duration) as 

continuous predictor variables. The third model also included the tasks in SPACE (visuospatial, path 

integration, egocentric pointing, mapping, and perspective taking) as continuous predictors. We 

compared the first to the second model and the second to the third model using robust Wald tests and 

assessed the differences in fit in terms of changes in R2. 

Next, we conducted a factor analysis with maximum likelihood extraction and varimax rotation on the 

MoCA and SPACE scores. Following Dwyer [65], we also used factor extension to evaluate the 

loadings of factors not included in the original analysis (i.e., age and gender). Finally, we generated 

age group and gender norms for each of the tasks in SPACE and visualised the data using continuous 

norming [66] across participant ages. All statistical analyses were performed using R Studio Version 

2023.06.0+421 (R Studio PBC, Boston, MA, http://www.rstudio.com). Robust regressions and the 

Wald tests were conducted using the R packages robustbase [67,68] and WRS2 [69]. We used the 

psych R package for the factor analysis [70]. Continuous norming was conducted using the cNORM R 

package [71].  The threshold for significance for all tests was set at α = .05. 
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3. RESULTS 

Descriptive statistics for all predictor and outcome variables are listed in Table 2.  

Table 2. Descriptive statistics for the dementia risk factors and the tasks in SPACE. 

 

Results of the regression models are presented in Table 3. The first robust regression model, including 

age and gender, significantly explained 11.2% of the variance in MoCA scores (χ²(2) = 36.819, p < 

0.001). The results indicated that age has a significant negative effect on MoCA scores (β = -0.27, p < 

0.001), while gender was not significant (β = -0.18, p = 0.060). The second model, including the 

individual risk factors as predictors in addition to age and gender, explained an additional 2.4% of the 

variance in MoCA scores. However, the second model did not significantly explain more variance 

than the first model (χ²(8) = 9.0293, p = 0.340). According to this second model, age remained a 

significant predictor (β = -0.25, p < 0.001), but gender also became significant (β = -0.21, p = 0.032). 

None of the individual risk factors significantly affected MoCA scores. The third model, including the 

scores from the spatial navigation tasks in SPACE, explained an additional 6.3% of the variance, 

which was a significant improvement over the second model (χ²(5) = 28.129, p < 0.001). According to 

this third model, age (β = -0.12, p = 0.044) and gender (β = -0.32, p < 0.001) remained significant 

Descriptive Statistics 

Variable categorical Level   Percentage 

Gender Female 

Male 

  56.43 

43.57 

Education High school 

University 

  27.49 

72.51 

Variable continuous Median Mean SD 

MoCA 27.00 26.68 2.33 

Age 43.50 45.13 16.20 

Depression 2.00 2.43 1.78 

Anxiety 3.00 3.23 2.04 

Stress 3.00 3.95 2.23 

Alcohol intake 0.00 0.73 2.32 

Sleep 7.00 6.75 0.90 

Walking 7.00 9.95 9.61 

Physical activity 2.00 2.80 2.86 

Visuospatial training 241.29 246.14 37.15 

Path integration 226.15 246.46 106.80 

Pointing 66.45 65.33 20.32 

Mapping 0.41 0.46 0.31 

Perspective taking 20.64 28.70 23.12 
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predictors. Additionally, the pointing (β = -0.12, p = 0.031) and perspective taking (β = -0.17, p = 

0.007) tasks significantly predicted MoCA scores.  

Table 3. Predictive models of MoCA scores using various risk factors for dementia and tasks from the SPACE assessment. 

The factor analysis included the variables age, gender, MoCA scores, and the tasks in the SPACE 

assessment. A correlation analysis revealed several significant relationships, suggesting potential 

underlying factors that could be extracted from the data (Figure 2).  

 MoCA 

 
Model 1 Model 2 Model 3 

 

Unstandardised estimates (std. Error) 

(Intercept) 28.874*** (0.293) 29.837*** (1.175) 32.205*** (1.320) 

Age -0.039*** (0.007) -0.036*** (0.007) -0.017* (0.008) 

Gender [Male] -0.408 (0.216) -0.481* (0.223) -0.742** (0.222) 

Education [University]  0.396 (0.245) 0.201 (0.260) 

Depression  0.042 (0.073) 0.034 (0.072) 

Anxiety  0.008 (0.089) 0.033 (0.091) 

Stress  -0.003 (0.081) -0.019 (0.081) 

Alcohol intake  0.043 (0.069) 0.031 (0.083) 

Sleep  -0.222 (0.141) -0.168 (0.147) 

Walking  -0.010 (0.013) -0.015 (0.014) 

Physical activity  0.034 (0.034) 0.032 (0.032) 

Visuospatial training   -0.005 (0.003) 

Path integration    -0.001 (0.001) 

Pointing   -0.013* (0.006) 

Mapping   -0.687 (0.394) 

Perspective taking   -0.017** (0.006) 

Observations 330 330 330 

R
2 

0.112 0.136 0.199 

Adjusted R
2 

0.107 0.109 0.161 

Residual Std. Error 1.801 (df = 327) 1.764 (df = 319) 1.711 (df = 314) 

Note: Model 1 (MoCA ~ Age + Gender); Model 2 (MoCA ~ Age + Gender + Education + Depression + Anxiety + Stress + Alcohol intake + Sleep + Walking + 

Physical activity); Model 3 (MoCA ~ Age + Gender + Education + Depression + Anxiety + Stress + Alcohol intake + Sleep + Walking + Physical activity + 

Visuospatial + Path integration + Pointing + Mapping + Perspective taking). * p < 0.05; ** p < 0.01; *** p < 0.001. 
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Figure 2. The correlation matrix presents Spearman's correlation coefficients in the lower triangle, density plots along the 
diagonal illustrating data distributions, and scatterplots in the upper triangle showing the relationships between pairs of 
variables. Orange indicates positive correlations, and blue represents negative correlations.  

Eigenvalues and a parallel analysis indicated the retention of two factors for the factor analysis 

(Figure 3). The eigenvalue for the first factor was 2.66, and the eigenvalue for the second factor was 

1.10, indicating that these two factors together accounted for 23% of the total variance in the data 

(Figure 4). Specifically, ML1 and ML2 explained 8% and 15% of the total variance, respectively. 

ML1 had a moderate positive loading on visuospatial training (λ = 0.30), stronger positive loadings on 

pointing error (λ = 0.54) and path integration error (λ = 0.41) tasks, and a negative loading on the 

mapping accuracy (λ = -0.67). This factor appears to capture spatial and navigational abilities. ML2 

had a strong positive loading on the perspective taking error (λ = 0.56) and a negative loading on 

MoCA scores (λ = -0.63), suggesting that this factor is related to cognitive and perceptual abilities 
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(Figure 3). The standardised loadings for age and gender on ML1 and ML2 showed that age had 

moderate loadings on both factors (ML1: λ = 0.41, ML2: λ = 0.53), while gender had no impact 

(ML1: λ = 0.04, ML2: λ = 0.11).  

 

Figure 3. The diagram illustrates the results of the factor analysis for the SPACE tasks and MoCA scores, including the 
impact of age and gender extensions. Negative loadings are highlighted in red. 
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Figure 4. A series of scatter plots for ML1 and ML2, with each dot representing an individual participant. (a) The biplot 
displays loadings of MoCA and SPACE task scores on extracted factors (ML1 and ML2) and illustrates the relationships 
among variables. The dots are coloured according to the participants' ages. (b) The scatter plot of the factors ML1 and ML2 
with dots coloured according to MoCA scores (reversed for visualisation) along a light green (low error) to dark green (high 
error) gradient. (c) The scatter plot of the factors ML1 and ML2 with dots coloured according to the errors on the perspective 
taking task along a light yellow (low error) to dark yellow (high error) gradient. (d) The scatter plot of the factors ML1 and 
ML2 with dots coloured according to errors from the navigation tasks in SPACE along a light orange (low error) to dark 
orange (high error) gradient. (e) The scatter plot of the factors ML1 and ML2 with dots coloured according to the difference 
between reversed MoCA scores and errors from the navigation tasks in SPACE along a gradient from green (difference 
favouring MoCA) to red (difference favouring the navigation tasks in SPACE). The visualisation demonstrates similar 
patterns for the MoCA and the perspective taking task. In addition, there are regions of the biplot representing participants 
performing worse on the navigation tasks in SPACE despite performing well on the MoCA. At the same time, some 
participants performed worse on the MoCA despite performing well on the navigation tasks in SPACE. 
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To facilitate the application of SPACE for the detection of cognitive impairment, we computed age 

(Table 4) and gender (Table S1) norms for each of the tasks in SPACE. Age norms are listed by age 

group (i.e., 20-29, 30-39, 40-49, 50-59, and older than 60) and visualised using continuous norming in 

Figure 5. 

Table 4. Normative data for age group. 

Task 
Age 

group 
Mean SD 

10th 

Percentile 

25th 

Percentile 

50th 

Percentile 

75th 

Percentile 

90th 

Percentile 

Visuospatial 21-29 227.18 26.07 260.41 244.32 224.97 213.39 195.35 

30-39 234.95 22.97 264.13 250.18 236.16 218.43 208.24 

40-49 241.26 31.82 286.21 261.84 242.96 222.35 203.86 

50-59 260.15 35.26 308.13 288.98 260.64 228.42 220.05 

60+ 266.33 42.55 324.45 291.53 258.38 239.79 220.07 

Path 

integration 

21-29 193.76 64.09 268.19 227.29 192.08 153.20 109.94 

30-39 212.49 82.81 315.49 263.62 212.32 144.91 114.27 

40-49 229.80 100.35 391.42 270.33 201.86 157.00 125.75 

50-59 272.85 105.21 438.03 348.96 247.11 196.61 173.15 

60+ 299.25 100.17 427.16 350.42 291.64 232.78 179.26 

Pointing 21-29 54.96 19.74 76.97 68.87 52.36 42.67 29.77 

30-39 58.55 19.31 79.29 70.30 61.96 48.51 30.92 

40-49 67.09 18.33 89.78 80.29 66.34 56.43 43.77 

50-59 71.81 17.62 94.07 79.04 72.16 61.81 51.04 

60+ 74.14 15.08 96.99 82.43 73.21 64.31 56.69 

Mapping 21-29 0.54 0.32 0.14 0.22 0.53 0.87 0.95 

30-39 0.52 0.33 0.11 0.24 0.51 0.86 0.95 

40-49 0.48 0.33 0.11 0.17 0.41 0.83 0.95 

50-59 0.36 0.29 0.08 0.13 0.28 0.51 0.88 

60+ 0.38 0.28 0.82 0.56 0.29 0.56 0.82 

Perspective 

taking 

21-29 18.16 13.15 33.44 24.02 14.59 8.82 5.65 

30-39 21.93 18.11 51.36 33.76 13.60 8.70 5.56 

40-49 25.76 21.56 56.47 36.34 18.26 10.54 6.61 

50-59 31.58 21.05 61.25 47.41 25.49 14.62 7.43 

60+ 39.80 26.21 73.00 60.17 33.07 19.38 11.53 
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Figure 5. Age norms for the different tasks in SPACE. In the plots, error measures are used for visuospatial tasks, path 
integration, egocentric pointing, and perspective taking. The mapping task, however, assesses performance using an 
accuracy score. 

4. DISCUSSION 

This study investigates how dementia risk factors and the performance on spatial navigation tasks in 

SPACE predict MoCA scores as an indicator of cognitive impairment. The results of our regression 

analysis revealed that the pointing and perspective taking tasks contributed to the prediction of MoCA 

beyond age and gender. Despite the established relationships between modifiable risk factors and 

cognitive impairment [12,13,15], none of the modifiable risk factors in our sample were significant 

predictors of MoCA scores. Our exploratory factor analysis further revealed that MoCA scores and 

performance on the perspective taking task in SPACE were associated with the same factor that was 

separate from the four navigation-related tasks in SPACE. In addition, we identified two clusters of 

participants that either performed well on the MoCA and poorly on the navigation tasks or well on the 

navigation tasks and poorly on the MoCA, suggesting that cognitive assessments may benefit from the 

combination of MoCA and navigation tasks. We argue that incorporating spatial navigation 

assessments into cognitive screening tests may improve their sensitivity and offer a more 

comprehensive and accurate evaluation of cognitive functioning. 
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A hallmark of MCI and AD is damage to the entorhinal cortex and hippocampus caused by the 

excessive accumulation of the β-amyloid peptides into neuritic plaques and an abnormal form of the 

protein tau into neurofibrillary tangles. Since the structures in the medial temporal lobe (MTL) are 

often associated with working memory and long-term declarative memory [72–74], tasks such as the 

digit span task and delayed recall are typically used to detect cognitive impairment [31]. Indeed, the 

MoCA includes the digit span task and delayed recall, as well as visuospatial tasks such as trail-

making and cube drawing [20,31]. While both visuospatial tasks require patients to reconstruct small-

scale spatial relations, these tasks do not involve the same scale and complexity of navigation skills 

associated with the MTL. Similar to how performance on declarative memory tasks is used to identify 

declarative memory impairment, performance on navigation tasks can contribute to the detection of 

the impairment of spatial skills that rely on the MTL but that are not yet assessed by the MoCA. 

SPACE includes various navigation tasks such as visuospatial training, path integration, pointing, and 

mapping. There is now substantial evidence that performance on each of these individual tasks is 

associated with age [75,76] and can discriminate with varying accuracy between healthy, MCI, and 

AD patients [46,48,50,55,77]. For example, Howett and colleagues [48] tested healthy and MCI 

patients in an immersive path integration task and found that path integration error could discriminate 

between healthy participants and patients with MCI, especially for biomarker-positive patients (CSF 

amyloid-β and total tau). Notably, the ability of the path integration tasks to discriminate between 

biomarker-positive and biomarker-negative patients was significantly higher than the Trail Making 

Test-B and the Four Mountains Test. In addition, deIpolyi and colleagues [46] found that, although 

MCI and mild AD patients could recognise landmarks along a learned route, these patients could not 

accurately identify landmark locations from a map or draw a map of the route. Similar to Howett and 

colleagues [48], performance on a neuropsychological assessment, including the MMSE and measures 

of working memory and visuospatial memory, did not discriminate between patients with and without 

spatial impairments [46]. Comparable results were found in a virtual supermarket test in which 

participants were asked to orient to different goal locations after learning a route [55]. In that study, 

researchers found that the scores from this spatial orientation task discriminate between control, AD, 
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and the Frontotemporal Dementia participants. Together, this research suggests that spatial navigation 

assessments can substitute, complement, or even outperform traditional screenings for cognitive 

impairment. 

While previous research focuses on patients who had already been clinically diagnosed as cognitively 

impaired, we tested participants without a diagnosis and with a wide range of ages. Critically, we 

found that performance on the pointing and perspective taking tasks in SPACE predicted MoCA 

scores. Similarly, Tinella and colleagues [78] found a significant correlation between MoCA scores 

and a perspective taking task of the same format [79] for a large sample with a wide range of ages. 

Interestingly, this relationship was not found in other studies [80,81] with a higher cutoff for MoCA 

scores (22 instead of 17), suggesting that perspective taking may be useful for discriminating between 

patients with different levels of cognitive impairment. Indeed, researchers have found that perspective 

taking tasks can discriminate between healthy and MCI participants [82], healthy and AD participants 

[58,82], and MCI and AD participants [58]. As part of SPACE, we introduce a variation of the 

perspective taking task that predicts MoCA scores and may be more scalable for broader deployment 

and unsupervised early screening. 

Furthermore, we explored the factor structure underlying MoCA and the tasks in SPACE, which 

revealed two distinct factors. The first factor combined MoCA and the perspective taking task, 

reinforcing the notion that the perspective taking task in SPACE could provide an alternative to the 

MoCA. The second factor combined the navigation tasks in SPACE (i.e., visuospatial training, path 

integration, pointing, and mapping) and may represent an overlooked dimension of cognitive 

functioning not captured by existing cognitive assessments such as the MoCA. Meneghetti and 

colleagues [52] employed confirmatory factor analysis to derive the structure underlying visuospatial 

tasks and multiple wayfinding-related questionnaires. After finding that wayfinding inclinations (as 

derived from the questionnaires) underlie a separate factor from the visuospatial tasks, they showed 

that both factors predicted performance on navigation tasks in VR. Critically, the authors suggested 

that wayfinding inclinations predicted navigation recall performance because participants were asked 

to consider space at a larger scale. In addition, Hegarty and colleagues [51] showed that small-scale 
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spatial tasks, such as mental rotation, are more strongly related to large-scale tasks in visual media 

than to learning in a real-world environment. However, they also found that a perspective taking task 

involving four objects was not related to tasks in either visual media or the real environment. 

Together, these findings suggest that perspective taking and large-scale navigation tasks represent 

different aspects of cognitive abilities. Indeed, while many of our participants performed either well 

or poorly on both SPACE and the MoCA, a substantial portion performed well on either SPACE or 

the MoCA. The present study provides evidence to support the claim that both types of spatial tasks 

may be used to complement existing screenings for cognitive impairment. 

Our factor analysis extension also revealed an effect of age on both factors (but no relationship with 

gender). According to previous research, spatial memory and abilities tend to decline with age 

because of altered computations, functional deficits, and navigational impairments [75,83]. As 

expected, our regression model revealed that older participants scored lower on the MoCA [84–89], 

and this difference may be more pronounced because of the wide age range in our sample (21 to 76). 

Our regression analysis also found that men had lower MoCA scores than women, aligning with prior 

research showing a female advantage in both older [84,85,89] and younger populations [86], but see 

[87] for no differences and [88] for a male advantage. Notably, none of the modifiable risk factors in 

our second model significantly predicted MoCA scores. Specifically, we did not observe a significant 

effect of education in our study, despite education often being associated with higher MoCA scores 

[84–89]. These conflicting results may be attributable to the high education level of our sample, with 

only four participants without a high school diploma. The null effects for depression, anxiety, and 

stress may be attributable to a lack of sensitivity in our single-item scales for these conditions, 

although previous research suggests that a high correspondence between single items and established 

measures such as the Depression, Anxiety and Stress Scale [90] and the Geriatric Depression Scale 

[91]. In our study, neither physical activity nor walking was associated with MoCA scores. While 

sustained physical activity has been found to protect against cognitive impairment [92], the results are 

mixed [93,94], and cognitive impairment can instead be the cause of a reduction in physical activity. 

Although previous studies link healthy lifestyles with a lower risk of dementia [95], we found no 
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association between alcohol consumption and MoCA scores in our sample. These results may be 

partially explained by the extremely low number of drinkers in our study. In more homogeneous and 

possibly healthier populations, these risk factors may have a reduced sensitivity to predict cognitive 

impairment. 

The present study has at least three notable limitations. First, because of the inclusion of younger 

participants, we had less than typical variation in several risk factors, including education and 

smoking. Second, we did not test participants longitudinally and do not know their eventual cognitive 

status in old age. Third, we focus on the results of a widely used cognitive assessment (i.e., the 

MoCA), which is not in itself a diagnostic tool. Clinical diagnoses would require a full 

neuropsychological exam including tests for biomarkers of neurodegeneration. Despite these 

limitations, future work can benefit from including SPACE in cognitive assessments, along with the 

normative data provided in the present study for the early discrimination of healthy and pathological 

trajectories. Future work will also address the limitations of the present study by testing a more 

targeted age group over a longer period of time. Notably, these tests will include biomarkers as part of 

a diagnostic tool to further evaluate the utility of SPACE. 

5. CONCLUSIONS  

Digital assessments are becoming increasingly popular for assessing cognitive impairments [96–99]. 

SPACE differs from traditional cognitive assessments by providing spatial tasks in large and complex 

environments rather than small-scale tasks and questionnaires that focus solely on visuospatial skills, 

attention, and memory. Here, we show that a novel tablet-based serious game, SPACE, has the 

potential to complement traditional assessments of cognitive impairment.  
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