
Analyzing greedy vaccine allocation algorithms for

metapopulation disease models

Jeffrey Keithley1,2, Akash Choudhuri1, Bijaya Adhikari1, Sriram V. Pemmaraju1*

1 Department of Computer Science, University of Iowa, Iowa City, United States of

America

2 Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los

Alamos, New Mexico, United States of America

* sriram-pemmaraju@uiowa.edu

Abstract

As observed in the case of COVID-19, effective vaccines for an emerging pandemic tend

to be in limited supply initially and must be allocated strategically. The allocation of

vaccines can be modeled as a discrete optimization problem that prior research has

shown to be computationally difficult (i.e., NP-hard) to solve even approximately.

Using a combination of theoretical and experimental results, we show that this hardness

result may be circumvented. We present our results in the context of a metapopulation

model, which views a population as composed of geographically dispersed heterogeneous

subpopulations, with arbitrary travel patterns between them. In this setting, vaccine

bundles are allocated at a subpopulation level, and so the vaccine allocation problem

can be formulated as a problem of maximizing an integer lattice function g : ZK
+ → R

subject to a budget constraint ∥x∥1 ≤ D. We consider a variety of simple, well-known

greedy algorithms for this problem and show the effectiveness of these algorithms for

three problem instances at different scales: New Hampshire (10 counties, population 1.4

million), Iowa (99 counties, population 3.2 million), and Texas (254 counties, population

30.03 million). We provide a theoretical explanation for this effectiveness by showing

October 4, 2024 1/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.10.12.24315394

that the approximation factor of these algorithms depends on the submodularity ratio of

objective function g, a measure of how distant g is from being submodular.

Author summary

Strategic and timely allocation of vaccines is crucial in combating epidemic outbreaks.

Developing strategies to allocate vaccines over sub-populations rather than to

individuals leads to policy recommendations that are more feasible in practice. Despite

this, vaccine allocation over sub-populations has only received limited research interest,

and the associated computational challenges are relatively unknown. To address this

gap, we study vaccine allocation problems over geographically distinct subpopulations

in this paper. We formulate our problems to reduce either i) the total infections or ii)

the sum of peak infections over meta-population disease models. We first demonstrate

that these problems are computationally challenging even to approximate and then

show that a family of simple, well-known greedy algorithms exhibit provable guarantees.

We conduct realistic experiments on state-level mobility networks derived from

real-world data in three states of distinct population levels: New Hampshire, Iowa, and

Texas. Our results show that the greedy algorithms we consider are i) scalable and ii)

outperform both state-of-the-art and natural baselines in a majority of settings.

Introduction 1

In the early stages of a pandemic like COVID-19, the demand for vaccinations far 2

exceeds supply [1, 2] and it is critical to strategically allocate vaccines [3, 4]. The vaccine 3

allocation problem can be modeled in a variety of ways, including as discrete 4

optimization problems [5–9]. However, all of these problems are computationally hard, 5

even to solve approximately (see [10], for a specific example). Despite these obstacles, 6

we need to be able to solve vaccine allocation problems at scale and have confidence 7

that the obtained solutions are close to being optimal. In this paper, we take steps 8

towards this goal. 9

We consider the metapopulation-network model for disease-spread [11,12], which 10

allows for heterogeneity among geographically distinct subpopulations and arbitrary 11

October 4, 2024 2/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

travel patterns between them. Vaccine allocation within this model consists of 12

allocating some number of bundles of vaccines to each subpopulation while satisfying an 13

overall budget constraint. The resulting family of problems, which we call the 14

Metapopulation Vaccine Allocation (MVA) problems, can be formalized as maximizing 15

an objective function (e.g., number of cases averted) defined over an integer lattice 16

domain subject to a budget constraint. Not surprisingly, we show specific problems 17

obtained via realistic instantiations of the metapopulation-network model and objective 18

function in MVA are not just NP-hard, but even hard to approximate. We show these 19

hardness results for two instantiations, which we call MaxCasesAverted and 20

MaxPeaksReduced, of MVA over SEIR (Susceptible-Exposed-Infected-Recovered) 21

metapopulation models [11,12]. 22

These hardness of approximation results imply that worst-case approximation 23

guarantees are not attainable for natural instantiations of MVA. However, for a family 24

of simple, well-known greedy algorithms, we show positive theoretical and experimental 25

results for both MaxCasesAverted and MaxPeaksReduced. These simple and 26

natural greedy algorithms lend themselves to the machinery from submodular function 27

optimization for in-depth analysis. There is a rich literature of methods for submodular 28

set function optimization [13–18] that has subsequently been extended to submodular 29

optimization over the integer lattice [19–22]. Furthermore, in the last few years, 30

researchers have attempted to extend some of the aforementioned results for 31

submodular set and lattice function optimization to functions that are not submodular, 32

by using the notion of submodularity ratio of a function, which is a measure of how 33

distant that function is from being submodular [23–25]. All of this literature is 34

foundational to our approach to analyzing vaccine allocation algorithms in a 35

metapopulation model setting [11,12]. 36

In our main theoretical result, we show that simple greedy algorithms provide 37

worst-case approximation guarantees for MaxCasesAverted and 38

MaxPeaksReduced that become better as the submodularity ratio of their objective 39

functions approaches 1. The submodularity ratio [23–26] of a set or lattice function is a 40

measure (between 0 and 1) of how close the function is to being submodular, with 41

values closer to 1 corresponding to functions that are closer to being submodular. We 42

complement this theoretical result with experimental results indicating that the 43

October 4, 2024 3/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

objective functions for MaxCasesAverted and MaxPeaksReduced might have 44

relatively high submodularity ratios. 45

We then experimentally evaluate the performance of greedy vaccine allocation 46

algorithms at three scales; we use New Hampshire (10 counties, population 1.4 million) 47

for our small scale experiments, Iowa (99 counties, population 3.2 million) for our 48

medium scale experiments, and Texas (254 counties, population 30.03 million) for our 49

large scale experiments. We compare the performance of the greedy methods with a set 50

of trivial baselines, such as allocating vaccines according to population sizes. We also 51

compare against a randomized algorithm called Pareto Optimization for Subset 52

Selection (POMS) [24]. POMS works by expanding a random pareto-optimal frontier, 53

and was designed to compete against greedy algorithms for small scale problems. We 54

show the greedy algorithms we consider outperform POMS for our experimental 55

settings, while scaling more readily. Our experiments demonstrate that i) simple greedy 56

vaccine allocation algorithms outperform the natural baseline algorithms substantially 57

(up to 9M more individuals saved than the worst-performing baseline in some settings), 58

ii) for both MaxCasesAverted and MaxPeaksReduced, greedy algorithms perform 59

near-optimally for most problem instances we evaluate for New Hampshire (and recover 60

similar approximation guarantees to those of submodular functions for experiments in 61

Iowa and Texas), and iii) the fastest of our greedy algorithms are feasible even for large 62

scale instances such as the state of Texas. 63

Materials and methods 64

Background 65

Notation. We use Z+ to denote the set of non-negative integers and for any positive 66

integer n, we use [n] to denote the set {1, 2, . . . , n}. 67

Metapopulation disease-spread models A metapopulation disease-spread 68

model [11] generalizes the classic homogeneous-mixing compartmental models [27], by 69

allowing geographically-diverse subpopulations. Let K ∈ Z+ denote the number of 70

subpopulations in the metapopulation model. For each subpopulation i ∈ [K], let ni 71

denote the size of the subpopulation and let n denote the vector (n1, n2, . . . , nK) of 72

October 4, 2024 4/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

subpopulation sizes. For each pair (i, j) ∈ [K]× [K], let wij ∈ Z+ denote the number of 73

individuals moving from subpopulation i to subpopulation j daily. Thus, each wij is a 74

static (i.e., time independent) quantity. Let W denote the K ×K mobility matrix 75

induced by the wij values. 76

Our goal is to decrease the spread of disease by allocating a total of D ∈ Z+ bundles 77

of vaccines to individuals over all subpopulations; here D is the vaccine budget. A 78

bundle can be viewed as the smallest “shipment” of vaccines that can be allocated to a 79

subpopulation and we assume that each bundle consists of an integer ∆ > 0 number of 80

individual vaccines. Let x = (v1, ..., vK) ∈ ZK
+ denote a vaccine allocation, where vi is 81

the number of bundles of vaccines allocated to subpopulation i. For simplicity, we 82

assume that vaccination is preemptive, i.e., occurs at time 1, with knowledge of initial 83

infected, but before the disease has started to spread. It is straightforward to generalize 84

this to a setting in which vaccine allocation occurs later in the progression of the disease. 85

Let I = (I01 , I
0
2 , . . . , I

0
K) ∈ ZK

+ , where 0 ≤ I0i ≤ ni, denote the number of initial 86

infections in subpopulation i. Let f(x | M, I) denote some measure of disease-spread 87

according to the metapopulation modelM starting with initial infection vector I, 88

expressed as a function of the vaccine allocation vector x. For example, f(x | M, I) 89

could denote the total number of infected individuals over some time window. Let 90

g(x | M, I) denote f(0 | M, I)− f(x | M, I), representing the reduction in 91

disease-spread due to vaccine allocation x ∈ ZK
+ , relative to the no-vaccine setting. Note 92

that both f and g are defined over the integer lattice ZK
+ and our goal is to maximize 93

the integer lattice function g(x | M, I) subject to the cardinality constraint ∥x∥1 ≤ D. 94

Submodularity of lattice functions For K ∈ Z+, let g : ZK
+ → R be a function 95

defined on an integer lattice domain. The function g is said to be submodular if for all 96

x,y ∈ Z+ 97

g(x) + g(y) ≥ g(x ∨ y) + g(x ∧ y) (1)

Here (x ∨ y)i = max{xi,yi} and (x ∧ y)i = min{xi,yi}. 98

Below we provide an alternate “diminishing returns” notion of submodularity that is 99

easier to work with. Here ei denotes the unit vector with 1 in coordinate i. 100

Definition 1. [21] (DR-Submodularity) A function g : ZK
+ → R is said to be 101

diminishing returns submodular (DR-submodular, in short) if 102

October 4, 2024 5/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

g(x+ ei)− g(x) ≥ g(y + ei)− g(y) for all i ∈ [K] and x,y ∈ ZK
+ , where x ≤ y. 103

For set functions, submodularity and DR-submodularity are equivalent. However, it 104

is known [20] that if a lattice function is DR-submodular then it is submodular, but the 105

converse is false. Thus, DR-submodularity is a stronger notion compared to 106

submodularity. However, [24] presents a DR-type characterization of submodular lattice 107

functions that is quite useful for our analysis. 108

Lemma 2. [24] A function g : ZK
+ → R is submodular if and only if for any x,y ∈ ZK

+ , 109

x ≤ y and i ∈ [K] with xi = yi, g(x+ ei)− g(x) ≥ g(y + ei)− g(y). 110

Note that according to this lemma, for submodular lattice functions, the DR 111

property is only required to hold at identical coordinates of x and y. 112

The computational complexity of maximizing a submodular lattice function 113

g : ZK
+ → R subject to a cardinality constraint, namely max∥x∥1≤D g(x), is well 114

understood. [20] extend the result for set functions from [28] to lattice functions and 115

show that greedy approaches yield a (1− 1
e)-approximation for this problem for both 116

submodular and DR-submodular lattice functions. These approximation guarantees are 117

optimal due to the inapproximability result of [29]. 118

The SEIR Metapopulation model 119

The SEIR equations are governed by parameters λ, η, and δ, where λ is the infectivity, 120

1/η is the latency period, and 1/δ is the infectious period. Let ri denote a multiplier 121

that scales λ to allow for county differences in contact rates. Let T be a positive integer 122

denoting the size of the time window under consideration. For t ∈ [T] ∪ {0}, each 123

subpopulation is split into compartments St
i , E

t
i , I

t
i , and Rt

i representing the number of 124

susceptible, exposed, infected, and recovered individuals within subpopulation i at time 125

t. We assume the initial conditions E0
i = R0

i = 0, I0i is an arbitrary non-negative 126

number satisfying I0i ≤ ni, and S0
i = ni − I0i . The evolution of St

i , E
t
i , I

t
i , and Rt

i over 127

time t is respectively governed by equations (2)-(5). The term qti that appears in these 128

equations is called the force of infection. When qti = λri
It
i

ni
, equations (2)-(5) represent 129

October 4, 2024 6/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

the spread of disease in a single subpopulation i with a homogeneous mixing assumption. 130

St+1
i = St

i − qtiS
t
i (2)

Et+1
i = Et

i + qtiS
t
i − ηEt

i (3)

It+1
i = Iti + ηEt

i − δIti (4)

Rt+1
i = Rt

i + δIti (5)

We use the following expression for the force of infection term qti that takes the 131

infection incidence within subpopulation i along with flows of individuals into and out 132

of subpopulation i. The derivation of qti is inspired by a similar derivation in [5, 12] and 133

is included in the Supplementary Information. 134

qti = λ

ri
1−

∑
j

wij

ni

 Îti
n̂i

+
∑
j

wijrj
ni

Îtj
n̂j

 (6)

n̂i denotes the effective population of subpopulation i at time t, describing the number 135

of individuals present in subpopulation i after a daily commute has occurred, and Îti 136

denotes the effective number of infected individuals in subpopulation i after a commute. 137

The first term in the right hand side of Eqn (6) is the proportion of individuals leaving 138

subpopulation i for their commute, and the second term is the proportion of individuals 139

arriving. 140

The SEIR metapopulation modelM described above is completely specified by the 141

vector (n, r,W, T, λ, η, δ). In our experiments, each subpopulation represents a county 142

within a state (e.g., K = 99 for Iowa) and the mobility matrix W is obtained from two 143

independent sources, FRED [30] and SafeGraph [31]. By instantiating a specific 144

disease-spread model for each subpopulation and describing its interaction with mobility 145

matrix W, we can obtain a completely specified metapopulation model. 146

Table 1 summarizes the notation introduced in this section. 147

Problem formulations 148

We are now ready to state the Metapopulation Vaccine Allocation (MVA) family of 149

problems. 150

October 4, 2024 7/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

Variable Definition

K,T Number of subpopulations, size of
time window

ri Population density correlated λ-
multiplier for subpopulation i

ni Size of subpopulation i
wij Mobility from subpopulations i to j
qti Force of infection in subpopulation i

at time t
λ, 1/η, 1/δ Infectivity, latency period, infectious

period

Table 1. Metapopulation model notation.

MVA

Given a metapopulation modelM, initial infected vector I = (I01 , I
0
2 , . . . , I

0
K) ∈ ZK

+ ,

where 0 ≤ I0i ≤ ni, and a vaccine budget D ∈ Z+, find a vaccine allocation x ∈ ZK
+ ,

satisfying ∥x∥1 ≤ D such that g(x | M, I) := f(0 | M, I)− f(x | M, I) is maximized.

151

SEIR Metapopulation Vaccine Allocation Problems For illustrative purposes, we 152

instantiate the general metapopulation modelM with an SEIR model for disease 153

spread within each subpopulation. Our framework is general and the SEIR model that 154

we use within subpopulations can be replaced by any other homogeneous-mixing disease 155

spread model. 156

Using the SEIR metapopulation model described above, we obtain specific instances 157

of the MVA problem. But before we can describe these specific instances, we need to 158

describe how vaccination affects disease spread in the SEIR metapopulation model. For 159

simplicity, we assume that vaccine uptake and vaccine effectiveness are both perfect, 160

and thus allocating a vaccine bundle x = (v1, . . . , vK) implies that ∆ · vi individuals in 161

subpopulation i are vaccinated and removed from S0
i . Thus the vaccine allocation 162

x = (v1, . . . , vK) updates the initial susceptible to S0
i = max(0, ni − I0i −∆ · vi) for all 163

i ∈ [K]. The assumptions of perfect uptake and effectiveness are easily relaxed; lowering 164

the vaccine uptake or effectiveness is equivalent to allocating fewer vaccines. 165

We now present two illustrative problems that maximize the impact of vaccines

according to different disease spread metrics. In the problem MaxCasesAverted, the

metric is the total number of infections averted across all subpopulations, and in the

problem MaxPeaksReduced, the metric is the decrease in the sum of all infection

peaks across all subpopulations (both taken over the entire simulation time). More

October 4, 2024 8/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

precisely, given an SEIR metapopulation modelM = (n, r,W, T, λ, η, δ), initial infected

vector I = (I01 , I
0
2 , . . . , I

0
K) ∈ ZK

+ , where 0 ≤ I0i ≤ ni, and a vaccine allocation

x = (v1, . . . , vK) ∈ ZK
+ , we define the metric

totBurden(x | M, I) :=
∑

k∈[K]

(RT
k + ITk),

which is simply the total number of individuals who became infected in the time window

[0, T]. Another natural disease spread metric for the SEIR metapopulation model is

maxBurden(x | M, I) :=
∑

k∈[K]

max
0≤t≤T

Itk,

which is the total number of individuals infected during “peak” infection time over all 166

the subpopulations. This metric is motivated by the fact that even small peaks are 167

challenging in low-resource counties (typically in low-population counties), because 168

healthcare infrastructure is often limited in such counties. So even a small spike in the 169

number of infected individuals can quickly overwhelm local resources. Thus we seek to 170

reduce the likelihood that local healthcare systems will be overwhelmed with the 171

maxBurden metric. Given metapopulation modelM, initial infection vector I, and 172

budget D, we define the following discrete optimization problems: 173

MaxCasesAverted

Find a vaccine allocation x ∈ ZK
+ , satisfying ∥x∥1 ≤ D such that the following is

maximized.

totBurden(0 | M, I)− totBurden(x | M, I)

174

MaxPeaksReduced

Find a vaccine allocation x ∈ ZK
+ , satisfying ∥x∥1 ≤ D such that the following is

maximized.

maxBurden(0 | M, I)−maxBurden(x | M, I)

175

October 4, 2024 9/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

Hardness of MaxCasesAverted and MaxPeaksReduced 176

As with many resource allocation problems, both MaxCasesAverted and 177

MaxPeaksReduced are not only NP-hard, but even hard to efficiently approximate. 178

We show this by a reduction from the Maximum k-Subset Intersection (MaxkSI) 179

problem [32]. The input to Max k-SI consists of a collection C = {S1, S2, . . . , Sm} of 180

sets, where each set Sj is a subset of a universe U = {e1, e2, . . . , en}, and a positive 181

integer k . The problem seeks to find k subsets Sj1 , Sj2 , . . . , Sjk from C, whose 182

intersection has maximum size. The following theorem from [32] shows that Max k-SI 183

is highly unlikely to have an efficient approximation algorithm, even with an inverse 184

polynomial approximation factor. 185

Theorem 3. [32] Let ϵ > 0 be an arbitrarily small constant. Assume that 186

SATISFIABILITY does not have a probabilistic algorithm that decides whether a given 187

instance of size n is satisfiable in time 2n
ϵ

. Then there is no polynomial time algorithm 188

for Max k-SI that achieves an approximation ratio of 1/N ϵ′ , where N is the size of the 189

given instance of Max k-SI and ϵ′ only depends only on ϵ. 190

We now show a reduction from Max k-SI to both MaxCasesAverted and 191

MaxPeaksReduced, thereby establishing the inapproximability of both of these 192

problems. 193

Theorem 4. Let ϵ > 0 be an arbitrarily small constant. Assume that 194

SATISFIABILITY does not have a probabilistic algorithm that decides whether a given 195

instance of size n is satisfiable in time 2n
ϵ

. Then there is no polynomial time algorithm 196

for MaxCasesAverted or for MaxPeaksReduced that achieves an approximation 197

ratio of 1/N ϵ′ , where N is the size of the given instance of MaxCasesAverted or 198

MaxPeaksReduced and ϵ′ only depends only on ϵ. 199

Proof: To prove the portion of this theorem pertaining to MaxCasesAverted, we 200

show the following lemma. 201

Lemma 5. Suppose there is a polynomial-time algorithm A that yields an 202

α-approximation for MaxCasesAverted. Then there is a polynomial-time 203

α/2-approximation algorithm A′ for Max k-SI. 204

October 4, 2024 10/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

Proof of Lemma 5. Given an instance (C,U , k) of Max k-SI, we construct the graph 205

G with m+ n+ 1 nodes. For each subset Sj ∈ C and each ei ∈ U , there is a node in G, 206

for a total of m+ n nodes. There is an extra node I that is connected to every Sj-node. 207

There are edges between the Sj-nodes and the ei-nodes connecting an Sj-node to an 208

ei-node iff ei ̸∈ Sj . 209

To each node v in G, we assign a population nv as follows: nI = m, nSj
= 2n for all 210

j ∈ [n], and nei = M for all i ∈ [n], where M is a large integer whose value will be 211

specified later. We then interpret each undirected edge in G as a pair of directed edges 212

pointing in opposite directions and assign a flow to each directed edge. We assign flow 1 213

to each edge from I to Sj and to each edge from Sj to ei. To all other edges, i.e., the 214

edges pointing “backwards”, we assign flow 0. This construction is illustrated in Fig 1. 215

This specifies the vectors n and w of the instance of MaxCasesAverted.

Fig 1. The instance of MaxCasesAverted and MaxPeaksReduced is a graph G
constructed from the given instance (C = (S1, S2, . . . , Sm),U = (e1, e2, . . . , en), k) of
Max k-SI. Each node represents a subpopulation, with the size of the subpopulation
shown in square brackets next to it. The directed edges permit 1 unit flow. The unit
flows from nodes Sj to ei encode non-membership. For example, the flow from S1 to e2
implies that e2 ̸∈ S1.

216

We set the contact rate rv and infectivity λ such that the force of infection qtv is 217

always at least 1. This corresponds to “perfect infectivity”, meaning that if a 218

subpopulation contains some infected and some susceptible individuals at a time step, 219

then all the susceptible individuals in the subpopulation will transition to the exposed 220

state at the next time step. We then set η = δ = 1 so that the latency period and 221

recovery period are both 1. With this setting of the parameters, the infection will 222

completely die out in 5 time steps, i.e., every individual will either be susceptible or 223

October 4, 2024 11/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

recovered. So we set the size of the time window T = 5. Finally, we set the vaccination 224

budget D = (m− k) · 2n and initialize the entire population of m individuals at node I 225

to be infected and all other individuals to be susceptible. This completes the 226

specification of the problem instance I of MaxCasesAverted. 227

We now make 2 simple observations that follow from the construction of I and 228

depend on the notion of being “unprotected” with respect to a vaccine allocation. Let x 229

be an arbitrary, feasible allocation for I. A subpopulation Sj is called unprotected for x 230

if xSj < 2n; otherwise, Sj is called protected for x. A subpopulation ei is called 231

unprotected for x if xei < M and for some subpopulation Sj that is unprotected for x, 232

the edge {Sj , ei} is in G; otherwise, ei is called protected for x. 233

Observation 1: In every unprotected subpopulation Sj , j ∈ [m], 2n− xSj individuals 234

will become exposed in time step 1 and infected in time step 2. 235

Observation 2: In every unprotected subpopulation ei, i ∈ [n], M − xei individuals 236

will become exposed in time step 3 and infected in time step 4. 237

These 2 observations immediately lead to the following 3 claims. 238

Claim i) Consider a vaccine allocation x ∈ Zm+n+1
+ that is feasible for I and satisfies

xei > 0. Let x′ ∈ Zm+n+1
+ be an allocation obtained from x by reallocating all vaccines

from the subpopulation ei to subpopulations Sj , j ∈ [m]. Then x′ is feasible for I and

totBurden(x′ | M, I) ≤ totBurden(x | M, I).

Claim ii) Consider a vaccine allocation x ∈ Zm+n+1
+ that is feasible for I and satisfies

0 < xSj
,xSj′ < 2n for two subpopulations Sj , Sj′ , j ̸= j′. Let x′ ∈ Zm+n+1

+ be an

allocation obtained from x by reallocating as many vaccines as possible from the

subpopulation Sj′ to the subpopulation Sj , until xSj
= 2n or xSj′ = 0 (or both). Then

x′ is feasible for I and

totBurden(x′ | M, I) ≤ totBurden(x | M, I).

Claim iii) Consider a vaccine allocation x ∈ Zm+n+1
+ that is feasible for I and satisfies

||x||1 = D = (m− k) · 2n. Then using the reallocations from Claims (i) and (ii), it is

possible to transform x into x′ ∈ Zm+n+1
+ in polynomial time such that x′ is feasible for

October 4, 2024 12/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

I, x′
Sj

= 2n for exactly (m− k) subpopulations Sj , x
′ is 0 for all other subpopulations,

and

totBurden(x′ | M, I) ≤ totBurden(x | M, I).

Claim (iii) allows us to assume that any α-approximation algorithm A for 239

MaxCasesAverted returns an allocation x′ for the problem instance I, that picks 240

exactly (m− k) subpopulations Sj and vaccinates these subpopulations entirely, while 241

allocating no vaccines to any of the remaining subpopulations. Similarly, Claim (iii) 242

implies that there is an optimal allocation x∗ for I that picks exactly (m− k) 243

subpopulations Sj and vaccinates these subpopulations entirely, while allocating no 244

vaccines to any of the remaining subpopulations. 245

Let S(x′) be the set of subpopulations Sj unprotected for x′. Similarly, define S(x∗). 246

Note that |S(x′)| = |S(x∗)| = k. Let E(x′) be the set of subpopulations ei that are 247

protected for x′. Similarly, define E(x∗). By the construction of edges from 248

subpopulations Sj to subpopulations ei in I, it follows that E(x′) = ∩Sj∈S(x′)Sj . 249

Similarly, E(x∗) = ∩Sj∈S(x∗)Sj 250

The objective function value of MaxCasesAverted for the optimal allocation x∗, 251

which is totBurden(0 | M, I)− totBurden(x∗ | M, I), can be simplified to 252

(2n ·m+ n ·M)− totBurden(x∗ | M, I)

= (2n ·m+ n ·M)− (k · 2n+M(n− |E(x∗)|))

= 2n(m− k) +M · |E(x∗)|

= 2n(m− k) +M · | ∩Sj∈S(x∗) Sj | (7)

Similarly, the objective function value of MaxCasesAverted for the α-approximate

allocation x′ is 2n(m− k) +M · | ∩Sj∈S(x′) Sj |. Since x∗ maximizes the objective

function value of MaxCasesAverted, Equation (7) implies that | ∩Sj∈S(x∗) Sj | has

largest possible cardinality. Since |S(x∗)| = k, this implies that S(x∗) is an optimal

solution to the Max k-SI problem. Using OPTMax k-SI to denote the optimal objective

function value of Max k-SI, we can rewrite the expression (7) as

2n(m− k) +M ·OPTMax k-SI. Since x′ is an α-approximate solution to

October 4, 2024 13/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

MaxCasesAverted,

2n(m− k) +M · | ∩Sj∈S(x′) Sj | ≥ α (2n(m− k) +M ·OPTMax k-SI) .

Rearranging terms we get 253

| ∩Sj∈S(x′) Sj | ≥ α ·OPTMax k-SI −
(1− α) · 2n(m− k)

M

| ∩Sj∈S(x′) Sj | ≥ α ·OPTMax k-SI −
2nm

M
(8)

Picking M large enough so that 2nm
M ≤ α

2 and using OPTMax k-SI ≥ 1, we obtain

| ∩Sj∈S(x′) Sj | ≥
α

2
·OPTMax k-SI.

This implies that the allocation x′ can be used to obtain an α/2-approximation to Max 254

k-SI. 255

We now prove a similar lemma for the MaxPeaksReduced problem. 256

Lemma 6. Suppose there is a polynomial-time algorithm A that yields an 257

α-approximation for MaxPeaksReduced. Then there is a polynomial-time 258

α-approximation algorithm A′ for Max k-SI. 259

Proof of Lemma 6. This uses the same argument as the lemma above. Claims (i) and

(ii) hold for maxBurden(x | M, I) as well and from these two claims, Claim (iii)

follows. Furthermore,

maxBurden(0 | M, I)−maxBurden(x∗ | M, I)

simplifies exactly to expression (7), from which inequality (8) follows. From this, the 260

lemma immediately follows, as shown above. 261

Algorithmic approach and analysis 262

We consider a variety of greedy algorithms for MVA. These algorithms and their 263

accompanying analyses also apply to the general budget-constrained maximization 264

problem on an integer lattice: max∥x∥1≤D g(x), where g : ZK
+ → R is an arbitrary, 265

October 4, 2024 14/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

monotone function defined on an integer lattice. We start by defining the 266

LatticeGreedySubroutine, whose search space is the entire lattice ZK
+ in each 267

iteration. This subroutine forms the basis for two greedy algorithms ℓ-EnumGreedy 268

and SingletonGreedy [20] (detailed below). Algorithms based on 269

LatticeGreedySubroutine are prohibitively expensive for large problem instances, 270

so we also consider FastGreedy [25], which is a relaxation of 271

LatticeGreedySubroutine, based on a threshold greedy algorithm [33]. In addition, 272

we evaluate and further analyze an approach which considers the lattice as a multiset 273

and runs the greedy algorithm for set functions over it, which we call UnitGreedy 274

(Algorithm 3). In this section, we describe each algorithm we evaluate and their 275

associated approximation guarantees, some of which we derive. 276

Greedy algorithm descriptions 277

LatticeGreedySubroutine Description As shown in the Algorithm 1 pseudocode, 278

LatticeGreedySubroutine selects a (k∗, s∗) pair that maximizes the marginal gain 279

of g(·) in each iteration, where k∗ ∈ [K] is a subpopulation and s∗ ∈ Z+ is the number 280

of bundles to allocate to subpopulation k∗. To compute the highest marginal gain 281

among all possible (k, s) ∈ [K]× Z+ pairs in each iteration of the algorithm, we assume 282

that the algorithm has access to a “value oracle” that returns the value of the objective 283

function g(·) at any point in its domain. It is possible that the selected pair (k∗, s∗) is 284

not feasible because adding it to the solution causes the budget constraint to be 285

violated. Such an iteration is said to have failed, and we remove the (k∗, s∗) pair from 286

the search space Q. Otherwise, the iteration is successful and the (k∗, s∗) pair is used to 287

update the allocation. It is useful for our analysis to state the algorithm in this manner, 288

allowing for failed iterations. However, to obtain an efficient implementation we can, in 289

Line 4, prune the search space Q so as to guarantee that the condition in Line 5 is 290

always satisfied. Such an implementation runs in O(K ·D2 · Tg) time in the worst case, 291

where Tg is the worst case running time of the value oracle. However, the at most K ·D 292

pairs in Q can all be evaluated in parallel, and assuming full parallelism with no 293

overhead, the running time of LatticeGreedySubroutine can also be reduced to 294

O(D · Tg · log(K ·D)) in the PRAM model (even with exclusive read and exclusive 295

October 4, 2024 15/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

write). We note that LatticeGreedySubroutine and the algorithms based on it 296

come from [20]. 297

We further allow LatticeGreedySubroutine to start with an arbitrary initial 298

allocation x̂0, and not just 0 (see Line 1). This is so that we can use 299

LatticeGreedySubroutine as the completion step for an algorithm that enumerates 300

solutions of bounded size. Specifically, let ℓ ≥ 1 be a fixed integer and let S be the set 301

of all feasible solutions of size ℓ or less. Thus each element in S is a subset of at most ℓ 302

subpopulations, each allocated some number of vaccine bundles so that the overall 303

allocation is of size at most D. Note that |S| = O(Kℓ ·Dℓ). We then iterate over all 304

elements of S and call LatticeGreedySubroutine with x̂0 set to each element in S. 305

We call this entire algorithm ℓ-EnumGreedy. Later in this section, we analyze 306

3-EnumGreedy. 307

While 3-EnumGreedy runs in polynomial time (specifically, O(K4 ·D5 · Tg) time), 308

it is expensive and not practical for large instances. A cheaper algorithm based on 309

LatticeGreedySubroutine computes one solution by starting 310

LatticeGreedySubroutine with 0 as the initial allocation and then computes K 311

additional “singleton” solutions by allocating the entire budget to each of the K 312

subpopulations. The final solution returned is the best of these K + 1 solutions. We call 313

this the SingletonGreedy algorithm. Note that the running time of 314

SingletonGreedy is dominated by LatticeGreedySubroutine. 315

Algorithm 1 LatticeGreedySubroutine (M, I, x̂0)

1: x̂← x̂0

2: Q := {(k, s) : k ∈ [K], 1 ≤ s ≤ ⌈nk

∆ ⌉ − x̂k}
3: while ∥x̂∥1 < D and Q ̸= ∅ do
4: k∗, s∗ ← argmax

(k,s)∈Q

g(x̂+s·ek|M,I)−g(x̂|M,I)
s

5: if ∥x̂+ s∗ · ek∗∥1 ≤ D then
6: x̂← x̂+ s∗ · ek∗

7: Q← Q \ {(k, s) : s+ x̂k > ⌈nk

∆ ⌉}
8: else
9: Remove (k∗, s∗) from Q

10: end if
11: end while
12:

13: return x̂

FastGreedy Description FastGreedy [25] is a relaxation of 316

October 4, 2024 16/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

LatticeGreedySubroutine that sets an initial threshold and adds the (k, s) pair 317

that provides the maximum benefit for each k ∈ [K] if that benefit exceeds the 318

threshold τf of that iteration. In each iteration, the threshold is relaxed for the next 319

round of allocations. κf determines the rate at which the threshold τf decreases, and 320

βf approaches the FastGreedy DR-submodularity ratio β∗
f [25], which upper-bounds 321

the DR-submodularity ratio. The rate at which βf approaches β∗
f is governed by the 322

parameter δf . εf establishes a lower bound on how small the marginal gain in each 323

iteration can be before the algorithm exits. 324

FastGreedy is a relaxation of LatticeGreedySubroutine in two ways: i) in 325

each iteration, FastGreedy allows allocation to multiple k ∈ [K], as long as their 326

benefit exceeds an iteration dependent threshold, and ii) determines the number of 327

bundles s through a binary search subroutine, where LatticeGreedySubroutine 328

exhaustively searches through each (k, s) pair. 329

Algorithm 2 FastGreedy (M, I, κf , δf , εf ∈ (0, 1))

1: X← 0,M ← max
k∈[K]

g(ek),m←M,m′ ←M/κf , βf ← 1

2: while m ≥Mεf/D do
3: m← max

k∈[K]
g(X+ ek)− g(X)

4: if m > κfm
′ then

5: βf ← βfδf
6: end if
7: m′ ← m
8: τf ← βfκfm
9: for k ∈ [K] do

10: ℓ← BinarySearchPivot(g,X, k,D, τf)
11: X← X+ ℓek
12: if ∥X∥1 = D then
13: return X
14: end if
15: end for
16: end while
17: return X

UnitGreedy Description On the problem instances we consider, in practice, 330

3-EnumGreedy, and SingletonGreedy elect to allocate one bundle at a time for a 331

majority of iterations. With this in mind, we consider another more efficient algorithm, 332

UnitGreedy. As shown in the Algorithm 3 pseudocode, UnitGreedy allocates one 333

vaccine bundle to a subpopulation k ∈ [K], each time selecting a subpopulation that 334

yields the highest marginal gain in the objective function - this is equivalent to 335

October 4, 2024 17/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

converting the lattice into a multiset and running a set greedy algorithm on it (such as 336

the one in [26]). The algorithm continues until the vaccine budget D is met. The 337

running time of this algorithm is O(K ·D · Tg). Note that the marginal gains for the 338

various bundles can be computed (Line 3 in Algorithm 3) in parallel in a 339

straightforward manner, and if we ignore overhead for parallelization, the running time 340

reduces to O(D · Tg). 341

Algorithm 3 UnitGreedy (M, I)

1: x̂← 0
2: while ∥x̂∥1 < D do
3: k∗ ← argmax

k∈[K]

g(x̂+ ek | M, I)− g(x̂ | M, I)

4: x̂← x̂+ ek∗

5: end while
6:

7: return x̂

Approximation guarantees 342

Lattice function submodularity ratios To analyze the greedy algorithms described 343

above, we utilize the notion of submodularity ratio defined in [24]. The submodularity 344

ratio of a function g is a quantity between 0 and 1 that is a measure of g’s “distance” to 345

submodularity. Since there are two distinct notions of submodularity for lattice 346

functions, as defined in the Background section, there are two associated notions of 347

submodularity ratios, which we now present. To simplify notation, we dropM and I 348

and simply use g(x) for our objective function. 349

Definition 7. DR-Submodularity Ratio. [24] The DR-submodularity ratio of a 350

function g : ZK
+ → R is defined as 351

β(g) = min
y≤x,k∈[K]

g(y + ek)− g(y)

g(x+ ek)− g(x)
(9)

In this definition (and in the next definition below) we designate 0
0 to be 1 and n

0 to 352

be ∞ for any positive integer n. From this definition it is clear that β(g) ≤ 1 because 353

x = y is included in the space that is being minimized over. Furthermore, this definition 354

along with the definition of DR-submodularity (Definition 1) implies that β(g) = 1 iff g 355

is DR-submodular. Thus, the “distance” 1− β(g) indicates how far the function g is 356

October 4, 2024 18/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

from being DR-submodular. Below we present a similar definition that captures the 357

notion of “distance” of a function g from being submodular. 358

Definition 8. Submodularity Ratio. [24] The submodularity ratio of a function 359

g : ZK
+ → R is defined as 360

α(g) = min
y≤x,k∈[K]:xk=yk

g(y + ek)− g(y)

g(x+ ek)− g(x)
(10)

Like β(g), the submodularity ratio α(g) also satisfies α(g) ≤ 1 and 1−α(g) indicates 361

how far the function g is from being submodular. Since submodularity is a weaker 362

notion than DR-submodularity, an arbitrary lattice function will be “closer” to 363

submodularity than DR-submodularity. Correspondingly, α(g) ≥ β(g). 364

We now present approximation guarantees for 3-EnumGreedy (Theorem 9a), 365

SingletonGreedy (Theorem 9b), and UnitGreedy (Theorem 10). The 366

approximation guarantee associated with FastGreedy can be found in [25]. 367

Guarantees for 3-EnumGreedy and SingletonGreedy Theorem 9 provides a 368

guarantee for 3-EnumGreedy and SingletonGreedy. Previously, [20] established 369

approximation guarantees for these algorithms over submodular objective functions, 370

whereas we establish them for more general objective functions. 371

Theorem 9. Let g : ZK
+ → R be an arbitrary monotone function. Let OPT denote the 372

optimal solution to the problem max∥x∥1≤D g(x). 373

(a) If x̂ is the solution returned by 3-EnumGreedy then

g(x̂) ≥ (1− e−α(g)) ·OPT

(b) If x̂ is the solution returned by SingletonGreedy then

g(x̂) ≥ α(g)

2
· (1− e−α(g)) ·OPT

The proof is included in the Supplementary Information. 374

Guarantee for UnitGreedy Here, we provide a version of the approximation 375

guarantee found in [26], which is dependent on the submodularity ratio for set 376

functions [23] and generalized curvature [26]. Their guarantee is applicable to 377

October 4, 2024 19/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

UnitGreedy when we consider the lattice over which we allocate to be a multiset. 378

Theorem 10. Let g : ZK
+ → R be an arbitrary monotone function. Let OPT denote the

optimal solution to the problem max∥x∥1≤D g(x). If x̂ is the solution returned by

UnitGreedy then

g(x̂) ≥ (1− e−β(g)) ·OPT

The above results show that the approximation guarantees shown in the 379

literature [20,28] for greedy algorithms when g is a submodular function (on sets or 380

lattices) are more general and apply to arbitrary monotone integer lattice functions. 381

Note that the theorems above also provide a trade-off between approximation-factor 382

and running time. UnitGreedy is the fastest algorithm, but this provides an 383

(1− e−β(g))-approximation, which is no better than the (1− e−α(g))-approximation 384

provided by the more expensive algorithm 3-EnumGreedy. 385

We remark that ℓ-EnumGreedy, SingletonGreedy, FastGreedy, and 386

UnitGreedy are well known algorithms for maximizing a submodular function over 387

sets or lattices subject to a cardinality constraint (e.g., [19, 20,25,26]). Our main 388

contribution here is to show that 3-EnumGreedy and SingletonGreedy provide 389

approximation guarantees even when the objective function is not submodular and 390

these guarantees degrade gracefully as the objective function becomes less submodular, 391

as measured by the submodularity ratio. We also derive a lattice function based 392

approximation guarantee for UnitGreedy, extending from the set function guarantee 393

provided in [26]. 394

Finally, we note that the POMS algorithm in [24] achieves a 395

max ((1− e−β(g)), α(g)/2 · (1− e−α(g))) -approximation. Our results show that simple, 396

well-known, and faster greedy algorithms achieve these same approximation factors. 397

Experiments 398

Next, we present a variety of experiments that collectively show that i) greedy methods 399

outperform various baseline vaccine allocation algorithms for both MaxCasesAverted 400

and MaxPeaksReduced objectives, ii) greedy methods are very close to optimal for 401

all instances for which this comparison was feasible, and iii) the greedy methods are 402

October 4, 2024 20/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

Algorithm Query
Complexity

Approximation
Factor

Prior
Work

3-EnumGreedy O(K4 ·D5) 1− e−α(g)

[this paper]
Analysis for lattice

submodular functions
[19,20]

SingletonGreedy O(K2 ·D2)
α(g)
2

(1− e−α(g))
[this paper]

FastGreedy

O((logδf (γd)

· logκf
(γd)

+ logκf
ε2/D)

·K logD)

1− e−κfβ∗γs − ε
[prior work]

Analysis for lattice
non-submodular functions

[25]

UnitGreedy O(K ·D)

1
αg

(1− e−αgγdk)

[prior work]

1− e−β(g)

[this paper]

Analysis for multiset
non-submodular functions

[26]

Table 2. Summary of greedy algorithms presented in this section. Details of
approximation factors for FastGreedy and UnitGreedy may be found in [26]
and [25], respectively.

considerably faster than POMS [24] (when requiring all algorithms to run until their 403

approximation factors can be guaranteed). We run our experiments at 3 different scales: 404

(i) small-scale experiments: New Hampshire (10 counties, population 1.4 million), (ii) 405

medium-scale experiments: Iowa (99 counties, population 3.2 million), and (iii) 406

large-scale experiments: Texas (254 counties, population 30.03 million). Our code and 407

processed data are part of the Supplementary Information. Experiments were run on 408

AMD EPYC 7763 CPUs with 2 TB RAM. 409

Baselines. Our baselines include natural vaccine allocation strategies such as 410

Population, Out-Mobility, In-Mobility, and Random, which assign vaccines to 411

each county proportional to the population, the total mobility originating in the county, 412

the total mobility terminating in the county, and uniformly at random respectively. We 413

also compare our approaches against POMS [24], which works by expanding a random 414

pareto-optimal frontier. 415

Data. Our experimental test-beds consist of simulated outbreaks over inter-county 416

mobility graphs for New Hampshire, Iowa and Texas constructed from two separate 417

sources: (i) FRED [30] (open source) is a census-based synthetic population contact 418

network, which includes high-resolution social, familial, demographic, and behavioral 419

details, and (ii) SafeGraph [31] (open source for academics) provides aggregated and 420

anonymized mobility data from mobile device GPS signals, which provides inferred 421

October 4, 2024 21/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

‘home’ locations and visits to places of interest (POIs). We derive state-level directed 422

mobility graphs from both data sources, where nodes correspond to counties and 423

directed weighted edges correspond to movement from the source county to the target 424

county. 425

The mobility graphs constructed using FRED and SafeGraph are similar for New 426

Hampshire and Iowa, except that the SafeGraph mobility graphs have a slightly higher 427

density. For Texas, the density of the FRED mobility graph is an order of magnitude 428

lower than that of SafeGraph. A description of the mobility graph construction and a 429

table of their properties can be found in the Supplementary Information. 430

Parameters We select values of λ (infectivity) at approximately 0.347 and 0.535 to 431

result in 20% and 70% of each population becoming infected without vaccination, 432

respectively. We conducted experiments with a wider range of λ values (in general, we 433

observed that problem instances with lower values of λ are more easily solved by more 434

vaccine allocation methods) and chose two values that represent significantly different 435

levels of infectivity. We performed experiments for New Hampshire, Iowa, and Texas, 436

with a vaccine budget of 10% through 60% of each state’s total population in 10% 437

increments. The parameters k, ni, and wij are instantiated according to the data when 438

we constructed the mobility graphs. The parameters ri scale the infectivity parameter λ 439

for each county, and is set in proportion to the population density of each county. We 440

set the initially infected vector I0 to be 1 for each county. The choice in I0 does not 441

make a difference in our setting due to the deterministic nature of our model and the 442

small diameter of our mobility graphs (at most 4). η and δ are set according to [34]. For 443

FastGreedy in New Hampshire and Iowa, we set κf = δf = 0.96, and in Texas, we set 444

κf = δf = 0.93. For all FastGreedy experiments, we set εf = 0. We run each 445

simulation for at least 200 timesteps and terminate the simulation when the disease dies 446

out. 447

Performance of greedy methods compared to baselines 448

In our first experiment, we compare the performance of greedy vaccine allocation 449

algorithms to baseline algorithms using both the FRED and SafeGraph mobility graphs, 450

for both the MaxCasesAverted and MaxPeaksReduced problems. For our 451

October 4, 2024 22/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

small-scale experiment (New Hampshire), we run all four greedy algorithms. For our 452

medium-scale experiment (Iowa), we drop our slowest greedy algorithm 453

3-EnumGreedy. For our large-scale experiment (Texas), we drop our slowest two 454

greedy algorithms 3-EnumGreedy and SingletonGreedy. For this comparison, we 455

always run POMS for the same amount of time as UnitGreedy. We seek to 456

demonstrate how close the performance of POMS gets to that of UnitGreedy in a 457

simple wall clock time based comparison. We repeat these experiments for six different 458

budgets (expressed as a percentage of the population of the state) for two different 459

values of λ. The results for a high infectivity value of λ are summarized in Fig 2, 3, and 460

4. The same experiments for lower infectivity parameter values can be found in the 461

Supplementary Information. 462

Fig 2. Percentage totBurden and percentage maxBurden reduced by all approaches
for λ = 0.5345 in New Hampshire for FRED (first column) and SafeGraph (second
column).

Fig 2 shows that, for our small-scale experiments, the baselines never outperform the 463

greedy methods. Population and POMS perform on-par with the greedy methods in 464

some instances, particularly in MaxPeaksReduced. We see the performance of 465

baselines relative to the greedy methods decline as the scale of our experiments become 466

October 4, 2024 23/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

Fig 3. Percentage totBurden and percentage maxBurden reduced by
UnitGreedy, SingletonGreedy, FastGreedy and baselines for λ = 0.535 in Iowa
for FRED (first column) and SafeGraph (second column).

larger. As observed in Fig 3, even for our medium-scale experiments, the greedy 467

algorithms outperform each baseline in several settings, while no baseline outperforms 468

the greedy methods. Fig 4 demonstrates that, for our large-scale experiment, 469

UnitGreedy and FastGreedy outperform the baselines by a wider margin than our 470

small and medium-scale experiments over the FRED dataset. This margin is more 471

narrow (with UnitGreedy and FastGreedy still in the lead) over the SafeGraph 472

mobility graph. For SafeGraph, UnitGreedy and FastGreedy perform on-par with 473

the same methods over the FRED data - the difference is primarily in the increased 474

performance of the baselines over SafeGraph. Similar results hold for a lower value of λ, 475

which we include in the Supplementary Information. UnitGreedy performs at least 476

on-per with the other greedy methods, all of which employ larger search spaces. In all 477

experiments, after the greedy methods, the Population heuristic performs well, 478

followed by POMS, other baselines, and finally Random. The relatively poor 479

performance of POMS could be attributed to the fact that it requires a long running 480

time to achieve its theoretical guarantee (see Performance-Time Trade-off). The 481

October 4, 2024 24/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

Fig 4. Percentage totBurden and percentage maxBurden reduced by
UnitGreedy, FastGreedy and baselines for λ = 0.525 in Texas for FRED (first
column) and SafeGraph (second column).

surprisingly good performance of the Population heuristic suggests that it might be a 482

good on-the-field strategy in the absence of mobility data for small problem instances. 483

UnitGreedy substantially outperforms Population and FastGreedy for our 484

large-scale experiment on Texas over FRED data, with totBurden reduced by up to 485

8% of the population, which translates to almost 2 million additional cases avoided. 486

Near-optimality of greedy algorithms 487

In this section, we demonstrate that in practice, the greedy algorithms we evaluate 488

return allocations whose objective function value is close to optimal for both 489

MaxCasesAverted and MaxPeaksReduced. Focusing on our small-scale 490

experiment (New Hampshire) using mobility derived from FRED data, we consider 4 491

problem instances for each of MaxCasesAverted and MaxPeaksReduced, obtained 492

by setting λ to 0.347 and 0.5345 and the budget D to 2 values (10% and 40% of the 493

population). For these problem instances we compute an optimal solution by exhaustive 494

search and compare the results to that of 3-EnumGreedy, SingletonGreedy, 495

October 4, 2024 25/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

UnitGreedy, and FastGreedy. 496

For each problem and problem instance, let OPT denote the objective function value 497

of an optimal solution. Table 3 shows the performance relative to OPT of problem 498

instances for 10% and 40% budgets, high and low infectivity, and both objective 499

functions for each greedy method. 500

NH (FRED)
10% Budget

Cases Averted Peaks Reduced

λ = 0.3475 λ = 0.5355 λ = 0.3475 λ = 0.5355

3-EnumGreedy 99.84% 98.53% 99.71% 96.33%

SingletonGreedy 79.02% 99.04% 99.71% 99.33%

FastGreedy 79.02% 95.29% 92.29% 95.21%

UnitGreedy 79.02% 99.04% 99.71% 96.33%

NH (FRED)
40% Budget

Cases Averted Peaks Reduced

λ = 0.3475 λ = 0.5355 λ = 0.3475 λ = 0.5355

3-EnumGreedy 100% 99.86% 100% 99.97%

SingletonGreedy 100% 99.86% 100% 99.97%

FastGreedy 100% 99.26% 100% 99.97%

UnitGreedy 100% 99.86% 100% 99.97%

Table 3. Approximation factors for each problem instance

Problem instances for the state of Iowa are much larger and it is not feasible to 501

compute OPT to make a direct comparison. To circumvent this problem, we first note 502

that it is possible to obtain improved versions of Theorems 9(a), 9(b), and 10 by 503

defining “per instance” versions of the DR-submodularity ratio and submodularity ratio. 504

To be specific, let x̂i denote the allocation after iteration i of UnitGreedy, let x∗ be 505

an optimal solution, and let y∗ = 0 ∨ (x∗ − x̂i). Define 506

β(g, x̂i) :=

∑K
j=1 g(y

∗
jej + x̂i)− g(x̂i)

g(y∗ + x̂i)− g(x̂i)
(11)

The numerator is the total marginal gain of independently increasing each individual 507

subpopulation’s allocation to the optimal allocation. The denominator is the marginal 508

gain of increasing x̂i to the optimal solution all at once. If g were submodular, it would 509

follow that β(g, x̂i) ≥ 1, but this guarantee does not hold for an arbitrary g(·). It is 510

possible to show that the bound stated in Theorem 10 holds for β(g, x̂), i.e., 511

g(x̂) ≥ (1− e−β(g,x̂)) ·OPT (more on this may be found in the Supplementary 512

Information). 513

October 4, 2024 26/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

Since we cannot calculate the optimal solution x∗ directly (and β(g, x̂i) depends on 514

x∗) we cannot calculate β(g, x̂i) directly either. Instead, we use a sampling method 515

(described in the Supplementary Information) to find an estimate of β(g, x̂i), which we 516

denote as β̂(g, x̂i). We calculate β̂(g, x̂i) 5000 times for each experiment to estimate 517

β(g, x̂i).Our key finding is that β̂(g, x̂) is very close to (or even larger than) 1 for most 518

of our experimental instances, implying that g might be close to being submodular in 519

practice. This suggests that the allocation g(x̂) ≥ (1− 1/e) ·OPT ≈ 0.63 ·OPT . 520

NH (FRED)
60% Budget

Cases Averted Peaks Reduced

λ = 0.3475 λ = 0.5355 λ = 0.3475 λ = 0.5355

3-EnumGreedy 1.03 1.01 1.74 1.02

SingletonGreedy 1.41 1.01 1.53 1.02

FastGreedy 1.04 1.01 1.05 1.01

UnitGreedy 1.51 1.02 2.66 1.12

IA (FRED)
60% Budget

Cases Averted Peaks Reduced

λ = 0.3475 λ = 0.5355 λ = 0.3475 λ = 0.5355

SingletonGreedy 1.02 1.01 1.06 1.01

FastGreedy 1.04 1.01 1.05 1.01

UnitGreedy 1.02 1.02 1.07 1.04

TX (FRED)
60% Budget

Cases Averted Peaks Reduced

λ = 0.3475 λ = 0.5355 λ = 0.3475 λ = 0.5355

FastGreedy 1.12 1.03 1.04 1.03

UnitGreedy 1.02 1.02 1.06 1.03

Table 4. Estimates of β(g, x̂) for each problem instance

Estimates for β(g, x̂) can be found in Table 4. These values indicate worst-case 521

approximation factors for performance on-par (and some exceeding) that of submodular 522

functions for our problem formulations and experimental settings. 523

Performance and running-time trade-offs 524

Here, we compare the performance and running time trade-offs for 3-EnumGreedy, 525

SingletonGreedy, FastGreedy, UnitGreedy and POMS. Let 526

cmax = max{ni | i ∈ [K]}. The approximation guarantee for POMS requires 527

T = 2ecmaxD
2K queries [24]; this makes POMS significantly more expensive to run 528

compared to the greedy methods. The term “query” refers to an evaluation of the 529

objective function g(·); here, that evaluation entails running a disease simulation 530

October 4, 2024 27/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

NH (FRED)
20% Budget

Queries Required Wall Clock Time

λ = 0.3475 λ = 0.5355 λ = 0.3475 λ = 0.5355

FastGreedy 1567 70 3.9 Minutes 7.4 Seconds

UnitGreedy 6.67 · 103 6.67 · 103 16.7 Minutes 7.6 Minutes

SingletonGreedy 6.43 · 105 7.57 · 105 1 Hour 37.1 Minutes

3-EnumGreedy 6.53 · 105 7.58 · 105 1 Hour 37.6 Minutes

POMS 3.63 · 1015 3.63 · 1015 ∼ 1.5 · 108 Years ∼ 1.2 · 108 Years

NH (FRED)
60% Budget

Queries Required Wall Clock Time

λ = 0.3475 λ = 0.5355 λ = 0.3475 λ = 0.5355

FastGreedy 4761 2025 7.7 Minutes 3.3 Minutes

UnitGreedy 2 · 104 2 · 104 33.2 Minutes 30 Minutes

SingletonGreedy 3.54 · 106 2.7 · 106 3.9 Hours 3.4 Hours

3-EnumGreedy 3.55 · 106 2.66 · 106 5.1 Hours 1.5 Hours

POMS 3.27 · 1016 3.27 · 1016 ∼ 1.1 · 109 Years ∼ 1.1 · 109 Years

Table 5. FastGreedy, UnitGreedy, SingletonGreedy, 3-EnumGreedy, and
POMS comparison with respect to practical running time (estimated for POMS) to
achieve approximation guarantee for New Hampshire with 20% and 60% budgets.

conditioned on a vaccine allocation. Compared to POMS, UnitGreedy requires 531

relatively fewer T = K ·D queries. In addition, UnitGreedy is much faster in practice 532

(by Wall Clock Time) than POMS since UnitGreedy is embarrassingly parallel, 533

whereas POMS is much more inherently sequential. These comparisons are presented in 534

Table 5, where we list required iterations and practical run time (extrapolated from 12 535

hours for POMS). 536

FastGreedy introduces an approximation guarantee parameterized by a value 537

which upper bounds the DR-submodularity ratio. Their input parameters can be 538

adjusted to determine the quality required of potential allocation in each iteration, 539

effectively trading performance for speed. When the input parameters to FastGreedy 540

are set so that the performance is maximized, the resulting approximation guarantee is 541

similar to that of UnitGreedy, 3-EnumGreedy, and SingletonGreedy. 542

Discussion 543

Through a combination of theoretical and experimental results, we have shown that 544

even though metapopulation model vaccine allocation problems are inapproximable in 545

the worst case, simple greedy algorithms can be both effective and scalable for these 546

problems. 547

October 4, 2024 28/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

We provide a possible theoretical explanation for the effectiveness of these greedy 548

algorithms by establishing worst case approximation guarantees in terms of the 549

submodularity ratios of the objective functions of these problems. Specifically, we 550

extend worst case approximation guarantees from the literature for lattice greedy 551

algorithms [20,25,26] to the non-submodular objective function setting. Our analysis 552

builds upon prior work on submodular set and lattice function 553

maximization [5, 10,19,20,28,33]. For specific instantiations of the metapopulation 554

model vaccine allocation problems (e.g., MaxCasesAverted, MaxPeaksReduced) 555

we provide some empirical evidence that the submodularity ratio of the objective 556

functions is high enough (i.e., close enough to 1) to imply that greedy algorithms yield 557

near-optimal solutions to these problems. 558

The effectiveness of the greedy algorithms we evaluate is maintained across small 559

(New Hampshire), medium (Iowa), and large (Texas) problem scales over two mobility 560

graphs constructed from FRED [30] and SafeGraph [35] data sources. In all problem 561

instances of MVA we evaluate, the greedy methods outperform the baselines, sometimes 562

by quite a significant margin. This difference in performance is typically greatest for a 563

high λ (infectivity) value, vaccinating 30% to 50% of the total state’s population for 564

each problem scale. We also demonstrate that the greedy algorithms achieve an 565

approximation factor of over 0.79 for a 10% budget, and an approximation factor of over 566

0.99 with a 40% budget for both MaxCasesAverted and MaxPeaksReduced 567

problem instances over New Hampshire. Our submodularity ratio estimates for each 568

problem scale approximation guarantees at least match those of submodular objective 569

function maximization. 570

We observe the performance of the greedy methods are on-par with each other for 571

the Texas FRED and SafeGraph mobility graphs, but the performance of the baselines 572

over the FRED mobility graph are much lower. Because of this, we conjecture that the 573

MVA problem over sparse mobility graphs is harder to solve and we cannot depend on 574

the baselines. Across all experiments, we observe that the MVA problem instances with 575

a lower infectivity value λ - infecting approximately 20% of the population - are 576

generally easier to achieve good performance on for all methods. 577

Moreover, we have parallelized our algorithms to enhance scalability, making the 578

fastest of them take hours to run for the state of Texas. The ability to parallelize the 579

October 4, 2024 29/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

computation allows us to manage the computational demands of large states, ensuring 580

that our methods remain feasible even in high-dimensional datasets. The query 581

complexities for each greedy algorithm (shown in Table 2) further contributes to the 582

feasibility and speed of the fastest two greedy algorithms we present, UnitGreedy and 583

FastGreedy. In addition, it is quite natural to speed up greedy methods by not 584

looking for a locally optimal update in each iteration, but an approximately optimal 585

update, which is a main principle behind the threshold approach of FastGreedy. 586

These features of the greedy methods present a computational advantage with respect 587

to scalability over algorithms such as POMS, introduced in [24]. 588

Despite these contributions, several limitations remain. Our current model is 589

relatively simple and deterministic, assuming homogeneous mixing within populations, 590

which may not capture the complexities of real-world disease spread. Future work could 591

incorporate more sophisticated models, such as agent-based simulations within 592

subpopulations, to better reflect heterogeneous contact patterns. Additionally, the 593

inferred mobility data we use is based on limited sources and does not fully reflect 594

real-world movement patterns, particularly in rural or less structured areas. Expanding 595

to include more comprehensive mobility data, such as transportation networks, would 596

improve accuracy. We also assume preemptive vaccine allocation, which may not be 597

practical in many real-world settings. Addressing non-preemptive vaccine allocation and 598

exploring faster, more scalable algorithms, such as sketch-based methods [25,36], are 599

promising directions for future research. For this paper, we ran experiments on 600

individual states in isolation without taking physical border effects into account, where 601

in real-world settings, the influence of areas (especially urban) across a state border 602

could have significant impact on vaccine allocation decisions. Additionally, deriving 603

confidence bounds for the estimated submodularity ratios would enhance the robustness 604

of our theoretical guarantees. 605

Supporting information 606

S1 Fig. Iowa and New Hampshire mobility graphs derived from FRED data. 607

We overlay mobility graphs over maps of Iowa and New Hampshire, where the size of 608

each node is proportional to the population size of the subpopulation in which it is 609

October 4, 2024 30/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

centered. Likewise, the width of each edge e ∈ Eij is proportional to its weight wij 610

(number of individuals commuting from subpopulation i to subpopulation j). 611

S2 Fig. Percentage MaxCasesAverted and percentage MaxPeaksReduced for 612

all approaches in New Hampshire under low infectivity. Most methods are able 613

to save all individuals across all budgets for this small problem instance, with Random 614

being the lowest performing method. 615

S3 Fig. Percentage MaxCasesAverted and percentage MaxPeaksReduced for 616

UnitGreedy, SingletonGreedy, FastGreedy and baselines in Iowa under low 617

infectivity. The effectiveness of the greedy methods is largely unchanged from that of 618

the small problem instances (New Hampshire), but the baseline methods begin to 619

decrease in performance. 620

S4 Fig. Percentage MaxCasesAverted and percentage MaxPeaksReduced for 621

UnitGreedy, FastGreedy and baselines in Texas under low infectivity. For the 622

SafeGraph mobility graph, all methods are able to save most individuals for all budgets, 623

unlike for the FRED mobility graph, where the performance decreases for smaller 624

budgets. 625

S1 Text. Contains Supplementary Information sections A-D, detailing model 626

derivation, approximation guarantee proofs, descriptions of mobility graph construction, 627

parameters, additional experiments, and related work (PDF). 628

S1 Table. Comparison of FRED and SafeGraph mobility graph properties. 629

Contains properties of the mobility graphs constructed from FRED and SafeGraph data 630

in New Hampshire, Iowa, and Texas. 631

S2 Table. System specifications for experiments. Contains information on the 632

CPU type, memory, and storage where we run experiments. 633

Acknowledgments 634

The authors acknowledge feedback from members of the Computational Epidemiology 635

research group at the University of Iowa and the CDC MInD-Healthcare group. 636

October 4, 2024 31/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

Author Contributions 637

Conceptualization: Jeffrey Keithley, Bijaya Adhikari, Sriram Pemmaraju. 638

Data Curation: Jeffrey Keithley, Akash Choudhuri. 639

Formal Analysis: Jeffrey Keithley, Bijaya Adhikari, Sriram Pemmaraju. 640

Funding Acquisition: Bijaya Adhikari, Sriram Pemmaraju. 641

Investigation: Jeffrey Keithley, Akash Choudhuri. 642

Methodology: Jeffrey Keithley, Akash Choudhuri, Bijaya Adhikari, Sriram 643

Pemmaraju. 644

Project Administration: Bijaya Adhikari, Sriram Pemmaraju 645

Resources: Bijaya Adhikari, Sriram Pemmaraju. 646

Software: Jeffrey Keithley, Akash Choudhuri. 647

Supervision: Bijaya Adhikari, Sriram Pemmaraju. 648

Validation: Jeffrey Keithley, Sriram Pemmaraju 649

Visualization: Jeffrey Keithley, Bijaya Adhikari. 650

Writing – Original Draft: Jeffrey Keithley, Akash Choudhuri, Bijaya Adhikari, 651

Sriram Pemmaraju. 652

Writing – Review & Editing: Jeffrey Keithley, Akash Choudhuri, Bijaya Adhikari, 653

Sriram Pemmaraju. 654

References

1. Srivastava V, Priyadarshini S. Vaccine Shortage Dents India’s Coronavirus Adult

Immunisation Drive. Nature India. 2021;.

2. Liu K, Lou Y. Optimizing COVID-19 Vaccination Programs during Vaccine

Shortages. Infectious Disease Modelling. 2022;7(1):286–98.

3. Matrajt L, Longini IM. Optimizing Vaccine Allocation at Different Points in

Time during an Epidemic. PLOS ONE. 2010;5(11).

4. Mylius SD, Hagenaars TJ, Lugnér AK, Wallinga J. Optimal Allocation of

Pandemic Influenza Vaccine Depends on Age, Risk and Timing. Vaccine.

2008;26(29):3742–49.

October 4, 2024 32/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

5. Kitagawa T, Wang G. Who Should Get Vaccinated? Individualized Allocation of

Vaccines over SIR Network. Journal of Econometrics. 2023;232(1):109–31.

6. Lemaitre J, Pasetto D, Zanon M, Bertuzzo E, Mari L, Miccoli S, et al. Optimal

Control of the Spatial Allocation of COVID-19 Vaccines: Italy as a Case Study.

PLOS Computational Biology. 2022;18(7).

7. Medlock J, Galvani A. Optimizing Influenza Vaccine Distribution. Science.

2009;325(5948):1705–8.

8. Zhang Y, Adiga A, Saha S, Vullikanti A, Prakash BA. Near-Optimal Algorithms

for Controlling Propagation at Group Scale on Networks. IEEE Transactions on

Knowledge and Data Engineering. 2016;28(12):3339–52.

9. Sambaturu P, Adhikari B, Prakash BA, Venkatramanan S, Vullikanti A.

Designing Effective and Practical Interventions to Contain Epidemics. In:

International Conference on Autonomous Agents and MultiAgent Systems.

International Foundation for Autonomous Agents and Multiagent Systems; 2020.

p. 1187–95.

10. Zhang Y, Prakash BA. Data-aware vaccine allocation over large networks. ACM

Transactions on Knowledge Discovery from Data (TKDD). 2015;10(2):1–32.

11. Grenfell B, Harwood J. (Meta)Population Dynamics of Infectious Diseases.

Trends in Ecology & Evolution. 1997;12(10):395–99.

12. Calvetti D, Hoover A, Rosea J, Somersalo E. Metapopulation Network Models

for Understanding, Predicting, and Managing the Coronavirus Disease COVID-19.

Frontiers in Physics. 2020;8(261).

13. Fisher ML, Nemhauser GL, Wolsey LA. An analysis of approximations for

maximizing submodular set functions—II. Springer; 1978.

14. Edmonds J. Submodular functions, matroids, and certain polyhedra. In:

Combinatorial Optimization—Eureka, You Shrink! Papers Dedicated to Jack

Edmonds 5th International Workshop Aussois, France, March 5–9, 2001 Revised

Papers. Springer; 2003. p. 11–26.

October 4, 2024 33/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

15. Iwata S. Submodular function minimization. Mathematical Programming.

2008;112:45–64.

16. Krause A, Golovin D. Submodular function maximization. Tractability.

2014;3(71-104):3.

17. Iyer RK, Bilmes JA. Submodular optimization with submodular cover and

submodular knapsack constraints. Advances in neural information processing

systems. 2013;26.

18. Svitkina Z, Fleischer L. Submodular approximation: Sampling-based algorithms

and lower bounds. SIAM Journal on Computing. 2011;40(6):1715–1737.

19. Alon N, Gamzu I, Tennenholtz M. Optimizing budget allocation among channels

and influencers. In: Mille A, Gandon F, Misselis J, Rabinovich M, Staab S,

editors. Proceedings of the 21st World Wide Web Conference 2012, WWW 2012,

Lyon, France, April 16-20, 2012. ACM; 2012. p. 381–388. Available from:

https://doi.org/10.1145/2187836.2187888.

20. Soma T, Kakimura N, Inaba K, Kawarabayashi K. Optimal Budget Allocation:

Theoretical Guarantee and Efficient Algorithm. In: Proceedings of the 31st

International Conference on Machine Learning. PMLR; 2014. p. 351–59.

21. Soma T, Yoshida Y. A Generalization of Submodular Cover via the Diminishing

Return Property on the Integer Lattice. In: Advances in Neural Information

Processing Systems. vol. 28; 2015.

22. Zhang H, Vorobeychik Y. Submodular optimization with routing constraints. In:

Proceedings of the AAAI conference on artificial intelligence. vol. 30; 2016.

23. Das A, Kempe D. Approximate Submodularity and Its Applications: Subset

Selection, Sparse Approximation and Dictionary Selection. Journal of Machine

Learning Research. 2018;19(3):1–34.

24. Qian C, Zhang Y, Tang K, Yao X. On Multiset Selection With Size Constraints.

Proceedings of the AAAI Conference on Artificial Intelligence. 2018;32(1).

October 4, 2024 34/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1145/2187836.2187888
https://doi.org/10.1101/2024.10.12.24315394

25. Kuhnle A, Smith D, Crawford V, Thai M. Fast Maximization of

Non-Submodular, Monotonic Functions on the Integer Lattice. In: Proceedings of

the 35th International Conference on Machine Learning; 2018. p. 2786–95.

26. Bian AA, Buhmann JM, Krause A, Tschiatschek S. Guarantees for Greedy

Maximization of Non-Submodular Functions with Applications. In: Proceedings

of the 34th International Conference on Machine Learning; 2017. p. 498–507.

27. Kermack W, McKendrick A. A Contribution to the Mathematical Theory of

Epidemics. Proceedings of the Royal Society of London. 1927;15(772):700–721.

28. Nemhauser G, Wolsey L, Fisher M. An Analysis of Approximations for

Maximizing Submodular Set Functions–I. Mathematical Programming.

1978;14(1):265–94.

29. Feige U. A Threshold of Ln n for Approximating Set Cover. Journal of the ACM.

1998;45(4):634–52.

30. Grefenstette J, Brown S, Rosenfeld R, Depasse J, Stone N, Cooley P, et al.

FRED (A Framework for Reconstructing Epidemic Dynamics): An Open-Source

Software System for Modeling Infectious Diseases and Control Strategies Using

Census-Based Populations. BMC Public Health. 2013;13(1):940.

31. Safegraph. Places data curated for Accurate Geospatial Analytics; 2022.

https://www.safegraph.com/.

32. Xavier EC. A Note on a Maximum K-Subset Intersection Problem. Inf Process

Lett. 2012;112(12):471–472. doi:10.1016/j.ipl.2012.03.007.

33. Badanidiyuru A, Vondrák J. Fast Algorithms for Maximizing Submodular

Functions. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium

on Discrete Algorithms; 2014. p. 1497–1514.

34. Sen P, Kandula S, Shaman J. Differential Effects of Intervention Timing on

COVID-19 Spread in the United States. Science Advances. 2020;6(49).

35. SafeGraph. Places Data Curated for Accurate Geospatial Analytics; 2023.

https://safegraph.com.

October 4, 2024 35/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://www.safegraph.com/
https://safegraph.com
https://doi.org/10.1101/2024.10.12.24315394

36. Cohen E, Delling D, Pajor T, Wernack RF. Sketch-Based Influence Maximization

and Computation: Scaling up with Guarantees. In: Proceedings of the 23rd ACM

International Conference on Conference on Information and Knowledge

Management; 2014. p. 629–38.

October 4, 2024 36/36

for use under a CC0 license.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.12.24315394doi: medRxiv preprint

https://doi.org/10.1101/2024.10.12.24315394

