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Abstract 

Objective: This study investigates the potential advantages of hyperbolic convolutional neural networks (HCNNs) 

over traditional convolutional neural networks (CNNs) in neuroimaging tasks. 

Materials and Methods: We conducted a comparative analysis of HCNNs and CNNs across various medical 

imaging modalities and diseases, with a focus on a compiled multi-modality neuroimaging dataset. The models were 

assessed for performance parity, robustness to adversarial attacks, semantic organization of embedding spaces, and 

generalizability. Zero-shot evaluations were also performed with ischemic stroke non-contrast CT images. 

Results: HCNNs matched CNN performance on less complex settings and demonstrated superior semantic 

organization, and robustness to adversarial attacks. While HCNNs equaled CNNs in out-of-sample datasets 

identifying Alzheimer's disease, in zero-shot evaluations, HCNNs outperformed CNNs and radiologists. 

Discussion:  HCNNs deliver enhanced robustness and organization in the neuroimaging data. This likely underlies 

why while HCNNs perform similarly to CNNs with respect to in-sample tasks, they confer improved 

generalizability. Nevertheless, HCNNs encounter efficiency and performance challenges with larger, complex 

datasets. These limitations underline the need for further optimization of HCNN architectures. 

Conclusion: HCNNs present promising improvements in generalizability and resilience for medical imaging 

applications, particularly in neuroimaging. Despite challenges with larger datasets, HCNNs enhance performance 

under adversarial conditions and offer better semantic organization, suggesting valuable potential in generalizable 

deep learning models in medical imaging and neuroimaging diagnostics. 

Keywords: Hyperbolic Neural Networks, Euclidean, Convolutional Neural Networks, Lorentz, Neuroimaging, 

Medical Imaging, Generalizability, Adversarial Robustness, Hierarchical Data Structures 
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Background and Significance: 

 

Advances in computational power have facilitated the expansion of predictive deep learning models in many fields. 

While deep learning models are idealized as universal approximators, not all tasks are not equally appropriate for all 

neural network architectures; such that, misalignment may result in subpar empirical task performance.1 One notable 

instance of this may involve data structures with inherent hierarchical structure.2 Tree-like or hierarchical data 

structures have been shown to be represented with superior fidelity with less distortion in hyperbolic space as 

compared to Euclidian space.3 Specifically, the hyperbolic manifold allows for exponential scaling from the radial 

axis which mirrors the distance relationships found in hierarchical structures and accordingly, prevents distortion 

and information loss.4  

 

There has been notable effort to utilize the superior data representation observed in hyperbolic spaces with deep 

learning algorithms. Over the last few years, many have attempted to operationalize constructs of hyperbolic space 

in a computationally efficient manner with the goal of reconstructing the fundamental functionality of neural 

network operations consistent with hyperbolic space.2 Thus, Hyperbolic Neural Networks (HNNs) were developed 

as an alternative to standard Euclidean neural networks.5 While most papers explore densely connected HNNs, there 

have been efforts to use alternative neural network architectures. For instance, Khrulkov et al developed a hybrid 

HNN that was applied to image datasets by utilizing a traditional Euclidean convolution structure and connected 

layer prior to mapping the resulting embeddings into hyperbolic space and conducting a multi-class logistic 

regression.6 Khrulkov et al showed superior performance to analogous Euclidean models in certain datasets 

(Caltech-UCSD Birds, DukeMTMC-reID dataset) as well as in few-shots classification. 6 They also showed that 

HNNs provided more intuitive organization of the classes in the embedding space likely explaining their improved 

out-of-sample and out-of-distribution performance.6  

 

Given issues with numerical stability during training, most literature has moved to make HNNs more numerically 

stable.7,8,9 Guo et al proposed a clipping mechanism that would bound the embedding space so coerce numerically 

stabilize during training.9 These clipped HNNs were found to outperform standard HNNs on various benchmarks, 

including CIFAR10, CIFAR100, and ImageNet, and demonstrated better adversarial robustness and out-of-
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distribution detection.9 Unlike unclipped HNNs, clipped HNNs achieved performance on par with ENNs in data 

settings without natural tree structures. The use of the Lorentz model of hyperbolics spaces, which has different 

mathematical constructions for the computational operations of the neural network as compared to the Poincaré ball 

model, has also been proven to reduce numerical instability.8,10 Finally, there have also been efforts to translate 

common Euclidian convolutional neural network operations into hyperbolic space where the fully hyperbolic 

convolutional neural networks (HCNN) could be contained to hyperbolic space in an end-to-end fashion.11 This 

prevents the need for mapping between Euclidean and hyperbolic spaces so to limit numerical instability. 

 

Nevertheless, the literature remains uncertain in the fully exploring the value of HNNs. The original seminal paper 

in hyperbolic imaging embeddings suggests that most imaging datasets have some degree of implicit hierarchical 

structure.6 Other studies found poor performance in settings without any natural hierarchical structures as compared 

to Euclidean counterparts until Guo et al suggested that clipped HNNs achieved similar performance in certain 

settings.9 In totality, there is a clear need to further robust evaluation of HCNNs in various domains to weight the 

possible benefits and limitation of these evolving models. 

 

One field of application includes medical imaging where the successful application of computer vision algorithms 

has been keenly appreciated.12 To our knowledge, only one study has been performed utilizing HNNs for 

classification of medical imaging data. Utilizing Khrulkov et. al’s hybrid paradigm, Yu et al introduces a hyperbolic 

prototype network capable of jointly learning image embeddings and class prototypes in a shared hyperbolic space, 

guided by an error construction mechanism derived from a prior known class hierarchy.13 Their approach preserved 

the semantic class relationships of dermatoscope images in the hyperbolic embedding space and found superior 

performance in classification as compared to analogous Euclidean approaches, though with lower space curvature 

hyperparameters.13  

 

Given the success of present day convolutional neural networks in imaging recognition tasks, there has been a 

greater interest in developing models with both wide spanning capabilities across a variety of tasks or classes; and 

those durable to a variety of clinical settings where models may encounter rare patient morphologies or imperfect 

images.14–17 We explore the value of HCNNs by evaluating the performance of clipped HCNNs relative to their 
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Euclidean counterparts in neuroimaging settings as well as other multi-modality medical imaging databases. 

Agnostic to any prior data hierarchy, we conduct an evaluation of in sample performance across three medical 

imaging datasets of varying complexity. We evaluate the neuroimaging models not only in their respective 

classification performance but also in their organization of embedding spaces, durability to adversarial attacks, and 

out-of-sample as well as zero-shot generalizability.  
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Materials and Methods:  

 

Data Sources:  

We develop a core neuro-imaging dataset to evaluate the HCNN and CNN models: Multi-Modality Neuroimaging 

(MMN) Dataset composed of 72,634 images of 42 total classes. The images were acquired from previously open-

source databases which included various neurological diseases including ischemic stroke18, hemorrhagic stroke19, 

metastasis20, tumor21, schizophrenia (COBRE, MCICShare)22, and Alzheimer’s disease (AD) 23 across computed 

tomography (CT) and Magnetic Resonance Imaging (MRI) modalities. Images not from a peer-reviewed source, 

were independently confirmed to be correctly classified according to a qualified radiologist.  

 

Certain classes in the neuroimaging dataset were manually composed due to either overlapping classes or, 

occasionally, to better capture disease signals. Specifically, the “normal” categories are composed from multiple 

appropriate non-diseased classes in the datasets above. For instance, patients in the schizophrenia databases defined 

as “normal” patients was moved into the respective normal classes once we excluded the possibility of them joining 

another diseased class in the database. Schizophrenia positive scans were restricted to four of the median axial scans 

for each patients to better capture morphological abnormalities commonly conferred by patients with schizophrenia. 

31 

 

We also constructed two additional datasets of other medical imaging types to conduct further analyses in larger and 

smaller class settings: Miniature Multi-Disease Dataset (MMD), and Multi-Disease Dataset (MD). The MD is 

composed of 89,496 images of 78 total classes. These images were acquired from previously published open-source 

databases which include Chest X-Rays24, Fundoscopy25, Gastrointestinal Scopes26, Musculoskeletal X-Rays27, 

Neuroimaging and Dermatoscopy.28–30 Finally, the MMD was restricted to a smaller subset of the MMD with a total 

of 19,880 unique images across 16 total classes. The classes and their respective imaging data can be observed in 

Table 1.  

 

Out-of-sample data were acquired from the T-1 MRI sequences of the OASIS-1 cross-sectional cohort imaging 

study32. We derived one mid-brain axial slice from each patient in the study and defined an AD positive case as an 
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individual with a Mini-Mental State Examination (MMSE) score of below 25 and negative otherwise. In total, this 

dataset entailed a total of 436 subjects where 40 subjects were AD positive and 396 were AD negative. The zero-

shot dataset was acquired from the Mass General Brigham (MGB) Research Patient Data Registry (RPDR) with 

MGB Institutional Review Board approval. We retrospectively selected individuals from January 2004 to December 

2022 who received Non-Contrast Computed Tomography (NCCT) brain scan upon presenting to the emergency 

department. We further restricted ourselves to those diagnosed with acute ischemic strokes on Magnetic Resonance 

Imaging (MRI) brain scans within 7 days of their original presentation to the emergency department. We include the 

full axial scans of the 151 patients for a total of 23,371 images. We also document the radiologist reports and their 

ability to correctly able to diagnose the ischemic stroke on NCCT. We label the axial images as positive if they 

included regions implicated by the positive MRI reads for that patient where all other images are deemed negative 

for that patient.  

 

Processing and Models:  

All training data underwent uniform pre-processing transformations prior to their use in the model including 

normalization, rotation, and horizontal flip. Furthermore, to homogenize the diverse presentation of brain imaging 

data, we conducted skull-stripping when appropriate. For all the models in this study, we utilize a Res-Net-18 

(RN18) backbone where we define the baseline Euclidean CNNs as the RN18. The HCNN models are constructed 

as hybrid models with an identical convolution structure as the CNN. However, the HCNN model acquires the 

subsequent embeddings and translates them into the Lorentz space with an exponent mapping procedure where the 

remaining dense layers of the RN18 backbone reside. Other features of our hybrid HCNN construct include trainable 

curvature, feature-clipping9, and Euclidean reparameterizations10 which are documented by the Bdeir et al33 code 

base we utilize for our study.  

 

Evaluation:   

To examine the performance of each model in the respective dataset, we reproduce cross-entropy loss, top-1 

accuracy, and top-5 accuracy. Utilizing the average embedding position of each class we construct a low 

dimensional representation using T-SNE algorithms with the Euclidean and Lorentz models, respectively. We also 
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utilize hierarchical clustering procedures with the average class embedding positions for each model which allow us 

to derive a dendrogram of the inter-class relationships learned by the respective models.  

 

To examine the interpretability of the embedding space, we compare the geodesic distance matrices of average class 

embeddings from the respective Euclidean and Euclidean-Lorentz models to a ground truth hierarchical distance 

matrix. We derive the ground truth distance matrix based on the sets of categorical variables as descriptors of the 

imaging category and disease type (refer to Appendix). We first normalize all distance matrices and compute the 

absolute pairwise difference between the model distance matrix and the ground truth distance matrix. We also derive 

the Spearman's rank correlation coefficient between the respective model and ground truth distances matrices based 

on the ranked distance of the pairwise classes.  

 

To evaluate out-of-sample accuracy, we utilize a single median axial slice in each OASIS-1 subject and consider a 

positive diagnosis as one that ascribes an AD-related class to the scan and a negative diagnosis as a normal T1 MRI 

predicted class. Next, we evaluate zero-shot accuracy by defining a true positive diagnosis read as having an axial 

NCCT image predicted as an ischemic or hemorrhagic stroke class by the model where the ground truth was 

positive. At a patient level, we identify accuracy as a patient having at least one true positive. We define a true 

negative as a normal CT class. Then we identify overall image-based accuracy as the number of true positives and 

true negatives over the overall number of images. Finally, we conduct a Projected Gradient Descent (PGD) 

adversarial attack to assess the comparative durability of each model to more extreme distortions in data. Note that 

all 95% confidence intervals are derived from a respective bootstrapping procedure (n=1000). 
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Table 1: Dataset Characteristics 
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Miniature Multi-Disease: Classes Images 
Multi-Modality Neuroimaging: Classes 

Images 
Multi-Disease Dataset: Classes 

Images 

Derm:  Actinic Keratosis 867 
AD Moderate MRI T1 

896 Derm:  Actinic Keratosis 867 

Derm:  Basal Cell Carcinoma 3323 
AD Severe MRI 

64 Pulm:  Bacterial Pneumonia 2780 

Derm:  Benign Keratosis 2624 
AD Mild MRI T1 

2240 Derm:  Basal Cell Carcinoma 3323 

Derm:  Dermatofibroma 239 
Hemorrhagic Stroke Epidural CT Bone 

167 Derm:  Benign Keratosis 2624 

Derm:  Melanoma 4522 
Hemorrhagic Stroke Intraparenchymal CT Bone 

52 Derm:  Dermatofibroma 239 

Derm:  Melanocytic Nevi 12875 
Hemorrhagic Stroke Intraventricular CT Bone 

13 Neuro:  Epidural Hemmorhagic Stroke CT Bone  167 

Derm:  Squamous Cell Carcinoma 628 
Hemorrhagic Stroke Subarachnoid CT Bone 

9 Neuro:  Intraparenchymal Hemmorhagic Stroke CT Bone 52 

Derm:  Vascular Lesion 253 
Hemorrhagic Stroke Subdural CT Bone 

52 Neuro:  Subdural Hemmorhagic Stroke CT Bone 52 

Gastro:  Dyed Lifted Polyps 1000 
Hemorrhagic Stroke Epidural CT Brain 

167 Neuro:  Epidural Hemmorhagic Stroke CT Brain 167 

Gastro:  Dyed Resection Margins 1000 
Hemorrhagic Stroke Intraparenchymal CT Brain 

52 Neuro:  Intraparenchymal Hemmorhagic Stroke CT Brain 52 

Gasto:  Esophagitis 1000 
Hemorrhagic Stroke Intraventricular CT Brain 

13 Neuro:  Subdural Hemmorhagic Stroke CT Brain 52 

Optho:  Normal Fundus 2873 
Hemorrhagic Stroke Subarachnoid CT Brain 

9 Neuro:  Ischemic Stroke DWI 1012 

Gastro:  Normal Cecum 1000 
Hemorrhagic Stroke Subdural CT Brain 

52 Neuro:  Ischemic Stroke Flair 1002 

Gastro:  Normal Pylorus 1000 
Ischemic Stroke MRI DWI 

1012 Derm:  Melanoma 4522 

Gasto:  Normal Z-Line 1000 
Ischemic Stroke MRI Flair 

1002 Neuro:  Metastasis Flair  4248 

Gastro:  Polyps 1000 
Metastasis MRI Flair 

4248 Neuro:  Metastasis T1 4248 

Metastasis MRI T1C 
4248 Neuro:  Metastasis T1C+ 4248 

Metastasis MRI T1 
4248 Pulm:  Normal CXR 1583 

Normal CT Bone 
1495 Derm:  Melanocytic Nevi 12875 

Normal CT Brain 
1494 Neuro:  Normal CT Bone 1495 

Normal MRI DWI 
1406 Neuro:  Normal CT Brain 1494 

Normal MRI Flair 
14949 Neuro:  Normal DWI 1406 

Normal MRI T1 
17925 Neuro:  Normal_Flair 4949 

Normal MRI T1C+ 
13941 Neuro:  Normal T1 7925 

Normal MRI T2 
18 Neuro:  Normal T1C+ 3941 

Schizophrenia MRI DWI 
471 Neuro:  Normal T2 18 

Schizophrenia MRI T1 
1314 Derm:  Squamous Cell Carcinoma 628 

Glioma MRI T1C+ 
152 Neuro:  Schizophrenia DWI 471 

Meningioma MRI T1C+ 
233 Neuro:  Schizophrenia T1 1314 

Neurocitoma MRI T1C+ 
76 Neuro:  Glioma T1 152 

Other Lesions MRI T1C+ 
9 Neuro:  Meningioma T1 233 

Schwannoma MRI T1C+ 
36 Neuro:  Neurocitoma T1 76 

Glioma MRI T1 
65 Neuro:  Schwannoma T1  36 

Meningioma MRI T1 
141 Neuro:  Glioma T1C+ 65 

Neurocitoma MRI T1 
39 Neuro:  Meningioma T1C+ 141 

Other Lesions MRI T1 
27 Neuro:  Neurocitoma T1C+ 39 

Schwannoma MRI T1 
31 Neuro:  Schwannoma T1C+ 31 

Glioma MRI T2 
9 Neuro:  Glioma T2 67 

Meningioma MRI T2 
67 Neuro:  Meningioma T2 145 

Neurocitoma MRI T2 
145 Neuro:  Schwannoma T2 33 
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Other Lesions MRI T2 
14 Derm:  Vascular Lesion 253 

Schwannoma MRI T2 
33 Pulm:  Viral Pneumonia 1493 

Optho:  Branch Retinal Vein Occlusion 19 

Optho:  Cataract 287 

Optho:  Diabetic Retinopathy 53 

Optho:  Drusen 148 

Optho:  Dry Age-Related Macular Degeneration 202 

Gastro:  Dyed Lifted Polyps 1000 

Gastro:  Dyed Resection Margins 1000 

Optho:  Epiretinal Membrane 140 

Gasto:  Esophagitis 1000 

Optho:  Glaucoma 213 

MSK:  Hand Normal 877 

MSK:  Hand Fractured 379 

MSK:  Hand Shoulder Normal 180 

MSK:  Hand Shoulder Fractured 53 

MSK:  Hip Normal 169 

MSK:  Hip Fractured 13 

Optho:  Hypertensive Retinopathy 123 

Optho:  Macular Epiretinal Membrane 140 

Optho:  Maculopathy 23 

Optho:  Mild Nonproliferative Retinopathy 464 

Optho:  Moderate Non-Proliferative Retinopathy 798 

Optho:  Myelinated Nerve Fibers 68 

Optho:  Normal Fundus 2873 

Gastro:  Normal Cecum 1000 

Gastro:  Normal Pylorus 1000 

Gasto:  Normal Z-Line 1000 

Optho:  Pathological Myopia 231 

Gastro:  Polyps 1000 

Optho:  Refractive Media Opacity 54 

Optho:  Severe Nonproliferative Retinopathy 144 

Gastro:  Ulcerative Colitis 1000 

Optho:  Vitreous Degeneration 58 

Optho:  Wet Age-Related Macular Degeneration 41 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 14, 2024. ; https://doi.org/10.1101/2024.10.12.24315391doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.12.24315391


Results:  

The performance of the Euclidean model was generally matched by the Euclidean-Lorentz model in the MMN and 

the MMD datasets with minimal differences in Top-1 accuracy and identical Top-5 accuracy (Table 2). More 

broadly, however, the Euclidean model generally began to outperform the Euclidean-Lorentz model as the number 

of images and class size of the dataset increased; this is most prominent in the MD dataset (Figure 1). Interpreting 

the low-dimensional T-SNE representation of the average embedding class as well as the respective dendrogram, the 

Euclidean-Lorentz model appears to have a more reasonable distribution of the embedding space based on prior 

understanding of the inter-relationships between the imaging classes in the MMN (Figures 2 and 3). 

 

When compared to the known ground truth distance matrix, the distinction between the two models becomes more 

apparent. The mean absolute difference between the respective Euclidean and Euclidean-Lorentz models compared 

to the ground truth distance matrix for the MMN dataset was highest in the Euclidean model (0.290 ± 0.005). In 

contrast, the mean absolute difference in the Euclidean-Lorentz model was significantly lower (0.158 ± 0.003), with 

a two-sample t-test p-value of < 0.0001. Spearman's rank correlation findings show that the Euclidean model 

exhibited a weak correlation with the ground truth ranking (correlation coefficient = 0.021, p = 0.3783), while the 

Euclidean-Lorentz model showed a stronger correlation (correlation coefficient = 0.328, p < 0.0001). These results 

indicate that the Euclidean-Lorentz model not only has a lower mean absolute difference compared to the ground 

truth but also demonstrates a stronger correlation to the ground-truth class ranks. 

 

Compared to the radiologist's performance, which identified 82 of the 151 patients (0.53), the Euclidean model 

performed worse, identifying only 62 stroke patients (0.41), while the Euclidean-Lorentz model outperformed by 

identifying 94 (0.62). Across all images, the Euclidean-Lorentz model achieved a higher overall accuracy (0.50) 

than the Euclidean model (0.45) (Figure 4). 

 

In the out-of-sample dataset, both models were able to correctly identify the modality of the axial images with a 

100% identification rate. The Euclidean-Lorentz model and the Euclidean model achieved a Top-1 accuracy of 0.54 

(95% CI: 0.44, 0.64) and 0.55 (95% CI: 0.45, 0.65), respectively, suggesting statistically indistinguishable 

performance in this out-of-sample dataset. Within the NCCT ischemic stroke dataset, the negative cases were 
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technically a class already observed by the models, so we used this as an additional out-of-sample experiment where 

the models were tasked with correctly identifying negative NCCT slices as normal CT images. The Euclidean model 

achieved an accuracy among the negative axial NCCT images of 0.81 (95% CI: 0.81 - 0.82), which was statistically 

comparable to the Euclidean-Lorentz model, which reached an accuracy of 0.82 (95% CI: 0.82 - 0.83). 

 

Interestingly, the PGD adversarial attack analysis suggests that the Euclidean-Lorentz model often outperforms its 

Euclidean counterpart in the larger MMN and MD datasets with respect to Top-1 and Top-5 accuracy metrics 

(Table 3). The performance becomes more similar across the two models in the smaller MMD dataset. 
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Table 2: Model Characteristics and Performance  
 

Dataset 
Class 
Size Sample Size Model Type 

Trainable 
Parameters 

Cross Entropy 
Loss 

Top 1 
Accuracy  

Top 1 Accuracy: 95% 
Confidence Intervals 

Top 5 
Accuracy  

MMN 42 72,634 Euclidean ResNet 18 11,189,226 0.05 97.4 97.3 - 97.5 99.9 

MMN 42 72,634 
Euclidean-Lorentz ResNet 

18  
11,189,227 0.12 96.2 96.1 - 96.4 99.9 

MD 75 89,496 Euclidean ResNet 18 11,207,307 0.26 90.8 90.6 - 91.0 99.6 

MD 75 89,496 
Euclidean-Lorentz ResNet 

18  
11,207,308 0.47 85.6 85.4 - 85.9 99.0 

MMD 16 19,880 Euclidean ResNet 18 11,177,040 0.11 97.3 97.1 - 97.4 99.9 

MMD 16 19,880 
Euclidean-Lorentz ResNet 

18  
11,177,041 0.11 97.0 96.8 - 97.1 99.9 
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Figure 1: Relative Model Performance Across Datasets 
 
 
 
 
 

  

The bar plot above shows the top-1 accuracy metrics with 95% confidence intervals for the Euclidea
ResNet 18 and the Euclidean-Lorentz ResNet 18 across the three datasets increasing in size from lef
right (i.e., Miniature Multi-Disease (MDD) Dataset, Multi-Modality Neuroimaging (MMN) Dataset
Multi-Disease (MD) Dataset).  

 

dean 
left to 
set, and 
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Figure 2: Euclidean and Hyperbolic Models T-SNE in the Neuroimaging Dataset  
  

A B

The figure shows the low dimensional representation T-SNE of the average class embedding space from 
the Euclidean ResNet 18 (A) and the Euclidean-Lorentz ResNet 18 (B) in the Multi-Modality 
Neuroimaging (MMN) Dataset 
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Figure 3: Euclidean and Hyperbolic Models Dendrograms in the Neuroimaging Dataset 
 
 

 
  

A B

The figure illustrates the hierarchical clustering dendrogram of the average class embedding space of the 
Euclidean ResNet 18 (A) and the Euclidean-Lorentz ResNet 18 (B) in the Multi-Modality Neuroimaging 
(MMN) Dataset 
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Table 3: Projected Gradient Descent Adversarial Attack  
 

Dataset Model Type Epsilon Top 1 
Accuracy  

Top 5 
Accuracy  

MMN Euclidean ResNet 18 0.003 6.50 53.12 
MMN Euclidean-Lorentz ResNet 18  0.003 45.72 91.15 
MMN Euclidean ResNet 18 0.006 0.08 6.55 
MMN Euclidean-Lorentz ResNet 18  0.006 4.87 41.91 
MMN Euclidean ResNet 18 0.012 0.00 2.81 
MMN Euclidean-Lorentz ResNet 18  0.012 0.52 18.37 
MD Euclidean ResNet 18 0.003 3.78 56.38 
MD Euclidean-Lorentz ResNet 18  0.003 12.47 69.74 
MD Euclidean ResNet 18 0.006 0.02 14.55 
MD Euclidean-Lorentz ResNet 18  0.006 2.64 38.03 
MD Euclidean ResNet 18 0.012 0.01 3.50 
MD Euclidean-Lorentz ResNet 18  0.012 0.17 23.16 
MMD Euclidean ResNet 18 0.003 13.48 74.63 
MMD Euclidean-Lorentz ResNet 18  0.003 13.93 48.04 
MMD Euclidean ResNet 18 0.006 1.29 33.55 
MMD Euclidean-Lorentz ResNet 18  0.006 2.22 28.92 
MMD Euclidean ResNet 18 0.012 0.01 16.05 
MMD Euclidean-Lorentz ResNet 18  0.012 0.27 23.95 
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Figure 4: Zero-Shot Identification of Stroke Patients 
 

 
  

The diagram above shows the how many of the zero-shot stroke patients were able to be identified acr
in the Euclidean and Euclidean-Lorentz models as well as by human radiologists with their emergent 
non-contrast brain CT imaging. We also note that 26 patients were not identified in any of the three 
approaches.  

across 
nt 
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Discussion: 

Our empirical analysis study elucidates several important insights into the comparative performance of clipped 

Euclidean-Lorentz HCNNs and Euclidean CNNs in neuroimaging tasks as well as other medical imaging settings. 

The results suggest parity in performance between the two neural network approaches in smaller, less complex 

datasets. We further note distinct semantic organization within the respective embedding spaces, where the HCNN 

aligned better with ground truth relations between the neuroimaging classes. In assessing generalizability, the 

HCNN achieved similar out-of-sample performance in identifying AD and normal NCCT images but greatly 

improved zero-shot performance in identifying ischemic stroke on NCCT. 

 

The cross-entropy loss and top-1 accuracy metrics followed a similar trend across the three medical imaging 

datasets. Notably, these metrics were identical or similar in datasets where the CNN achieved higher performance 

(>95% accuracy). However, as the complexity and size of the datasets grew larger, there was a precipitous drop in 

HCNN performance compared to the CNN. Interestingly, despite the difference in loss in the MMN dataset, the top-

1 accuracy between the two models was more similar, unlike in the MD dataset. In both settings of performance 

parity and disparity, the top-5 accuracy metric across the two models was nearly identical in all three datasets, 

perhaps due to the improved generalizability of HCNNs, which we explore further. 

 

Achieving parity replicates the findings from Guo et al., which demonstrate that clipped HCNNs achieve similar 

performance in data settings without strong hierarchy.9 Nevertheless, we illustrate that the performance of the 

HCNN suffers compared to the CNN when applied to larger datasets with seemingly more difficult tasks. Given the 

similarity in model size across the three datasets, our findings may suggest that the HCNNs, as currently 

constructed, are less efficient with their trainable parameters, contrary to prior literature.5  

 

One of the known features of HCNNs is the improved preservation of hierarchical data structures, as reflected by the 

organized embedding space.2,6 Low-dimensional T-SNE representations of the embedding space suggest a 

stratification of classes in the MMN dataset, often by modality first and then disease type, in both models. 

Similarities in class grouping may be starker in the Euclidean-Lorentz model, as observed in the hierarchical 

clustering dendrogram from the embedding space.  
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Nevertheless, the noted limitations of low-dimensional representations may offer a distorted view of the true 

geodesic distances between the average class embeddings.34 To explore whether the two models developed 

meaningfully distinct organizations of embedding space in a more robust fashion, we derived a respective geodesic 

distance matrix for the average class embedding in both MMN models. We then compared the pairwise distance 

matrix from each model against a constructed ground truth difference matrix between the classes. Using the pairwise 

distance differences as well as the Spearman's rank correlation coefficient, we show that the HCNN, and not the 

CNN, better aligned with our known semantic understanding of the class relationships. 

 

While we observe superior learning and conservation of known class structures in neuroimaging data, we further 

explored the tangible value of this distinguishing feature. One of the more important aspects of any diagnostic 

medical imaging algorithm is its ability to function with out-of-sample and out-of-distribution imaging data.35 We 

specifically find that the MMN HCNN performed similarly to the CNN in the OASIS I and stroke-negative NCCT 

datasets, despite poorer HCNN performance in top-1 accuracy and loss in the MMN dataset. 

 

We also find that in zero-shot performance, the HCNN unequivocally outperforms not only the CNN but also the 

trained radiologists by a significant margin. Finally, the HCNN has shown consistently increased durability to 

adversarial attacks, which may be relevant when confronted with imaging artifacts, image quality disparities 

between scanners, or image corruption that may or may not be perceptible.36,37 As suggested by prior studies in non-

medical imaging settings6,8,9, we show that the neuroimaging HCNN has improved generalizability with respect to 

out-of-sample, zero-shot, and adversarial attack performance. 

 

Our study should be interpreted with certain limitations. While recent studies have attempted to move convolutional 

functions into hyperbolic space,11,33 we observed significant numerical instability with these methods. Moreover, the 

computational efficiency of HCNNs was dramatically lower, with convergence requiring three to four times more 

epochs with similar hyperparameters on larger datasets, limiting our ability to use datasets larger than those in this 

study. We tested task complexity and size concurrently across the three datasets, but future work should explore 

scalability and complexity further. Additionally, we are restricted to speculating on the performance of clipped 
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hybrid HCNNs in the context of our included medical imaging classes and can only speak to generalizability in 

terms of the out-of-sample and zero-shot datasets used. 
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Conclusion:  

In this study, we show that agnostic HCNN models demonstrated superior ability to learn and retain the native 

hierarchical structure in the neuroimaging dataset compared to Euclidean CNNs. Importantly, the HCNN achieved 

disproportionately superior performance in adversarial attack experiments and zero-shot settings, outperforming 

both radiologists and CNNs. The neuroimaging HCNN also achieved parity in in-sample performance with out-of-

sample data but showed depreciating performance in more complex medical imaging task settings with larger 

datasets. These findings suggest that improvements in the efficiency and scalability of HCNNs are needed to achieve 

parity with CNNs. However, HCNNs provided notable value in their generalizability in medical imaging settings 

with multi-modal and multi-disease neuroimaging data.  
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Appendix 
I. Neuroimaging Class Table Characteristics Tables 

Multi-Modality Neuroimaging: Classes Modality General Modality Specific Disease State Disease Specific 

AD Moderate MRI T1 mri t1 diffuse ad 

AD Severe MRI mri t1 diffuse ad 

AD Mild MRI T1 mri t1 diffuse ad 

Hemorrhagic Stroke Epidural CT Bone ct ctbo lesion hemm 
Hemorrhagic Stroke Intraparenchymal CT 
Bone ct ctbo lesion hemm 
Hemorrhagic Stroke Intraventricular CT 
Bone ct ctbo lesion hemm 

Hemorrhagic Stroke Subarachnoid CT Bone ct ctbo lesion hemm 

Hemorrhagic Stroke Subdural CT Bone ct ctbo lesion hemm 

Hemorrhagic Stroke Epidural CT Brain ct ctbr lesion hemm 
Hemorrhagic Stroke Intraparenchymal CT 
Brain ct ctbr lesion hemm 
Hemorrhagic Stroke Intraventricular CT 
Brain ct ctbr lesion hemm 

Hemorrhagic Stroke Subarachnoid CT Brain ct ctbr lesion hemm 

Hemorrhagic Stroke Subdural CT Brain ct ctbr lesion hemm 

Ischemic Stroke MRI DWI mri dwi lesion isch 

Ischemic Stroke MRI Flair mri flair lesion isch 

Metastasis MRI Flair mri flair lesion met 

Metastasis MRI T1C mri t1c lesion met 

Metastasis MRI T1 mri t1 lesion met 

Normal CT Bone ct ctbo normal normal 

Normal CT Brain ct ctbr normal normal 

Normal MRI DWI mri dwi normal normal 

Normal MRI Flair mri flair normal normal 

Normal MRI T1 mri t1 normal normal 

Normal MRI T1C+ mri t1c normal normal 

Normal MRI T2 mri t2 normal normal 

Schizophrenia MRI DWI mri dwi diffuse schiz 

Schizophrenia MRI T1 mri t1 diffuse schiz 

Glioma MRI T1C+ mri t1c lesion tumor 

Meningioma MRI T1C+ mri t1c lesion tumor 

Neurocitoma MRI T1C+ mri t1c lesion tumor 

Other Lesions MRI T1C+ mri t1c lesion lesion 

Schwannoma MRI T1C+ mri t1c lesion tumor 

Glioma MRI T1 mri t1 lesion tumor 

Meningioma MRI T1 mri t1 lesion tumor 

Neurocitoma MRI T1 mri t1 lesion tumor 
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Other Lesions MRI T1 mri t1 lesion tumor 

Schwannoma MRI T1 mri t1 lesion tumor 

Glioma MRI T2 mri t2 lesion tumor 

Meningioma MRI T2 mri t2 lesion tumor 

Neurocitoma MRI T2 mri t2 lesion tumor 

Other Lesions MRI T2 mri t2 lesion lesion 

Schwannoma MRI T2 mri t2 lesion tumor 

 
† T1 MRI and T1 Contrast Enhanced MRI were designated a 0.5-unit difference. T2 MRI, DWI MRI, and Flair MRI 
were designated a 0.5-unit difference. All other difference between a class value was designated as a one-unit 
difference. 
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II. Average Class Embedding Space Distance Heat Map 
  

A B

The figure illustrates the hierarchical clustering dendrogram of the average class embedding space of the 
Euclidean ResNet 18 (A) and the Euclidean-Lorentz ResNet 18 (B) in the Multi-Modality Neuroimaging 
(MMN) Dataset. The dendrogram is accompanies by a heatmap where the darker voxels represent a 
closer distance between the respective classes.  
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III. Hierarchical Dendrograms in the Other Disease Datasets   
  

A B

The figure illustrates the hierarchical clustering dendrogram of the average class embedding space of the 
Euclidean ResNet 18 (A) and the Euclidean-Lorentz ResNet 18 (B) in the Miniature Multi-Disease 
(MMD) Dataset.  
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A B

The figure illustrates the hierarchical clustering dendrogram of the average class embedding space of the 
Euclidean ResNet 18 (A) and the Euclidean-Lorentz ResNet 18 (B) in the Multi-Disease (MD) Dataset.  
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