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40 Abstract

41

42 Background: Low birth weight (LBW) is a critical factor linked to neonatal morbidity 

43 and mortality. Early prediction is essential for timely interventions. This study aimed to 

44 develop and evaluate predictive models for LBW using machine learning algorithms, 

45 including Random Forest, XGBoost, Catboost, and LightGBM.

46 Methods: Machine learning algorithms (Random Forest, XGBoost, Catboost, and 

47 LightGBM) were trained and evaluated using cross-validation and the SMOTE technique 

48 to correct class imbalance. Model performance was measured using the AUROC metric, 

49 and variable importance was analyzed with Shapley values to ensure model 

50 interpretability.

51 Results: The XGBoost model achieved the best performance with an AUROC of 0.94. 

52 Catboost and Random Forest also showed excellent results, confirming the effectiveness 

53 of these models in predicting LBW.

54 Conclusion: Machine learning, combined with SMOTE, proved to be an effective 

55 approach for predicting LBW. XGBoost stood out as the most accurate model, but 

56 Catboost and Random Forest also provided solid results. These models can be applied to 

57 identify high-risk pregnancies, improving perinatal outcomes through early interventions.

58

59 Keywords: Low birth weight, machine learning, XGBoost, Random Forest, Araraquara 

60 cohort.
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80 Introduction 

81 Birth weight is one of the primary determinants of newborn survival chances [1,2]. Low 

82 birth weight (LBW), defined as the birth of a baby weighing less than 2,500 grams, is a 

83 significant public health challenge associated with increased risk of infant mortality, 

84 neonatal morbidity, and chronic diseases in childhood and adulthood [3]. Several factors 

85 are considered in evaluating birth quality, including maternal nutritional status, prenatal 

86 care, and sociodemographic characteristics (BACCARAT DE GODOY MARTINS et al., 

87 2016).

88 Recently, there has been an increase in LBW prevalence, predisposing children to 

89 respiratory diseases, growth retardation, heart conditions, and diabetes mellitus 

90 (MOREIRA; SOUSA; SARNO, 2018). LBW can result from preterm birth or inadequate 

91 fetal growth, often described as "small for gestational age" (SGA) to distinguish between 

92 immature infants and those with insufficient prenatal growth [6]. Intrauterine growth 

93 composition can influence the risk of cardiometabolic diseases in newborns, affecting 

94 both small and large for gestational age infants. The compensation of intrauterine growth 

95 through postnatal recovery or reduction may result in adverse outcomes (GÄTJENS et 

96 al., 2022). Various factors are identified as predictors of fetal growth, including 

97 intrauterine growth retardation, unfavorable socioeconomic conditions, inadequate 

98 prenatal care, low maternal education, maternal nutritional status, marital status, 

99 ethnicity/race, maternal weight, adolescent or advanced maternal age, urinary infections, 

100 and complications such as preeclampsia and bleeding during pregnancy (CHRISTINE et 

101 al., 2016; MOREIRA; SOUSA; SARNO, 2018).

102 In maternal and child health, artificial intelligence (AI), including machine learning (ML) 

103 algorithms, has been applied for outcome prediction and monitoring in perinatal health, 

104 offering new approaches for predictive modeling, diagnosis, early detection, and 

105 monitoring in perinatal health [8]. Machine learning is a subfield of AI aimed at extracting 

106 knowledge from large amounts of data, where algorithms are trained from previous 

107 examples [9]. This field has been on the rise in recent years due to the exponential increase 

108 in structured and unstructured data, also known as Big Data (BD), making ML approaches 

109 increasingly important in data analysis as traditional methods often rely on unrealistic 

110 assumptions [10,11].

111 In the context of maternal and child health, mobile health (mHealth) emerges as a 

112 promising AI application, particularly useful in prenatal care in low-resource settings 

113 [12]. The application of these algorithms can enhance the precision and reliability of 
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114 predictions, contributing to early prevention and intervention strategies for fetal growth 

115 issues.

116 The goal of this study is to develop a predictive model for low birth weight (LBW) in 

117 pregnant women using machine learning algorithms. By applying these algorithms, we 

118 aim to improve the accuracy of predictions, thus enabling more effective strategies to 

119 address fetal growth problems early.

120

121 Methods

122 This study is based on an empirical and quantitative application. Secondary data were 

123 analyzed from a longitudinal population-based cohort study conducted in Araraquara, São 

124 Paulo, Brazil, titled "Araraquara Cohort" [13]. The sample included women with a 

125 gestational age of ≤19 weeks who received prenatal care at Basic Health Units in 

126 Araraquara, São Paulo, Brazil. The pregnant women were followed quarterly throughout 

127 their pregnancy until the birth of their children between 2017 and 2022. Women with twin 

128 pregnancies and those who experienced miscarriage were excluded. In cases of fetal and 

129 stillbirth, only data from the pregnancy were considered.

130 The outcome of low birth weight was analyzed based on the dichotomous classification 

131 of birth weight, defined as low birth weight: < 2500 g and normal weight: ≥ 2500 g. The 

132 predictor variables are illustrated in Table 1.

133 The study was approved by the Research Ethics Committee with Human Subjects at the 

134 School of Public Health, University of São Paulo, prior to data collection, under protocol 

135 number CAEE: 59787216.2.0000.5421, opinion number 1.885.874. All participants 

136 signed the Informed Consent Form before participating. The participants were informed 

137 about the objectives of the study, the associated risks, and benefits, ensuring that their 

138 participation was entirely voluntary.

139

140 Table 1. Description of model variables
Variable Description Category
Maternal Age Age of the mother at the time of 

pregnancy.
In years

Marital Status Mother's marital status. Married; Stable union; Single, widow, or separated

Maternal 
Education (in 
years)

Mother's completed years of 
education.

None; 1-7; 8-11; 12 or more

Race/Color Mother's ethnicity or color. White; Black; Asian; Mixed; Indigenous
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Nutritional Status Physical evaluation of the 
pregnant woman.

Anthropometry: BMI (kg/m²): Underweight, 
Normal, Overweight, Obesity; Arm circumference 
(cm): Underweight (< 23 cm), Normal (25-28 cm), 
Overweight or Obese (≥ 28 cm); Body fat 
percentage

Household Data Information about the gestational 
home.

Number of household members per room (terciles)

Previous 
Pregnancies

Number of previous pregnancies. 0; 1; ≥ 2

Lifestyle Pregnant woman's lifestyle habits. Physical activity; Smoking; Alcohol consumption

Morbidity Pre-existing medical conditions. Diabetes; Hypertension; Urinary tract infection; 
Cervicitis/Vaginitis

Other Relevant 
Predictors

Other relevant information. Gestational age at birth; Glycemic profile: Fasting 
glucose (mg/dL), Insulin (µIU/mL), HOMA 
(µIU/mL), Glycated hemoglobin (%); C-reactive 
protein (ng/mL); Hemoglobin (g/dL); Lipid profile: 
Total cholesterol, LDL-c, HDL-c, and triglycerides 
(mg/dL)

141
142
143 Model Design

144 As shown in Figure 1, regarding the fetal growth outcome (LBW), different model 

145 specifications were tested to evaluate whether changes in strategy improved model 

146 performance. Models for the outcome were estimated independently, without information 

147 sharing between them. Before discussing the models, quantitative variables were 

148 normalized using the z-score separately for the training and test sets. All qualitative 

149 variables were treated through one-hot encoding, where each category was separately 

150 considered for this procedure. Additionally, pregnant women were excluded due to 

151 missing information, and variables with missing data below 20% were imputed by the 

152 mean.

153 In this study, four different machine learning algorithms were tested: Catboost [14], 

154 Xgboost (CHEN e GUESTRIN, 2016), Lightgbm [16] and Random Forest. For Catboost, 

155 XGBoost, and LightGBM, the Python packages were used. For the remaining algorithms, 

156 the scikit-learn library was employed [17].Recent studies indicate that boosting 

157 algorithms represent the state-of-the-art for tabular data. They have shown high 

158 performance across a wide range of tasks, including classification (BORISOV et al., 

159 2022; SHWARTZ-ZIV e ARMON, 2022).

160 The training set was conducted through 10-fold cross-validation using the Bayesian 

161 optimization strategy and RandomSearch to evaluate the performance of a machine 
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162 learning model efficiently (BERGSTRA e YAMINS; COX, 2013). In cases of significant 

163 class imbalance, where the minority class represents less than 25% of the total outcomes, 

164 the Synthetic Minority Over-sampling Technique (SMOTE) was applied. Additionally, 

165 the Boruta method was employed for feature selection (KURSA e RUDNICKI, 2010). 

166 The best-performing models in the training set (80% of the data) were selected for 

167 evaluation in the test set (20%). The evaluation of ML algorithms was conducted in the 

168 test set using metrics such as area under the ROC curve (AUC-ROC), Matthews 

169 correlation coefficient (MCC), precision, recall, positive predictive value, negative 

170 predictive value, and F1-score. Additionally, the performance of the algorithms in the top 

171 20% of high-risk patients (20% k-tops) was assessed using metrics such as true positive, 

172 false positive, precision, and recall. All analyses followed the Transparent Reporting of a 

173 multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) 

174 guidelines [22].  The code developed for constructing the algorithms along with the 

175 original dataset, is available on Github https://github.com/Audency/Predictors-of-Low-

176 Birth-Weight-using-Machine-Laerning-.git.  This study was approved by the Research 

177 Ethics Committee of the School of Public Health, University of São Paulo (USP), prior 

178 to data collection, under CAEE number 59787216.2.0000.5421, opinion number 

179 1.885.874. All participants provided informed consent, consistent with the principles 

180 outlined in the Helsinki Declaration.

181
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182
183 Figure 1. An example of the workflow diagram for classifying birth weight adequacy.

184

185

186 Results

187 Maternal Characteristics

188 According to Table 2, the maternal characteristics of 1,579 pregnant women from the 

189 Araraquara cohort were evaluated. The women had an average age of 28.4 years, a height 

190 of 162 cm, a pre-pregnancy body mass index (BMI) of 24.7 kg/m², and a gestational age 

191 of 39.3 weeks. Most women (88.4%) had an education level equal to or greater than 8 

192 years, 53.7% were non-white, and 87.7% were married or in a stable relationship, with 

193 most having a family income of R$563 and being non-smokers. Only 5.0% of the women 

194 had diabetes, and 7.0% had hypertension. A total of 11.3% of the women had a urinary 

195 tract infection during pregnancy. CRP (C-reactive protein) levels were 3.3 mg/L 

196 (interquartile range: 1.4–7.8), and HOMA (homeostasis model assessment) values were 

197 2.9 units (interquartile range: 1.3–6.1). Figure 2 shows the distribution of low birth weight 

198 in the Araraquara cohort, where 1,309 (91.2%) had normal birth weight, and 126 (8.8%) 

199 had low birth weight.
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200
201 Table 2. Maternal characteristics of pregnant women in the Araraquara Cohort, Brazil 
202 (2021-2023)
203

Variable N (%)
Age (years)

< 20 154 (9.7)
20 to 35 1,185 (74.9)

> 35 244 (15.4)
Height (cm)

< 153 534 (33.7)
153-165 566 (35.8)

> 165 483 (30.5)
Pre-pregnancy BMI (kg/m²)

Underweight 64 (4.0)
Normal weight 1,084 (68.5)

Overweight 450 (28.4)
Obesity 48 (3.2)

Arm circumference (cm)
< 23 674 (42.6)
≥ 23 919 (57.4)

Gestational age (weeks) 39.3 (38.5–40.3)
Maternal Education (years)

≤ 8 184 (11.6)
> 8 1,395 (88.4)

Number of people per room
≤ 1 536 (33.9)
> 1 1,043 (66.1)

Family income (R$)
< 937 311 (32.5)

937–1,866 563 (34.6)
> 1,866 666 (33.0)
Race

Non-white 724 (46.3)
White 833 (53.7)

Marital Status
Single 135 (9.3)

Married or in a stable relationship 1,359 (87.7)
Separated, divorced, or widowed 198 (12.7)

Smoking
No 1,434 (91.7)
Yes 123 (7.9)

Alcohol Consumption
No 1,235 (79.5)
Yes 319 (20.5)

Diabetes
No 1,479 (95.0)
Yes 78 (5.0)

Hypertension
No 1,445 (93.7)
Yes 108 (7.0)

Urinary Tract Infection
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No 1,378 (88.7)
Yes 175 (11.3)

Candidiasis/Vaginitis
No 1,445 (91.9)
Yes 108 (6.8)

Number of previous births
0 764 (53.7)

≥ 1 655 (43.9)
CRP (mg/L) 3.3 (1.4–7.8)

HOMA (units) 2.9 (1.3–6.1)
Glycated Hemoglobin (%) 5.1 (4.7–5.6)
Fasting Glucose (mg/dL) 74.3 (67.3–81.6)

Cholesterol (mg/dL) 195 (168–224)
LDL (mg/dL) 104 (86–123)
HDL (mg/dL) 57 (47–68)

Triglycerides (mg/dL) 94 (65–143)
204 Note: Data are presented as mean and interquartile range (25th percentile - 75th percentile) or number (percentage). Abbreviations: 
205 BMI, Body Mass Index; LDL, Low-Density Lipoprotein; HDL, High-Density Lipoprotein; CRP, C-reactive Protein; HOMA, 
206 Homeostasis Model Assessment of Insulin Resistance.

207
208 Figure 2. Distribution of LBW

209 Results

210 Performance of Machine Learning Models

211 In this study, we evaluated the predictive capacity of various machine learning models, 

212 including Random Forest, XGBoost, LightGBM, and Catboost, to predict LBW in 

213 neonates. The analysis focused on multiple performance metrics such as AUROC, 
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214 accuracy, precision, recall, F1-score, and the MCC to provide a comprehensive evaluation 

215 of the ability of these models to classify cases of low birth weight.

216 The results of the machine learning models' evaluation for LBW prediction are 

217 summarized in Table 3 and Figure 3. The XGBoost model showed the best performance 

218 with an AUROC of 0.941, demonstrating excellent discrimination between neonates with 

219 normal and low birth weight. Catboost followed closely with an AUROC of 0.939, while 

220 Random Forest and LightGBM achieved AUROCs of 0.938 and 0.937, respectively.

221

222 In addition to AUROC, other performance metrics were considered. Random Forest 

223 exhibited the highest overall accuracy (0.94), while Catboost provided the best balance 

224 between precision (0.80) and recall (0.78), resulting in an F1-score of 0.79 (Table 3). The 

225 ROC curves in Figure 3 visually illustrate the similar performance between the models, 

226 with all curves approaching the top-left corner, indicating high discriminatory capacity.

227

228 Table 3. Test Set Performance comparison for LBW Weight Classification Models
Model Accuracy Precision Recall F1-Score MCC AUC

XGBoost 0.92 0.76 0.77 0.77 0.54 0.94

LightGBM 0.92 0.76 0.77 0.77 0.54 0.94

CatBoost 0.93 0.80 0.78 0.79 0.58 0.94

RandomForest 0.94 0.87 0.72 0.77 0.57 0.94

229

230
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231
232 Figure 3. Performance by ROC Curve of ML (Random Forest, XGBoost, LightGBM, 

233 and Catboost) for LBW Prediction. 

234

235 Variable importance for LBW Prediction

236 Figure 4 shows the importance of the predictors for LBW using Shapley values for the 

237 best-performing model, XGBoost. The most important variable identified was gestational 

238 weight gain, standing out as the factor with the most influence on predicting low birth 

239 weight. Following this, maternal marital status and the absence of regular physical 

240 activity during pregnancy were significant predictors. Other factors contributing 

241 substantially included maternal race, parity, and fewer prenatal visits, underscoring the 

242 importance of socioeconomic and behavioral variables. Variables such as smoking and 

243 alcohol consumption during pregnancy, although important predictors, appeared with less 

244 relevance compared to the previously mentioned factors. S.1, illustrates the strength of 

245 variable contributions to the prediction of LBW using Shapley values in the XGBoost 

246 model. The most influential variables, shown in the graphs, provide a detailed view of 

247 how each factor contributes to increasing or reducing the risk of LBW.
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248

249 Figure 4. Predictors of LBW (Shapley Variable Importance) for the Best Model - 

250 XGBoost.

251

252 Discussion

253 The findings from this study confirm and expand the evidence that machine learning (ML) 

254 models, such as Random Forest, XGBoost, LightGBM, and Catboost, are effective for 

255 predicting low birth weight (LBW) in neonates. Among the models tested, XGBoost 

256 exhibited the best performance with an AUROC of 0.941, which places it as the most 

257 effective algorithm. This outcome aligns with previous studies that have explored ML 

258 approaches in predicting LBW (NAIMI; PLATT e LARKIN, 2018a; SCHMIDT et al., 

259 2022; WŁODARCZYK et al., 2021). The use of ML in LBW prediction is gaining 
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260 traction, as these models demonstrate significant potential across various clinical and 

261 public health applications. 

262 In agreement with the current literature, our study corroborates the efficacy of ML 

263 algorithms in maternal-fetal health. Previous studies have underscored the importance of 

264 selecting the most suitable ML algorithm, given the variations in performance and 

265 reliability among different models [26]. For example, a study published in BMC 

266 Pregnancy and Childbirth evaluated the performance of eight different ML algorithms for 

267 predicting LBW. It found that deep learning (AUROC: 0.86), random forest classification 

268 (AUROC: 0.79), and extreme gradient boost classification (AUROC: 0.79) performed 

269 best in distinguishing LBW from normal birth weight across a cohort of 8,853 births, 

270 where 1,280 resulted in LBW [27]. 

271 Our study further supports the finding that boosting algorithms such as XGBoost and 

272 Catboost are particularly powerful for tabular datasets, as seen in our cohort. These 

273 models outperform more traditional methods like logistic regression and are 

274 advantageous in dealing with complex non-linear relationships among 

275 predictors[18,19,28]. Studies like that of Pollob et al. (2022), which used ML to predict 

276 LBW in Bangladesh, similarly demonstrated that ensemble and boosting models provide 

277 more accurate predictions than classical statistical models, with LBW rates around 16.2% 

278 in their study population. Key risk factors included region, education, wealth index, and 

279 height, consistent with our findings on the importance of gestational weight gain, race, 

280 and socioeconomic status in predicting LBW.

281 The use of Shapley values in our study provided additional insights into the 

282 interpretability of the models, allowing for a more granular understanding of how each 

283 variable contributes to the prediction of LBW. This aspect is particularly important in 

284 clinical applications where transparency and explainability of the models are crucial for 

285 their adoption by healthcare professionals. For example, the Shapley analysis in our study 

286 indicated that gestational weight gain had the strongest influence on LBW predictions, 

287 followed by maternal race and prenatal care visits. These findings mirror global trends in 

288 LBW prediction, where maternal health, nutrition, and prenatal care are recognized as 

289 key determinants of birth outcomes.

290 Our findings also align with the work of Patterson et al. (2023), who developed a 

291 predictive model for LBW in low- and middle-income countries. Their study found that 
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292 socioeconomic factors, including maternal education and access to prenatal care, 

293 significantly contributed to the risk of LBW, similar to our results from the Araraquara 

294 cohort. Both studies emphasize the importance of early identification of high-risk 

295 pregnancies through predictive models, especially in resource-limited settings where 

296 timely interventions can significantly improve neonatal outcomes.

297 The clinical implications of our findings are significant. By accurately identifying 

298 pregnancies at high risk for LBW, these ML models could enable healthcare providers to 

299 implement early interventions, such as nutritional supplementation, increased prenatal 

300 visits, or targeted counseling on lifestyle modifications. Such interventions could mitigate 

301 the risks associated with LBW, including neonatal mortality, morbidity, and long-term 

302 health consequences like developmental delays and chronic conditions. This is 

303 particularly relevant in low- and middle-income countries, where LBW rates are higher, 

304 and healthcare resources are often limited[29]

305

306 Limitations and future directions

307 While the results of this study are promising, there are several limitations to consider. 

308 First, the cohort used in this study was from a specific region in Brazil, which may limit 

309 the generalizability of the findings to other populations. Future research should aim to 

310 validate these models across different regions and populations to ensure their broader 

311 applicability. Additionally, while our models demonstrated high predictive accuracy, 

312 further research is needed to assess their integration into clinical workflows and their 

313 potential impact on perinatal care. For example, future studies could explore the use of 

314 these models in combination with mobile health (mHealth) technologies to improve 

315 prenatal care in low-resource settings.

316 Moreover, although we employed robust techniques such as SMOTE to handle class 

317 imbalance and Shapley values to interpret model predictions, the models still require 

318 validation in real-world clinical environments. The practical deployment of ML models 

319 in healthcare settings involves challenges related to data privacy, model fairness, and bias 

320 mitigation, which should be thoroughly addressed before these models can be widely 

321 adopted.

322

323 Conclusion

324 This study successfully developed and evaluated machine learning models, including 

325 XGBoost, Catboost, LightGBM, and Random Forest, for predicting low birth weight in 
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326 neonates. The XGBoost model demonstrated the highest predictive performance, with 

327 excellent discrimination between neonates at risk of LBW and those with normal birth 

328 weight. The application of these models in clinical practice has the potential to improve 

329 early detection of high-risk pregnancies, enabling timely and personalized interventions 

330 that could significantly improve neonatal outcomes.

331 Given the increasing global focus on maternal and neonatal health, these findings hold 

332 important implications for both clinical practice and public health policy. The integration 

333 of machine learning models into prenatal care systems could offer a transformative 

334 approach to preventing adverse birth outcomes, particularly in low-resource settings 

335 where LBW remains a critical challenge.
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