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Abstract 

Background: Familial Hypercholesterolemia (FH) is the most prevalent autosomal 

dominant disorder, affecting about 1 in 200-250 individuals, with an estimated 30 

million patients globally. It is the leading cause of early and aggressive coronary artery 

disease (CAD). 

Objective: To developed an artificial intelligence (AI) and machine learning (ML) 

algorithm for cardiovascular risk stratification in a FH population, emphasizing sex-

specific differences and model explainability. 

Methods: We analyzed patients with genetically confirmed FH or a score greater than 

8 on the Dutch Lipid Clinics Network (DLCN) criteria from the National Registry of the 

Spanish Atherosclerosis Society, including individuals enrolled from January 2010 to 

December 2017. The model utilized a comprehensive dataset incorporating family 

history, clinical characteristics, laboratory results, genetic data, imaging studies, and 

lipid-lowering treatment details. Eighty percent of the population was allocated for 

training the AI algorithm, while the remaining 20% was used for testing and 70/30 

population  for internal validation. A Histogram-based Gradient Boosting Classification 

Tree was used. The stability of the AI system was assessed using K-fold cross-

validation. Shap methodology analyzed the influence of different variables by sex. 

Youden's J statistic established the optimal cutoff point for identifying very high 

cardiovascular risk. 

Results: A total of 1.764 patients were included (51.8% women), among whom 264 

experienced major adverse cardiovascular events (MACE), with 8% being women. 
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Notably, 52% experienced a cardiovascular event before age 50, and 37% had 

subclinical atherosclerosis. The final model incorporated 82 variables, achieving 

metrics of precision for MACE accuracy (0.92), recall (0.89), F1 score (0.91), and ROC 

(0.88; 95% CI, 0.85-0.90), revealing significant sex-based differences. Women showed a 

lower association with MACE compared to men, although this effect diminished with 

the inclusion of multiple variables, particularly in younger women. In the model, age, 

GGT levels, and subclinical disease significantly impacted risk for women, while year of 

birth, age at initiation of statin treatment and HbA1c levels were more influential for 

men. The optimal risk threshold was 0.25 for the association with of MACE 

Conclusion: AI-ML algorithms are promising tools for enhancing vascular risk 

stratification in patients with FH, revealing critical sex-based differences.  
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Introduction 

Familial Hypercholesterolemia (FH) is a genetic disorder resulting in very high LDL-C 

and increased risk for CVD. It is the most common autosomal dominant disease, with a 

prevalence of around 1/200-250 in our environment. Currently, it is estimated that 

there are around 30 million patients suffering from FH worldwide. In addition, around 

20% to 25% of the diagnosed individuals are children and teenagers. It represents the 

most common genetic cause of early and aggressive coronary artery disease (CAD). 

Without treatment, 50% of men under 50 and 30% of women under 60 with FH will 

primarily develop CAD. The life expectancy of individuals with FH has been calculated 

to be between 10 and 30 years lower compared to the non-FH population (1).  FH 

patients have a 45% higher coronary mortality after myocardial infarction and their risk 

of recurrence is 2.5 times higher than the general population. Therefore, early 

identification is very important to optimize treatment and to reduce extreme 

cardiovascular risk. Unfortunately, FH is frequently underdiagnosed and often 

undertreated. Underdiagnosis and undertreatment of FH are partially due to the lack 

of an effective gold standard to identify high-risk patients at an early stage. Recently, 

both the World Heart Federation and the International FH Foundation have alerted 

that FH is a public health priority that requires global action to improve its diagnosis,its 

treatment and to reduce its impact on CVD. They recommend the development of new 

screening systems and the use of digital tools to improve patient risk stratification (2). 

Risk assessment represents the first critical step in the current approach to primary 

prevention of atherosclerotic cardiovascular disease (ASCVD). Risk calculators cannot 

be used interchangeably as they have been shown to over- or underestimate 
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cardiovascular risk in populations other than those from which they are derived (3).The 

cardiovascular risk scales commonly used in clinical practice, such as Systematic 

COronary Risk Evaluation Score (SCORE) (4), SCORE2 (5), and SCORE2-OP (6) 

underestimate the risk in FH population. In these scales, FH patients with additional 

cardiovascular risk factors or vascular disease are classified as very high risk. Those 

without these criteria are classified as high vascular risk.Currently, there are only three 

specific risk calculators for FH: Montreal-FH score designed in a Canadian population 

(7,8), SAFEHEART-RE (9), and SIDIAP-FHP (10). The first two are based on a genetically 

defined population with FH and SIDIAP-FH in patients with phenotypic FH.  

While men and women share many traditional risk factors for CVD, additional gender-

specific risk factors and mechanisms are at play. Therefore, it is crucial to consider 

gender differences when it comes to predicting and managing CVD risks. Men and 

women in general (11) and population with FH (12) differed in the impact of the 

individual risk factors on the development of ASCVD. Different studies have shown that 

women with FH are undertreated compared to men with the same risk ASCVD, even in 

secondary prevention probably due to the underestimation of cardiovascular risk in 

women (13, 14). None of the three FH-specific risk calculators are developed 

specifically from a sex–gender perspective (7-10). 

Machine learning (ML) and artificial intelligence (AI) offer promising alternatives by 

integrating complex datasets and providing more personalized risk assessments. 

Recently, machine learning (ML) models have been widely used to precisely predict 

CVD risk factors and providing a new instrument to improve early identification high 

risk patient, determine a patient’s CVD prognosis, make better decisions in clinical 

practice and determinate a personalized treatment strategy (15).In the field of FH, the 
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use of ML and artificial intelligence (AI) techniques is seen as a significant 

advancement for improving screening, diagnosis, and risk assessment based on various 

data sources, such as electronic health records, plasma lipid profiles, genetic studies, 

radiology images and corneal arcus images (16). Threfore, it is necessary to develop 

robust, explainable, reliable, and ethical AI algorithms. It is crucial that these new tools 

incorporate the sex-gender perspective and social determinants to avoid potential 

biases and to prevent the continuation of a lack of information on male-female 

differences in the new era of digital medicine (17). 

The aim of this study is to develop a ML-AI algorithm from a sex-gender perspective 

useful for cardiovascular risk stratification in FH population and with a significant 

emphasis on model of explainableartificial Intellingence (XAI) to provide maximum 

confidence to professionals and users. For the development of the model, data from 

family history, clinical, analytical, genetic, imaging data and, age at initiation of statin 

treatment, duration and intensity of lipid-lowering treatment from the Spanish Society 

of Arteriosclerosis registry were included.  

Methods 

Study design and population 

In the present study, patients with diagnosis of FH, either with a positive genetic study 

or a Dutch Lipid Clinic Network score (DLCN) equal to or greater than 8, have been 

selected from the National Registry of the Spanish Society of Arteriosclerosis (SEA). 

These patients were included in the registry between January 2010 and December 

2017. 
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The National Registry of Dyslipemias of the SEA is an online, retrospective, and 

prospective database (http://www.rihad.es) where accredited Spanish lipid units, 

recognized by the SEA, enter data from patients with lipid metabolism disorders. 

Established in 2013, the registry collected clinical, analytical, genetic, and follow-up 

data from 4.449 patients by 2017. The registry records a large volume of information in 

real-time, including sociodemographic data, family and personal medical history, 

analytical results with and without treatment, genetic data, and information on lipid-

lowering and other treatments. This data, gathered under strict quality criteria from 60 

lipid units across all 18 regions of Spain, is entered by qualified clinical professionals. 

Variables 

The following baseline variables were obtained from the RIHAD database: 

a) Personal and first-degree family history 

Sex,  paternal hypercholesterolemia, maternal hipercolesterole, family history 

of cardiovascular disease, age at first cardiovascular event in relatives, 

cardiopatíaisquémica, Ischemic heart disease, myocardial infarction, acute 

coronary síndrome, stable angina, coronary bypass, angioplasty, stroke, 

çstroke type, peripheral artery disease, aortic/abdominal aneurysm, Other 

cardiovascular events, aortic stenosis, hypertension, age at hypertension 

diagnosis, diabetes, smoker, Non-smoker,former smoker, Hepatic steatosis, 

packs/day per years of smoking. 

b) Physical examination 

BMI (Body Mass Index), waist, pulse, systolic blood pressure, diastolic blood 

pressure, tendinous xantoma, corneal arcus 
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c) Laboratory data: first visit to the lipid unit (baseline values without treatment) 

and current (the most recent available lab results with treatment) 

Glucose, Uric acid, Lipoprotein (a), Gamma-glutamyl transferase; Alanine 

aminotransferase; Thyroid-stimulating hormone; Apolipoprotein A1; 

Apolipoprotein B; Glycated hemoglobin, Current total,  Current HDL 

cholesterol; Current non-HDL cholesterol; Current LDL cholesterol; Current 

direct LDL cholesterol; Current triglycerides; Current glucose; Current 

creatinine; Current glomerular filtration rate; Current uric acid; Current GGT; 

Current ALT; Current TSH;  Current bilirubin; Current glycated hemoglobin; 

Current microalbuminuria; Insulin, Homeostasis Model Assessment 

d) Known subclinical arteriosclerosis: atherosclerotic lesions, incidentally 

detected by carotid echocardiography in asymptomatic persons 

e) Total DLCN score (Dutch Lipid Clinic Network) 

f) Genetic data 

g) Data on treatment and follow-up in the Lipid Unit. 

Age at statin initiation, lipid-lowering treatment, treatment duration, statin 

dose, total years on statins, total years on Ezetimibe, age at first visit at Lipid 

Unit 

Definition of Major Adverse Cardiac Events (MACE).Presence of at least one of the 

following diagnoses:CVD, CAD, Ischemic heart disease, Myocardial infarction, Acute 

coronary síndrome, Stable angina, Coronary bypass, Angioplasty, Stroke, Stroke type, 

Peripheral artery disease, Aortic abdominal aneurysm, cardiovascular events. 

The clinical diagnoses were extracted using the codes according to the International 

Classification of Diseases (ICD-10) from hospital discharge reports. 
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Machine learning–based approach 

We followed a model based on Cross-Industry Standard Process for Data Mining 

(CRISP-DM) (20). The model has 6 steps: problem understanding, data understanding, 

data preparation, modeling, quality assurance and explicability. 

All AI-Machine Learning analyses and statistical analyses were conducted using Python 

programming language version 3.10.15 and its standard library. 

Problem Understanding. The first step is to obtain a model that can assist to predict 

the risk of a MACE in a patient with FH. Our system must be able to take a information 

about the patient and return a MACE risk metric that ultimately classifies the patient in 

either Low Risk or High Risk. Data Understanding is divided into four tasks: 

requirement intake, data acquisition, data exploration and quality assurance. Data 

Preparation: cleaning, integration, feature engineering and scale. In our case, we 

discarded the following variables: Physical exercise frequency due to significant 

missing data. We apply the Standard Scale from sklearn library. This scaler applies the 

following transformation: 

𝑧 =
(𝑥 − 𝑢)

𝑠
 

Where x is our sample, u is the mean of the training samples and s is the standard 

deviation of the training samples. 

Modelling. We proposed a model for this problem: Histogram-based Gradient Boosting 

Classification Tree (HGBCT). A HGBCT is a machine learning algorithm used for 

classification tasks. It combines the principles of decision trees and boosting with the 

efficiency gained from binning continuous features into histograms, thus significantly 

improving performance on large datasets.The algorithm uses an ensemble of decision 

trees, where each tree corrects the errors of the previous ones. Boosting works by 
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sequentially adding models (trees), with each new model focused on correcting the 

errors made by the previous ones. This helps in reducing bias and improving the 

model's prediction accuracy (21). One of the main reasons to use it is that the 

estimator has native support for missing values.Once we had our model we configured 

it with the class_weight ‘balanced’ parameter. This means that the model uses the 

values of the target variable to automatically adjust weights inversely proportional to 

class frequencies in the input data. Data is then split into 5 folders following the Cross 

Validation principle with 20/80 test/train set to train the model with a Grid search for 

hyper parameter optimization. On top of this we make a scorer based on F1 score and 

pass it to the model. This way we optimize F1 score instead of Accuracy leading to 

better models when unbalanced classes are present. Once we have our model 

configured we train the model with 70% of data and save the remaining 30% for 

evaluation purposes.We ran a K-fold Cross Evaluation (22) with the base model to 

study the stability of the model for this problem. It helps ensure that the model 

generalizes well to unseen data by using different portions of the dataset for training 

and testing in multiple iterations. K-fold cross-validation was employed to ensure 

model stability by partitioning the dataset into k subsets, training on k-1, and testing 

on the remaining set (22). We ran the model 5 times with different combinations of 

data in the train and test set. 

The evaluation metrics used for assessing the performance of the ML models included: 

- Accuracy: This metric represents the proportion of correct predictions (both true 

positives and true negatives) out of the total number of predictions made by the 

model. It provides a general sense of the model's performance but can be misleading 

in imbalanced datasets, where one class is significantly more prevalent than the other. 

- Precision: Also known as positive predictive value, precision is the proportion of true 

positives out of all predicted positives (i.e., the fraction of correct positive predictions). 

High precision indicates a low false positive rate, meaning the model is good at 

avoiding incorrect positive predictions. 

- Recall: This metric reflects the ability of the model to identify true positives, defined 

as the proportion of actual positives that the model correctly identifies. High recall 
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indicates that the model is capturing a large percentage of the actual positive cases, 

though it may also produce false positives. 

- F1-Score: It is the harmonic mean of precision and recall, providing a balanced 

measure when there is an uneven class distribution. It is particularly useful when both 

precision and recall are important, as it balances the trade-off between these two 

metrics.  

These metrics provide a comprehensive evaluation of the machine learning models’ 

performance, particularly in the context of MACE in FH patients, where both false 

positives and false negatives must be carefully managed. 

Complementary analysisof Explicability by SHapley Additive exPlanations (SHAP) 

It is important to explain how the model reaches a solution and what is the 

relationship of the different features with the output variable. One of the best 

algorithms to study explainability is SHAP. Shap analyze the contribution of each 

feature to the target variable per sample. In other words, we can estimate how any 

piece of data in our dataset affected the output given by the model. One way to 

represent this information is by plotting all samples per feature and see how they 

affect the outcome of the model (23,24). The SHAP summary plots demonstrate the 

either positive or negative adjustment to MACE risk estimation (x-axis) for each of the 

predictor variables (y-axis). Relative values for individual predictors were represented 

on a continuous color bar.  

Complementary analysis of Youden's Jand ratio 
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The Youden's Jand ratio, the sum of sensitivity and specificity minus one, was used to 

establish the optimal cutoff point for the model associated with very high 

cardiovascular risk, considering that the cost is the same for a false positive as for a 

false negative. When using this index, one implicitly uses decision theory with a ratio 

of misclassification costs which is equal to one minus the prevalence proportion of the 

disease (25). 

Ethical aspects 

The present study was approved by the institutional review board (Ethics and Medical 

Research Committee of Mataró Hospital, part of the Maresme Health Consortium, 

Mataró, Barcelona, Spain; Code 27/24).  

Results 

Study population 

Of the 4.495 subjects in the study database at the time of inclusion, 2.685 patients 

were excluded due to diagnoses of combined hyperlipidemia, mixed hyperlipidemia, 

polygenic hyperlipidemia, unspecified dyslipidemia, or familial hypercholesterolemia 

without a positive genetic study or a DLCN score <8. Of the 1.764 subjects finally 

included, 1.540 had a positive genetic study. Among these, 95.6% had mutations in the 

LDLR gene, with 92.5% being simple heterozygotes, 4.1% compound heterozygotes, 

2.1% double heterozygotes, and 1.2% homozygotes. The remaining subjects had a 

DLCN score ≥ 8. 

Of the included patients, 127 (7.20%) were not Spain. Of the total included subjects, 

838 (51.8%) were women. The mean age was 50 (±26) and 48 (+ 15), in women and 
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men respectively (p<0.02). A total of 264 living patients (73 women and 191 men) had 

a history of MACE (p<0.001). Among the patients, 36.2% had a family history of 

premature cardiovascular disease in first-degree relatives without sex differences. 

Additionally, 406 patients (37%) presented with subclinical atherosclerotic disease 

detected by imaging techniques. Of these, 190 were women and 216 were men 

(p<0.002). 

Seventeen percent of the subjects had a history of hypertension, and 5.8% had 

diabetes, with no significant differences between sexes. Twenty percent of women and 

23.8% of men were smokers (p<0,001). Men had a significantly higher body mass index 

(BMI) compared to women (p<0,001). Tendinous xanthomas were present in 39% of 

subjects, with no differences between sexes. The corneal arc was present in 29% of 

women and 39% of men (p < 0.001).The DLCN score was significantly lower in women 

(16 ± 4 vs. 17 ± 4, p < 0.001). The baseline LDL-cholesterol was 277 (±79.4) mg/dL with 

no differences by sex, while the post-treatment LDL cholesterol was 146 (±56.5) 

mg/dLin women and 139 (±61,9) mg/dL in men, respectively (p > 0.001).The 

atherogenic indices Apoprotein B/Apoprotein A1 and Triglicerides/HDL-Cholesterol 

were significantly higher in men (p < 0,001). The mean levels of Lipoproteina(a) were 

29 (11-63) mg/dL, with no significant differences between sexes. 

The mean age at the first visit to the Lipid Unit was 42 years (±15), with women being 

older than men (43 ± 16 vs. 42 ± 15 years) (p<0.02). Women were treated with lower 

doses of statins (p<0,001) and were less frequently prescribed combination therapy 

(statin + ezetimibe) (p<0.03). Additionally, lipid-lowering treatment was initiated later 

in women compared to men (p<0.006). 
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All data presented in this section are available in Table S1 (Supplementary materials). 

Machine learning models 

The model included clinical, analytical, genetic and imaging variables, as well as age at 

treatment initiation, intensity, and use of combination therapy (statins + ezetimibe), 

totaling 82 variables.The variables included in the final algorithmic model are shown in 

Supplementary Table 2. 

Figure 1 shows the Heatmap illustrating the relationship between variables and 

diferent cardiovascular disease or MACE in a population with FH. 

Figure 2 presents the confusion matrices for the various machine learning models used 

to predict MACE in patients with FH. Each confusion matrix illustrates the performance 

of a distinct model, indicating true positives, true negatives, false positives, and false 

negatives in the prediction of MACE. The comparison includes results from 5-fold 

cross-validation. These matrices offer a visual comparison of each model's predictive 

accuracy and misclassification rates, providing valuable insight into the selection of the 

optimal model for MACE prediction in FH patients. 

The various metrics obtained from the algorithmic model for the general population 

and when divided by sex are presented in Table 1. Notable differences in performance 

metrics are observed when the algorithm, trained on the general population, is applied 

separately to female and male cohorts. The AI algorithm model trained for the 

prediction of MACE demonstrated a recall of 0.98 in the female subpopulation and 

0.82 in the male subpopulation for the presence of MACE. For the absence of MACE, 

the recall was 0.23 for women and 0.61 for men. The F1-score for MACE was 0.96 for 
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women and 0.85 for men, while for the absence of MACE, the F1-scores were 0.32 and 

0.55 for women and men, respectively. These results highlight significant differences in 

model performance between sexes, particularly in predicting the absence of MACE. 

Definition of the optimal cutoff point for the association with a pattern of high or low 

cardiovascular risk in FH population was assessed using the Youden Index. 

To define the optimal risk threshold, the population dataset used for model training 

was applied. Various thresholds were tested, assigning different weights to the error 

based on the Youden Index. The optimal risk threshold, where equal weight was given 

to both false positive and false negative errors, was set at 0.25 points to define very 

high or extreme risk for association with MACE (Fig. 3). The ROC curve for the AI 

algorithm, based on the cutoff point defined as optimal, is presented in Figure 4. This 

curve illustrates the algorithm’s performance at the selected threshold, highlighting 

the balance between sensitivity and specificity in predicting the occurrence of MACE.  

Figure 5 shows the distribution of the FH population and the presence or absence of 

MACE based on the defined optimal risk threshold. Of the total samples, 38 of the 

samples exceeded this threshold, 61.4% of men and 22.7% of women with MACE were 

above this threshold. 

Analysis of the contribution of different variables in the AI/ML model, stratified by sex, 

using SHAP methodology. 

Figures 6 and 7 display the contribution of various variables in the model created using 

the SHAP methodology. In women, age, current GGT, the presence of subclinical 

disease, waist circumference, and Apoprotein B were the most influential factors in the 

model. In men, age, age of statin initiation, current HbA1c, LDL-cholesterol, and 
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combination therapy had the greatest impact. The importance of each variable in the 

model differs significantly by sex. The results highlight sex-specific differences in the 

importance of key variables, suggesting the need for tailored predictive models that 

account for these variations.   
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Discussion 

To our knowledge, this work is the first study to evaluate an AI-ML algorithm 

applicable to the prognostic stratification of FH population from a sex-gender 

perspective. 

The AI-ML algorithm developed for MACE risk in the FH population demonstrates 

strong predictive power that is superior to those previously obtained with inferencial 

multivariable models in the Spanish population (AI-ML: AUC 0.88 (95% CI 0.85-0.90); 

SAFEHEART-RE score: C-index 0.55 (95% CI 0.51-0.59) (9) and SIDIAP-HF score C-index: 

0.71 (95% CI 0.68-0.75), (10). Indeed, it is superior to the metrics in the Canadian 

population (Montreal FH-score: AUC of 0.79 (95% CI 0.766-0.832) (8). The recall value 

in our model was moderately high (0.87 for the presence of MACE and 0.65 for the 

absence of MACE) but superior to the qualitative risk scales commonly used in clinical 

practice. In our study, 87.5% of the population with MACE, predominantly men 

exceeded the threshold detected for very high cardiovascular risk. In a recent analysis 

by, the SCORE Chart showed low sensitivity in Mediterranean patients with 

dyslipidemia. The scale classified 62.8% of the patients who experienced a 

cardiovascular event and 46.6% of those who died as low risk (26). 

Understanding the heterogeneity in risk estimation and the role of emerging 

biomarkers and imaging techniques is crucial for optimizing cardiovascular risk 

prediction and guiding personalized treatment strategies in individuals with 

hypercholesterolemia. A combined approach using inferential statistics and AI 

techniques, incorporating data from different sources, is likely a good option at this 

time. In a newly released paper by Zinzuwadia et al, a machine learning approach 
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enhanced the accuracy of the AHA-PREVENT model when applied to a local population 

while still preserving the risk associations identified by the original model. This strategy 

may help to reclassify patients into low or high cardiovascular risk categories (27). 

Random Survival Forest (RSF) model is the most frequently utilised model for Survival 

Outcome in CVD Prediction. RSF is effective at handling complex interactions, has built-

in variable importance measures, and is robust to overfitting. Despite RSL models often 

benefiting from large datasets, they can still be effectively applied to smaller health-

related datasets as long as the right balance between data quantity and quality is 

ensured and interpretability is prioritised (28). Deep Learning models can also be 

useful in cardiovascular risk stratification, but the difficulty in explaining the model 

may lead to trust issues among professionals and patients (29). In a recent 

observational study conducted on a population in Bangladesh aged over 15 years, the 

best results in predicting cardiovascular events were achieved using the RSF, with an 

AUC of 0.98, compared to other ML-AI models (30). Other studies that have employed 

AI-ML techniques in the field of vascular risk stratification have also demonstrated 

improvements, particularly with the RSF, in diagnostic capability compared inferencial 

statistical methods, with AUCs ranging from 73 to 98 (31-36). 

When the algorithm is evaluated in the subgroup divided by sex, we found different 

behavior in women and men. A recent study conducted in the SAFEHEART registry 

using inferential statistics has shown that the risk of ASCVD is markedly lower in 

females than in males with FH (37). In our IA developed model, it is observed that, 

generally, female sex is protective against the occurrence of cardiovascular events in 

the FH population. However,this protective effect disappeared, especially in younger 

women, when considering associations with other clinical or analytical characteristics. 
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Age, family history of hypercholesterolemia, aortic stenosis, the presence of subclinical 

disease, or waist circumference had a greater weight in the model for women, while 

family history of cardiovascular disease, hepatic steatosis, and the presence of corneal 

arcus had a greater weight in men. In the resulting model, an association is observed 

between the presence of MACE and LDL cholesterol, as well as the intensity of lipid-

lowering treatment and the age at its initiation. However these variables have a 

greater impact in men than in women. In women, ApoB levels carry more weight in the 

model than LDL cholesterol levels. In a recent systematic review on the application of 

AI in cardiovascular risk stratification, limited evidence was found regarding sex 

differences (38). Of the 31 studies that included gender in their prediction models, only 

six studies performed gender-stratified predictions (39-44). None of them were 

conducted in a FH population. One of these studies did not observe differences by sex 

and race in the discriminative power of cardiovascular disease risk prediction between 

studies using neural networks and those conducted with pooled cohort equations 

when the same data were used for the analysis (42). High-dimensional features, 

including diverse sources such as clinical and laboratory data, genetics, social 

determinants, and imaging tests and/or longitudinal risk factors, evaluating variability 

between visits in laboratory values and vital signs, should be considered to fully 

explore the benefits of neural network survival models for cardiovascular risk 

prediction. 

It is important that ML models provide intuitive explanations that enable patients to 

understand their risk predictions, thereby assisting clinicians and patients in better 

comprehending the decision-making process for assessing disease severity and 

maximizing opportunities for early intervention and personalized risk prediction 
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models. Most prior studies have focused on the performance of ML models or the 

importance of features, with limited attention to fully understanding and explaining 

predictions using interpretable methods, such as SHAP (45), as in our study (46-47). 

Deep learning and neural network fields with larger datasets, related to cardiovascular 

disease, can be explored as future work, along with the integration of the trained 

machine learning models into proper explainable AI interface systems, such that the 

predictive results obtained from the machine learning models have a proper 

explainability, transparency, and are trusted bycitizens, patients, and clinicians (48). 

The importance of this study lies in its demonstration that the use of AI-ML techniques 

can enhance prognostic stratification in FH populations compared to standard clinical 

practice. It applies a sex and gender perspective to avoid potential biases and includes 

explainability as a fundamental component. It is noteworthy that the data source is a 

national registry that includes a representative sample of patients from across the 

entire country with a significant number of participants. For the development of the 

model, different data from family history, clinical, analytical, genetic, imaging data and 

duration and intensity of lipid-lowering treatment were included.  

This study has certain limitations. First, it is a cross-sectional study that provides a 

snapshot of information at a specific point in time, where the output is a prevalent 

variable rather than an incident one. To confirm the generalizability of these findings, 

future work will include validation in other claims and clinical data sets, ideally in a 

prospective study and clinical trials. Secondly, it includes an imbalanced population 

with lower representation of individuals with MACE, particularly women. On the other 

hand, there is likely to be an issue of collinearity among the different included 

variables.The algorithmic methods used have minimized these effects. Before potential 
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implementation in clinical practice, it requires external validation in other populations, 

particularly in FH populations with phenotypic diagnosis. Future investigations could 

benefit from larger sample sizes to improve the robustness of our findings, ideally 

using large registries such as the European FH Patient Network (49) or CASCADE FH 

Registry of Family Heart Foundation (50), with special interest in pediatric and 

adolescent population, before widespread clinical implementation.The perspective of 

sex and ethnicity is crucial to avoid future biases and ensure an ethical approach to AI.   

In the future, integrating validated AI-ML algorithms into electronic health records 

(EHRs) in clinical practic, using criteria for robustness, transparency, ethics, and the 

inclusion of social determinants, as zip code,  along with a sex-gender perspective, will 

enhance the management of diseases like FH, which represent a significant public 

health issue. Advancing towards an EHR with 'cognitive layers' powered by AI could 

shift medicine from a reactive to a proactive approach. Ideally, screening and 

stratification algorithms should be embedded into healthcare systems' electronic 

platforms to automatically detect citizens at very high vascular risk ('Electronic Red 

Flags') and prioritize preventive and health promotion strategies. Moreover, this 

approach opens the door to new forms of epidemiological surveillance for non-

communicable diseases ('Digital Epidemiology'), potentially generating 'high vascular 

risk maps' to better target public health strategies. If we aim to avoid perpetuating the 

current sex biases in cardiovascular risk stratification in the new era of Medicine 4.0, 

we must prioritize the differences between men and women from the outset in the 

development of AI algorithms. 
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Conclusion 

AI-ML algorithms are promising tools for enhancing vascular risk stratification in 

patients with FH, revealing critical sex-based differences. Further validation in larger, 

more diverse populations, including prospective clinical trials, is the next step before 

widespread clinical implementation.   
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Table 1 Performance metrics of the machine learning algorithm for predicting MACE 

and No MACE in patients with FH, presented globally and stratified by sex 

 

 

 

*The table reports key performance metrics, including accuracy, precision, recall, 

specificity and F1 score for the predictive model of MACE. Results are provided for the 

overall population and separately for male and female patients. These metrics enable 

comparison of the algorithm’s performance across sexes, highlighting potential 

differences in predictive accuracy and model robustness in stratified subgroups. This 

detailed breakdown aids in understanding the generalizability and effectiveness of the 

model in diverse patient populations.  

Metrics General 

 

Women 

 

Men 

Accuracy MACE 0,88  0,92 0,78 

Accuracy NO MACE 0,84 0,92 0,78 

Precision MACE 0,93  0,94 0,88 

Precision NO MACE 0,47 0,56 0,50 

Recall MACE 0,87  0,98 0,82 

Recall NO MACE 0,65 0,23 0,61 

F1-Score MACE 0,90 0,96 0,85 

F1-Score NO MACE 0,54 0,32 0,55 
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Fig.1 Heatmap illustrating the relationship between variables and diferent 

cardiovascular disease or MACE in a population with FH 

 

 

 

Figure 1 legend 

The heatmap displays the strength of associations between selected variables—

such as lipid levels, genetic markers, and treatment history—and the 

occurrence of MACE. Darker colors indicate stronger correlations, either 

positive or negative, while lighter colors represent weaker or no associations. A 

threshold for statistical significance was set at p < 0.05. This figure provides an 

overview of the most impactful factors contributing to cardiovascular risk in FH 

patients, facilitating targeted preventive strategies and personalized 

management. 
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Fig2. Confusion matrices for various machine learning models used in training to 

predict MACE in FH patients 

 

Figure 2 legend 

Each confusion matrix displays the performance of a different machine learning model, 

highlighting true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN) in the prediction of MACE. The models compared include 5 folds. These 

matrices provide a visual comparison of each model's predictive power and potential 

misclassification rates, guiding the selection of the optimal model for MACE prediction 

in FH patients.   
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Fig. 3.Receiver Operating Characteristic (ROC) curve using the K-fold cross-validation 

method to assess the robustness of the model predicting MACE in a population with 

FH  

Figure 3 legends 

a) The ROC curve illustrates the performance of the predictive model across 

multiple K-folds, with the Area Under the Curve (AUC) representing the 

model's ability to distinguish between patients who experienced MACE and 

those who did not. Each fold represents a different subset of the data used 

for training and validation, ensuring the model's generalizability and 

robustness. The model demonstrates consistent AUC values across folds, 

supporting its reliability in predicting cardiovascular risk in FH patients. 

b) The ROC curves compare the model's performance in predicting MACE 

separately for male and female patients. The Area Under the Curve (AUC) is 

shown for each sex, indicating the model's discriminative ability in both 

populations. Differences in AUC values highlight potential sex-specific 

variations in risk prediction accuracy  
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Fig. 4 Receiver Operating Characteristic (ROC) curve based on the optimal risk 

threshold for predicting MACE in a FH population 

 

Figure 4 legend  

The ROC curve depicts the performance of the predictive model using the selected 

optimal risk threshold for MACE. The curve plots sensitivity (true positive rate) against 

1-specificity (false positive rate) at various threshold settings. The Area Under the 

Curve (AUC) reflects the model’s discriminative ability, with the optimal threshold 

chosen to balance sensitivity and specificity. This figure highlights the model’s accuracy 

in identifying patients at risk of MACE within the FH population.   
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Fig. 5 Distribution of patients based on the cardiovascular risk threshold 

 

 

Figured 5 lengend 

Each bar represents the risk of a patient and is ordered from lowest risk (left) to 

highest risk. The blue dashed line corresponds to the defined threshold of 0.25. 

Everything above it is classified as "High Risk," while everything below is "Low 

Risk”. The red bars indicate MACE, and the green bars indicate non-MACE. Red 

bars below the threshold are false negatives, and green bars above the 

threshold are false positives. 
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Fig. 6. SHAP plot shows features that contribute to pushing the output from the 

base value of MACE by sex. 

1-In women                               2. In men 

 

Figured 6 lengend 

The colored plot should be treated as a version of a violin plot where vertical height 

reflects number of observations with a given SHAP value, color of this vertical bar 

reflects the value of this specific variable for a given observation and horizontal 

distance from null reflects influence of this variable on the classification (further from 

the null means that this variable was more impactful on the estimated risk of this 

observation), positive SHAP value means predictor variable contributed to increased 

risk of this observation, negative SHAP value means predictor variable contributed to 

lowering the risk of a given observation. 
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Fig 7. SHapley Additive exPlanations (SHAP) summary plot showing the 

contribution of individual variables to the prediction of MACE in FH patients 

 

Figure 7 legends 

 The SHAP plot illustrates the relative importance and impact of each variable 

on the model’s prediction of MACE, with separate analyses for male and female 

patients. Each bar represents the SHAP value for a given feature, where a 

higher SHAP value indicates a greater contribution to MACE risk prediction. 

Differences between sexes are emphasized, suggesting sex-specific predictors 

and interactions. This figure highlights the importance of personalized risk 

stratification by sex in FH populations.  
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