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Mobility flows extracted from mobile phone data have been extensively used in recent years to inform 
spatial epidemic models for the study of various infectious disease epidemics, including Malaria, Cholera, 
and Ebola. Most recently, the COVID-19 pandemic marked a historic shift, as it led to the sharing of 
unprecedented fine-scale mobility data. This abundancy of data illuminated the geographical variability 
in transmission patterns and underscored the importance of the use of mobility data for public health 
questions. Little attention has been devoted however to (i) the definition of the mobility process that is 
relevant to the epidemic spread, and (ii) the mobility data resolution that is needed to describe the 
invasion dynamics. We take advantage of a real-world dataset, gathered from mobile phone users in 
Senegal to define three epidemiological couplings between locations, based on different characterizations 
of the mobility process, and at varying resolution levels. They are based respectively on: (i) the total 
number of displacements between any two municipalities on two consecutive calls (Displacement-based 
D); (ii) the number of calls made by residents in each location (Location-based L); (iii) the most visited 
location of residents during daytime (Most visited location-based C). To assess the impact of the different 
coupling definitions on the epidemic diffusion, we use them to inform mobility in a spatial epidemic 
model. We found that preserving any displacement on the observed trajectories from mobile phone data 
does not capture the epidemiological link between different locations, for infections where daily mobility 
is important (e.g. airborne or direct contact diseases). Most importantly, we found that at the country 
scale, places in which individuals spend most of their time including workplaces, schools or particular 
point of interests like restaurants or theater and are the dominant driver of disease diffusion. In fact, 
tracking in detail individual activities beyond home and all visited locations during the day does not add 
epidemiological important information. Novel paradigms for the release of mobile phone data to 
researchers can therefore be envisioned that strengthen privacy and confidentiality, while at the same 
time providing enough details - specifically aggregated home-visited locations coupling - to inform 
predictive epidemic models. 
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Introduction 
 
Fine-grained data on human mobility patterns have become key elements for building spatially explicit 
epidemic models1–3. In the last decades, researchers  have largely used mobility fluxes extracted from 
many data sources including census data, surveys, transport statistics, commuting data4,5. 
 
Recent digital innovation has led to an explosive data growth. Everyday human interactions with digital 
services and technologies like mobile phones generate massive geolocated datasets (e.g. mobile phone 
data, GPS, online data). These sources allow gaining insight into human behaviour at large scale4,6,7. In 
2019, there were already around 5 billion unique mobile phone subscribers globally, which means a 
penetration rate of 67% of the global population8. This has created an impressive collection of individual 
digital tracks all over the world, and it made mobile phone an extremely rich and informative source of 
mobility data. 
 
In recent years, mobile phone data have been validated as a good proxy for commuting network 9 and it 
has been largely used to inform spatially explicit epidemics models9–14.  Epidemiological studies have 
been done on disparate scenarios like  malaria13,15, cholera12,16, schistosomiasis17, dengue18,  HIV19,20, 
2013-2016 Ebola outbreak21,22. During the COVID-19 pandemic, mobile phones have been used for the 
first time for tracking human mobility and to inform models in near real-time 23–29. Given the emergency, 
we witnessed an unprecedented massive data sharing, and this opened new challenges in terms of their 
integration into models and minimization of shared information to protect mobile phone users privacy. 
 
 
Mobile phone data are integrated into spatially-explicit epidemic models through coupling forces 
between any pair of locations. The coupling forces model the probability of spatial transmission among 
connected locations due to human mobility. Given the individual daily trajectories extracted from mobile 
phones, the methodological challenge is to translate such high-resolution individual information to 
coupling forces linking geographical areas. This means to i) define which locations need to be coupled and 
ii) quantify the probability of coupling between the connected locations.  
 
 
So far, coupling forces have been extracted and integrated into epidemic models without pay attention to 
the accuracy of the process of aggregation of the mobility flows relevant to disease spatial propagation. 
Aggregating properly mobile phone traces means to assess how many details of them are needed to 
describe epidemiological links between locations, and which details are instead negligible, or noise. 
Considering the privacy issues on dealing with mobile phone data and the time needed to extract and pre-
processed them before their sharing with researchers30–34, to know a priori the resolution needed to 
inform an epidemic model become crucial in the management of a crisis. 
 
 
We first reviewed several methods commonly used in literature to aggregate mobile phone traces at 
different temporal and spatial resolution. We selected three main aggregation methods at maximum, 
medium and lowest resolution (Figure 1), and we proceed by evaluating the outcome of those on the 
modelled epidemic spreading. The first coupling matrix counts the number of displacements between any 
two consecutive calls made by a user (Displacement-based coupling matrix D)11. Accounting for the full 
trajectory of each individual, we referred to this as the high-resolution coupling. The second coupling 
matrix connects the residence location of each user to all their visited locations, with a coupling force that 
is proportional to the number of calls made in each location (Location-based coupling matrix L)12. The 
definition of the mobility process associated to this epidemiological coupling is radically different from 
the first one. In this case, the full trajectory is lost in favour of a coupling between the home and the 
visited locations. We refer to L as the medium-resolution coupling. The third coupling matrix exclusively 
connects the residence location of each user to their most visited location and it is computed on the 
number of calls13 (Most visited location-based C). Comparing the aggregation procedures, this approach is 
at the lowest resolution, as it considers only one visited location for each user. 
 
Comparing D with L, we compared two different mobility definition. in D the probability of moving from 
one location to another and, in L, the probability of spending time in each location. Comparing L with C, 
instead, we explored the role of time spent in any place, accounting for the same transmissibility in each 
location.  
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We quantified the associated coupling matrices (D, L, C) for each month from January-December 2013 in 
Senegal (9,569,425 users). To assess the role of the mobility definition on disease diffusion, we integrated 
the estimated coupling matrices in a novel metapopulation model. We developed a metapopulation model 
that explicitly accounts for disease dispersal due to visitors to a location or to returning resident to their 
municipality of residence. The novelty in the model is the normalization factor of the force of infection 
that depends on the effective population in a given place, which is composed of all these three categories 
of people. We then used this model to simulate the spread of influenza-like and Ebola-like diseases and 
evaluated the outcomes of a stochastic SEIR dynamics. We thus evaluated how the simulated epidemic 
behaviour depends on the underlying spatial and time aggregation scheme, by investigating the time to 
the first infection in each location and the invasion epidemic paths from the seed. 
 
 
 
Results 
 
Senegalese spatial representation 
 
The study was performed at municipality level, the 4th level of administrative division of the country. 
Basing on Census 2013 provided by the Senegalese national institute of statistics ANSD, we considered, 
13092348 inhabitants distributed among 443 municipalities.  We took into account only the 
municipalities covered by mobile phone antennas throughout 2013, and we selected 394 ones (80% of 
the whole municipalities in Senegal): 46 urban and 348 rural ones. The 46 urban municipalities are 
located in the following cities: Dakar, Guediawaye, Pikine, Rufisque, Thies.  
 
Statistical comparison of coupling matrices 
 
Defining the mobility by three aggregation methods at different spatio-temporal resolutions (D,L,C), we 
extracted the three coupling matrices per month, and we obtained 12 directed networks for each method. 
Connections between links depend on the aggregation process, so the resulting networks have different 
topologies (Figure 1). To understand similarities and differences between any pair of networks, we 
measured their association under conditions of multicollinearity with a Multiple Regression Quadratic 
Assignment Procedure (MRQAP), and we found that all methods are highly correlated (regression 
coefficient 𝑟𝐶,𝐿 = 1, 𝑟𝐷,𝐿 = 0.99, 𝑟𝐷,𝐶 = 0.99). Even though all three matrices are correlated to each other, 

elements in D differ from the other two methods of an order of magnitude. While C and L have a quite 
similar probability distribution of the coupling probabilities (Figure 3a), in D the median of the 
distribution is around 1 order of magnitude lower (Figure 2a). Largest differences are on links that 
connect Urban/Rural municipalities  (Figure 2b). Moreover, the median of the geographical distance 
distribution is lower in D compared with the others two methods (Figure 2c). Figure 2b shows also 
differences between D, L and C on the outgoing probability in any location. Such difference increases on 
municipalities far from the urban areas (Figure 2d,e,f). In this latter case, the outgoing probability in D is 
around two order of magnitude smaller compared with L and C. 
 
We focused the comparison of the three matrices on i) common links and ii) links detected in one method 
and not in another one. 
 
i). In a) and b) we reported the relative variation distribution of the common links between any pair of 
methods. Considering subsets of links that have relative variation higher than a certain cut-off, we found 
that the biggest differences are between D and L, among links with the highest weight in L and the lowest 
in D. The probability of coupling in D can be up to 1000 times lower compared with the one in L (Figure 
3c,e). We found these differences increase with the increasing of the geographical distance between the 
coupled municipalities (Figure 3c). In Methods is shown how we evaluated the geographical distance 
between municipalities. Same results have been found in the comparison between D and C. Instead, C and 
L are quite similar. We found links in C are no more than 10 times bigger than in L and their discrepancies 
are quite stable on the geographical distance. (Figure 3d,f).  
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ii). As Figure 3 shows, we found that the 37% of the links in L (27% in C) are not detected in D, among 
those 25% of the links have a weight that is higher than the median (26% in C) (Figure 3g), and 71% 
(73% in C) are links between municipalities at long-range distance (Figure 3g). Instead, 12% of links 
detected in L do not exist in C. These links connect home locations to destinations in which people do 
secondary activities (See Method), presenting coupling probability lower than the median of coupling 
probability in L (Figure 3). 
 
 
Epidemic simulations 
 
To assess the role of the aggregation approach on disease diffusion, we integrated the estimated coupling 
matrices in a spatially explicit metapopulation model. We considered three different epidemic scenarios: 
i) the top value in the confidential interval of Ebola Virus, 𝑅0   = 3 (high transmissibility);  ii) the top value 
in the confidential interval of Influenza, 𝑅0   = 1.5 (medium transmissibility); iii) a scenario Influenza-like 
with control measures in action, 𝑅0   = 1.1  (low transmissibility). 
 
For each scenario, we compared the output of the simulated epidemic equally initialized in D, L, C. We 
initialized the epidemic with 10 infected people and, we performed the simulations for 92 epidemic seeds 
(46 urban area and 46 rural one). Seeds are selected by considering all the urban areas and the top 10% 
of rural locations with the highest variation on outgoing and coupling probability between D and L. We 
investigated a set of global epidemics observables to characterize the simulated epidemic in time and 
space. We then based the comparison on two main observables: i) the arrival time of the infection in each 
location and ii) the invasion epidemic paths from the seed.  
 
i) The arrival time. Over all, the lower coupling probability measured by D results in delayed arrival times. 
The arrival time in D ranges from few weeks to almost 410 days, while in L and C is quite lower, not 
exceeding 250 days. Arrival time in D and C are in accord to observations on spatial transmission driven 
by commuting flows modelled by9 with a similar metapopulation approach, but with different source to 
infer coupling forces. Considering L and C, the median of the relative variation on the arrival times is 0 for 
each 𝑅0  (Figure 4a) while it is quite higher (around 100%) comparing the two methods with D. We 
looked at the time when the 5% of the patches have been infected (𝑡5%). As shown in Supplementary 
Information (Figure 4), the relative variation on 𝑡5% between L and C do not exceed 200% and the 
median is 0, while between D,L and D,C it ranges from -100% to 1200% with a median of around 100%. 
In addition, L and C present a high correlation in the ranking of the arrival time in any location (Kendall 
tau coefficient ranging from 0.65 to 0.90). Kendall tau coefficient is not so high instead between D and the 
other two methods, Figure 4b. It means that L and C not only reproduce a quite similar distribution of the 
arrival time, but they also simulate the arrival of the epidemic in any place with the same ranking. 
Furthermore, the maximum geographical distance achieved at 𝑡5% is much smaller in D compared with L 
and C (Figure 4c). As the map shows in Figure 4d when 𝑅0   = 1.1 the first 5% of municipalities infected 
in D are clustered close to the capital Dakar, while in L and C the epidemic invasion is more 
heterogeneous in space. Similar results with  𝑅0   = 1.5, and 𝑅0  = 3 are reported in the Supplementary 
Information.  
 
 
ii) The spatial invasion. We found L and C reproduce also similar heterogeneous paths of invasion in the 
country, accordingly with observed epidemic patterns of spatial invasion for emerging epidemics 
including H1N1 pandemic35, and the recent COVID-19 pandemic36. We selected only two locations as 
epidemic seed, Dakar and a rural area in the department of Saraya. The rural area is the furthest 
municipality from Dakar, and it is in the top 2% of municipalities with the highest variation in the 
outgoing probability between D and L. We computed the invasion trees by considering the likely epidemic 
invasion paths. We analyzed the similarity between invasion trees with a distance metrics based on the 
betweenness centrality (see Method). We found that the betweenness distance on the trees between C 
and L is lower compared with D,L and D,C as shown in Figure 5 (D,L <0.05, D,C and D, L range from 0.05 
to 0.25). Trees are shown in Figure 5d. We quantified the epidemic invasion distance (𝑑𝑖𝑛𝑣) on the 
invasion trees as the number of hops from the seed needed to infect a given place (See Methods).  We 
found that in D the invasion is mainly fragmented into short-distance hops (Figure 5b,c). Focusing on the 
first layer of infection (𝑑𝑖𝑛𝑣 = 1), as shown in Figure 5d, the infected locations are clustered close to the 
seed, while in L and C these are more heterogeneously distributed in space. It means that C and L 
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reproduce more realistic epidemic patterns, integrating long-range transmission with local-range 
dispersal.  
Looking at the invasion trees in D, C and L, a key difference is played by the holy city Touba, the second 
most populated Senegalese city after the capital Dakar. For each method, Touba has always the role of the 
top spreader (i.e. maximum out-degree on the tree 𝑘𝑜𝑢𝑡

𝑡𝑟𝑒𝑒 . For instance, with 𝑅0 = 1.1, 𝑘𝑜𝑢𝑡
𝑡𝑟𝑒𝑒  ranges from 11 

to 19 in D and from 47 to 64 in L and C. In C and L around the 15% of the municipalities are infected by 
Touba, while in D less than 5%. In Figure 4d is shown that the invasion probability at 𝑡5% in Touba in L 
and C is around one order of magnitude higher compared with D. Given the strong daily connection for 
commuting and commercial exchanges between Dakar and Touba37, results suggest that L and C better 
perform the modelled epidemics by detecting Touba as a relevant epidemic hotspot. This was also 
confirmed by the invasion dynamics of COVID-19 in Senegal which begun in Dakar and in few days 
reached also Toubap38. In any case, the differences between the simulated epidemic outcomes decrease, 
as expected, with high values of transmissibility (See SI).  
 
 
Finally, we introduced the matrices D',L',C' to improves the previous matrices D,L,C and we analyzed the 
differences on the relative epidemic outcomes. We computed L' by considering the time spent in a place, 
interpolating exactly the time spent in any location based on the time slot of two consecutive calls, and 
not the number of calls as in L. C' is computed accounting for the most visited location over 12h (7am-
7pm), and not over all 24h as in C. Reducing the time window, we aimed to capture the workplaces as 
most visited location. Last, D' is computed by considering the time elapse between any two displacement 
instead of the number of displacement as in D. We also defined 𝐷𝑛𝑜𝑟𝑚 to try to well normalized D on the 
different mobile phone users' activity profiles (See Supplementary Information). 
 
Little differences exist between L, L' and C, C', while relevant ones are found between D and D'. We found 
that in L' the outgoing probability decreases compared with L. It is probably a bias on the overestimation 
of the outgoing probability in L as users make few calls during the night and in this scenario the number 
of calls it is not a good proxy of time spent there. Relevant differences between D and D’ could mean that 
users do a lot of consecutive calls in a short period in the same place, leading to an underestimation of the 
outgoing probability in D. Then, we found that the outgoing probability in C' is higher compared with C 
(Figure 6a). Intuitively, it means that the most visited location computed over the 12 daily hours more 
likely not match with the home location.  
 
Assessing the impact on the modelled epidemics, we have found that L' and C' do not involve crucial 
differences compared with L and C (Figure 6b,c, d). Meanwhile, D' reproduced a spatial diffusion that is 
more similar to L and C. However, the invasion distance distribution in D' is higher compared with L and 
C. It depends on the 40% of links missing in D’ existing in L and C. It suggests that D and D' are not well-
defined to detect epidemiological couplings among locations. 
 
Our findings indicate that preserving the full resolution of the observed trajectory of individual 
movements (D,D') may bias the spatio-temporal diffusion of the simulated epidemic in both the timing 
and pattern of invasion. Instead, the aggregation of visited locations (L,L'), while loosing all information 
about their sequence in an individual path, reproduce realistic simulated patterns. High similarity 
between L,L' and C,C' suggests that for a range of epidemic contexts, secondary activities have no 
significant impact on the spread. While, places in which individuals spent most of their time are the main 
driver of disease diffusion, as it was found in the largest US metropolitan areas in which researchers 
found that the majority of COVID-19 infections came in a subset of highly visited points of interests27. D 
and D' could be a good option in the case is important to know the actual path of the individuals, such as 
migration processes, in which it is important to track displacements from previous resident place to new 
home location. 
 
Discussion 
  
In the last decades, mobile phone data have been largely incorporated into epidemic models to study how 
epidemics transmission occur6. Mobile phone traces indeed have been helpful to understand the spatial 
transmission of many outbreaks including malaria13,15 , cholera12,16, schizosomiasis17, Ebola21,22, dengue18, 
HIV19,20.  
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Since the beginning of COVID-19 pandemic, mobile phone data has been used to help fight the public 
health emergency. In this context, many network operators and private companies made a huge effort to 
rapidly share their data under legally and ethically compliant frameworks25,26,33. Researchers all over the 
world started dealing with such high-resolution data to track human behavior and inform epidemic 
models23,27–29. 
 
Adequately aggregating human movements become particularly relevant for improving reliability of 
projections of infection diseases models. On the other hand, it is also become crucial in the assessment of 
the meaningful mobility information needed to inform models in order to minimize the sharing of 
sensitive data between data providers and researchers.   
 
To answer this questions, we extracted three coupling matrices, D,L,C at higher, medium and lower 
resolution, respectively, and we aimed to assess the different impacts of using D, L and C to simulate 
emerging epidemics. We designed an implicit metapopulation model. The matrices constituted the input 
data to inform our spatial modelling framework. We proposed a new non-Markovian model in which the 
force of infection in a given place is based on three categories of infected people: people not moving, 
visitors, returning residents. In the model, we introduced a normalization factor on the effective 
population that is composed of all these three categories of people. 
 
 
We found two key results: i) preserving maximum resolution of the individual trajectories involves a bias 
in the simulated epidemics; ii) the only information on the daily users' most visited location is sufficient 
to model the spatial transmission. Keeping the full resolution of the individual trajectories, Displacement-
based method (D) involves a delay in the simulated epidemics. Accounting for any displacement of the 
users, in D the epidemic invasion is mainly fragmented in short-range hops, and it presents a radial 
diffusion.  
 
Instead, C and L not consider the actual trajectory, but they take into account the home of the individuals 
and the time spent in each location. This allows to account for the duration of travels, which plays a 
crucial role in shaping epidemics39,40. This approach capture the locations in which individuals spend time 
and the ones in which they only pass by. Due to that, L and C reproduce more realistic spatial and 
temporal epidemic patterns by simulating both short than long-range contagions. The high similarity 
between L and C suggests that all secondary activities considered in C are less relevant in the infection 
dynamics. 
 
We underlined the limitations to use D approach. D by fragmenting the actual trips in several 
displacements does not capture the origin and destination locations. A possible solution could be to 
correct this bias by identifying the anchor points of people’s call activities, and then defines movements 
between different anchor points as trips as in 41. Moreover, 𝑝𝑖𝑗  in D is defined accounting for users' 

displacements at different time scales, involving a limitation at defining the timescale of the simulations 
in modeling. Also 𝐷𝑛𝑜𝑟𝑚 which is properly normalized over the different user profiles, however, not 
reproduce realistic epidemics patterns. It suggests that the Displacement-based approach could not be 
used to model emerging epidemics with a metapopulation approach. This approach might be instead 
considered modelling radial diffusion, such as to model epidemic invasion due to migrations flows. 
 
We are aware that this work has some limitations. Mobile phone's access and usage depend on 
demographic and socioeconomic properties of individuals. In most countries, mobile phone billing is 
proportional to the number of call and SMS, generating a large inequality in individuals' activity and thus 
in data representativeness between social strata42. Data is indeed most representative of urban 
populations for target subgroups, suffering from demographic and geographical representativeness, and 
other issues concerning ownership, mobile phones sharing and, heterogeneity in cell tower distribution 
and in individuals'42–45. 
However, the aggregation of mobile phone individual trajectories into coupling forces thought a 
metapopulation approach allows to partially avoid mobile phone biases46–48. To reduce biases, we 
aggregated individual trajectories at cell tower level to coupling forces at municipality level, breaking 
down locations in urban and rural areas. I also proposed the aggregation approach L' and D' to correct the 
heterogeneity in individuals' activity. Moreover, the metapopulation structure is designed at municipality 
level, averaging the time spent into indoor and outdoor locations. We are aware transmissibility in these 
places are different, however, our aim was to compare modelled outcomes by varying mobility definition 
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and resolution at global level to reproduce epidemic spatial invasion, and not to design an ad hoc model 
for specif locations. 
 
Further work will be focus on comparing mobile phone aggregation procedures at different spatial scales, 
aiming to assess if our results are robust across the spatial granularity of the metapopulation structure. 
However, reducing the spatial scale means averaging on all the heterogeneities, so we expect the 
differences between the aggregation methods will drastically decrease. Our study was performed in 
Senegal in a peacetime period, i.e. ongoing epidemics were not present.  We expect results will not change 
in other developing countries having a similar cultural, social, and economic situation. Last, the work is 
not validated on epidemiological data. However, the heterogeneous  invasion patterns modelled in L and 
C has been observed during the COVID-19 epidemic in Senegalp38.  In other countries, heterogeneous 
invasion patterns have been also experienced both for epidemics with a medium transmissibility rate like 
Influenza49 and in faster epidemics like Ebola50.  Further investigations are, however, needed to validate 
the results on epidemiological data. 
 
 
Methods 
 
Dataset description 
                                   
The research is based on the analysis of pseudo-anonymised mobile phone data collected by Orange. The 
dataset consists in a set of Call Detail Records (CDRs) of phone calls and text exchanges between Orange’s 
customers generated every time that a person does an activity by making a call or sending a message. 
Each record contains several attributes: the caller and callee IDs, the time-stamp, the duration of the 
activity, the type of communication (national, international, call outgoing, call incoming) and the 
identifier of the antenna that handled the activity. We analyzed a set of 15,859,942,126 records of 
9,569,425 million mobile phone users (80 % of the country population) from January to December 2013 
handled by 15999 Orange antennas. The antennas are heterogeneously distributed over the whole 
territory of Senegal, covering all 46 urban municipalities and 357 out of 437 rural ones. Given the 
fluctuations in time of the number of active antennas, the number of covered municipalities is time-
varying over the year. So, we considered only the municipalities covered throughout the entire 2013. We 
thus selected 394 ones (46 urban and 348 rural). We retained only users who have been active more than 
30 days and with less than 1000 mobile activities per week. Since shared phones is a phenomenon very 
common in Africa44, the threshold on the maximum number of activities per week allows avoiding bias 
due to multi-ownership of the phone. 
 
Coupling Matrices 
 
Mobile phone data allows tracking individual daily trajectories by interpolating every user's 
displacements based on two consecutive activities (calls/SMSs). By aggregating in time and space 
trajectories of all users, it can be defined a matrix, so-called Coupling Matrix, for estimating the 
probability of epidemiological coupling between locations. We quantified the impact of  different levels of 
aggregation by extracting three coupling matrices largely used in literature at highest, medium and 
lowest resolution11,12,44. For each method, we extracted 12 monthly coupling matrices at municipality 
level. The coupling matrices of the three methods as defined as follows:  
 
 
Displacement-based coupling matrix D 
 

𝑝𝑖𝑗
𝐷 =

∑ 𝐷𝑖,𝑗
𝑢

𝑢𝑖

∑ ∑ 𝐷𝑖,𝑗
𝑢

𝑢𝑖𝑘
 

 
 
where 𝐷𝑖,𝑗

𝑢  is the number of times user u moves from location i to j. This method is at high resolution as it 

keeps the temporal sequence of each displacement of the users. The coupling probability between two 
locations is defined as the probability of moving from one place to another. In this approach, the time 
spent by users in any place is not considered. In fact, each displacement has the same weight in the total 
sum, regardless of the time elapsed between two consecutive displacements. In a further work51, Lima et 
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al. introduced another formulation where𝐷𝑖,𝑗
′𝑢 is re-defined as the sum of the time elapsed between any 

displacement between 𝑖 and 𝑗 done by the user 𝑢. We called this new approach 𝐷′. The new definition 
aimed to correct 𝐷 by reducing the bias due to the heterogeneity in time and space of the number of calls 

made by mobile phone users. To improve D, we defined also 𝐷𝑛𝑜𝑟𝑚, where 𝐷𝑛𝑜𝑟𝑚
𝑢 =

𝐷𝑖,𝑗
𝑢

𝑁
   where N is the 

number of activities of the user u. 
 
 
Location-based coupling matrix  L 
 

𝑝𝑖𝑗
𝐿 =

∑ 𝐿𝑖,𝑗
𝑢𝑖

𝑢𝑖

∑ ∑ 𝐿𝑖,𝑘

𝑢𝑖
𝑢𝑖𝑘

 

 
 

where 𝐿𝑖,𝑗
𝑢𝑖  is the number of calls made in j by user 𝑢𝑖  living in i. Users living in i are detected by extracting 

individuals that do the most number of calls in i during nighttime - from 7 pm to 7 am. This is a well-
established method used in literature to define the home location of mobile phone users7. In this method, 
the information of the temporal sequence of any individual displacement is lost, and the coupling is 
proportional to the number of calls made by users in each location. By assuming that the number of calls 
made by users in a place is proportional to the time that they spend in it, this method measures the 
coupling between any two locations i-j as the probability of being in j living in i. In this approach, all the 
locations users visits are divided into places where they spend most of their time and places where they 
just spend few minutes. However, by accounting for the number of calls, in this case as in the 
displacement-based one, there is a bias due to the heterogeneity of the activity of mobile phone users.    
 

To improve L, we defined also  𝐿′𝑖,𝑗

𝑢𝑖  𝑤ℎ𝑒𝑟𝑒 𝐿′𝑖,𝑗

𝑢𝑖  is the time spent in j by a user 𝑢𝑖  living in i. We extracted 

the effective time spent in a given location by looking at the time elapsed between two consecutive calls 
and assuming users spent half of the time in the origin location, and half of the time in the destination 
location.   
 
Most visited location-based coupling matrix  C 

 

𝑝𝑖𝑗
𝐶 =

∑ 𝐶𝑖,𝑗

𝑢𝑖
𝑢𝑖

∑ ∑ 𝐶𝑖,𝑘

𝑢𝑖
𝑢𝑖𝑘

 

 

𝐶𝑖,𝑗

𝑢𝑖 is the amount of time user 𝑢𝑖 spends at his most visited location daily in j. The most visited location is 

measured as the location where a user makes the maximum number of calls during all day (24h).  
Therefore, this method takes only locations where users spend most of their time into account (home, 
work or school places). Any other less visited location is neglected. As in the Location based one, the 
coupling between any two locations i-j in this method does not represent the actual probability of moving 
from i to j. In this case the coupling probability is the probability of spending most of the time in j living in 
i.  Since the most visited location often coincides with the work location of an individual, this aggregation 
process may be considered an extraction of the commuting fluxes. Tizzoni et al. 9 found similar patterns in 
three European countries.  
 

To improve C, we defined 𝑎𝑙𝑠𝑜 𝐶𝑖,𝑗
′′𝑢𝑖 , 𝑤ℎ𝑒𝑟𝑒  𝐶𝑖,𝑗

′′𝑢𝑖 , 𝑖𝑠 the number of time that user 𝑢𝑖  has his/her daily 

most visited location in j. In C', the most visited location is measured as the location where a user makes 
the maximum number of calls during the daytime (7am-7pm).  
 
  
Epidemic metapopulation model 
 
To quantify the impact of the coupling matrices on the modelled epidemic diffusion, we computed 
numerical simulations  based on a metapopulation approach. We developed a new stochastic, discrete 
and Non-Markovian model. It accounts for disease transmission due to visitors and to staying and 
returning residents. In fact, people leaving in a location are exposed to an infection carry by (i)  people 
not moving  (ii) visitors and (iii) residents infected in other locations. The Senegalese population is 
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spatially divided in 394 municipalities depending on census data and links between municipalities are 
defined from coupling matrices. We considered a SEIR (Susceptible - Exposed - Infectious - Recovered) 
epidemic dynamics in a closed population with no births or deaths52. The discrete-time SEIR model has 
the following form: 
 

𝑆𝑖(𝑡 + 1) = (1 − 𝜆𝑖)𝑆𝑖(𝑡) 
 

𝐸𝑖(𝑡 + 1) = (1 − 𝜖)𝐸𝑖(𝑡) + 𝜆𝑖𝑆𝑖(𝑡) 
 

𝐼𝑖(𝑡 + 1) = (1 − 𝜇)𝐼𝑖(𝑡) + 𝜖𝐸𝑖(𝑡) 
 

𝑅𝑖(𝑡 + 1) = 𝑅𝑖(𝑡) + 𝜇𝐼𝑖(𝑡) 
 

𝜆𝑖 , 𝜖, 𝜇 are the force of infection in a subpopulation i, the incubation rate and the recovery rate 
respectively. 𝑆𝑖(𝑡), 𝐸𝑖(𝑡), 𝐼𝑖(𝑡), 𝑅𝑖(𝑡), denote the number of susceptible, exposed, infected and recovered 
individuals at time t. For every 𝑖, 𝑁𝑖 = 𝑆𝑖 + 𝐸𝑖 + 𝐼𝑖 + 𝑅𝑖  where 𝑁𝑖 is the number of resident in the 
municipality i. 
 
Taking into account the coupling between patches, the force of infection in a node i is calculated as:  
 
 

λi = λii + ∑ λji
v

i≠j

+ ∑ λij
r

i≠j

 

 

λii = βpii
2 Ii

Nî

 

λji
v = β piipji

Ij

Nî

;  λij
r = β pij

Iĵ

Nĵ

 

where 𝑝𝑖𝑗  is the coupling probability between patches i and j,  

 

𝑁𝑖̂ = 𝑝
𝑖𝑖

𝑁𝑖 + ∑ 𝑝
𝑗𝑖

𝑁𝑗

𝑗

 

 
is the effective population in i and  
 

𝐼𝑖̂ = 𝑝
𝑖𝑖

𝐼𝑖 + + ∑ 𝑝
𝑗𝑖

𝐼𝑗

𝑗

 

 
is the effective number of infections. 
 
The initialization of the simulations consists in setting in one patch i=10 infected individuals. We set the 
parameters as follows: the average incubation period is 𝜖−1 = 1.5 days, the average duration of the 
infection is 𝜇−1 = 3days. We explored different values of the basic reproduction number 𝑅0 = 1.1,1,5,3, 
low, medium, high transmissibility, respectively.  Stochastic simulations are computed by assuming 1 day 
as time step of the simulation. 
 
 
Analysis 
 
Comparison between coupling matrices 
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To underline similarities and differences of the three matrices, we compared any pairs of associated 
coupling networks. We analyzed separately two subsets of links, i) links detected in both the two 
compared matrices,  ii) links detected only in one of the two compared matrices or links not detected in 
both. In i) we performed a network regression analysis (MRQAP) to test the correlation between coupling 
probability of the links for each pair of matrices53. We explored how relative variation among matrices of 
coupling probabilities are related or not with the geographical distance. Then, to study the correlations of 
coupling patterns among the 12-month time periods of the matrices, we implemented a hierarchical 
clustering. For each month, we constructed the vector of all pairwise coupling probability among the 

locations. Then, we implemented the Pearson correlations 𝜌 among any two vectors of the 12 monthly 
periods, and we define a dissimilarity matrix 12 x 12 in which each element 𝑚𝑖𝑗 = 1 − 𝜌𝑖𝑗 . The 

hierarchical clustering is evaluated on the euclidean distance between any two element of the matrix. 
Instead, in ii) we computed the percentage of links in one matrix that are not detected in the others, and 
we put in relation the percentage of these not-detected links with the geographical distance among not-
coupled locations. Geographical distance is computed between any two locations by using the Haversine 
Formula. Last, we looked at the outgoing probability in each municipality. The outgoing probability is 
defined as follows: 
 

𝑝𝑜𝑢𝑡 = ∑ 𝑝𝑖𝑗

𝑖≠𝑗

= 1 − 𝑝𝑖𝑖 

 
Comparison between simulated epidemic outcomes 

 
By assessing how the level of the spatio-temporal aggregation of the individual trajectories impacts the 
modelled epidemic diffusion in space and in time,  we  kept  track  of  the following epidemic observables. 
First, we investigated the temporal diffusion of the epidemic, measuring the arrival time t_a of the 
epidemic in any location. The arrival time t_a of the epidemic is the first time that an individual become 
infected in a given municipality. The probability distribution of the arrival time and its median value are 
evaluated for every location in each synthetic scenario. We also evaluated the Kendall tau correlation 
coefficient for exploring if the ranking  of the epidemic arrival time. By tracking the spatial diffusion of the 
simulated epidemic, we measured the epidemic  invasion  tree2,9 which represents the most likely 
transmission path of the infection over all the duration of the epidemic. Considering a disease-free 
location i, as soon as 𝐼𝑖 ≠ 0, we tracked a directed link between i and the location of origin of the infected 
individual. For each scenario, for each run, we extracted the invasion path. Then, by cumulating over the 
runs, we obtained a unique invasion path where the weight of the links is the percentage of the number of 
runs in which that link exists. Once the invasion path is obtained, we calculated the invasion tree by 
measuring the direct maximum spanning tree. To avoid the stochastic fluctuations of the epidemic 
simulations, we computed invasion tress by doing 1000 runs, and selecting randomly for 50 times 400 
runs. We compared  the invasion  trees through two metrics: the betweenness centrality distance54 and 
the invasion distance. The betweenness centrality distance between coupling matrices X and Y is defined 
as follows: 
 

𝑑𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑋, 𝑌) = √∑(𝑏𝑖
𝑋 − 𝑏𝑖

𝑌)2

𝑛

𝑘=1

 

 
 
where the betweenness centrality of a node i is given by the expression: 
 
 

𝑏(𝑖) = ∑
𝜎𝑠𝑡(𝑖)

𝜎𝑗𝑘
𝑠≠𝑗≠𝑘

 

 
𝜎𝑗𝑘 is the total number of the shortest paths from node 𝑗 to node k and 𝜎𝑗𝑘(𝑖) is the number of those 

paths that pass through i. The invasion distance in any invasion tree is measured for each node, and it is 
the number of edges connecting the considered node with the root. We also computed the invasion 
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probability in any node, considering both urban and rural seeds. We defined the invasion probability 
𝑝(𝑡)𝑖𝑛𝑣 for a patch 𝑖 as the probability that the epidemic reaches i in a given time t. 
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Figures 
 
 
 

 
Figure 1. The aggregation processes. D) High-resolution method11; L) Medium-resolution method12; C) 
Lower-resolution method44.  
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Figure 2. Coupling forces. a) Coupling probability distribution in D, L, C. Curves represent the average of 
the coupling probabilities among the 12 matrices. b),c),d) Box plots indicate the 95% reference range in 
January of the coupling probability, the outgoing probability distribution and the geographical distance, 
respectively. These represent a subset of links extracted by breaking down municipalities into Urban (U) 
and Rural (R). e) Outgoing probability distribution in D, L, C. f) Map of the outgoing probability in any 
municipality for D, L and C. Same distribution patterns have been found throughout thee years. 
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Figure 3. Differences between D, L and C. Box plots indicate the 95% reference range of the distribution 
of the relative difference of coupling probabilities of the common links among D, L, C and of the relative 
difference of outgoing probability of the common links among D, L, C in b). In c) and d) The curves display 
the coupling probability distribution for a subset of common links. Subsets of links are extracted a 
different cut-off of the relative variation between D, L and L, C on the coupling probability. The dotted 
lines show the median of the geographical distance distribution for the same subset of links. e) and f) 
show the percentage of links and patches present in any subset and the relative percentage of links 
extracted by breaking down municipalities into Urban (U) and Rural (R). g) Not-common links analysis. In 
the three matrices are shown the percentage of links detected by the aggregation method in the column 
and not detected by the aggregation method in the row (yellow matrix), the relative percentage of such 
not-common links with coupling probability higher than the median (green matrix) and the relative 
percentage of such not-common links with geographical distance higher than the median (violet matrix). 
 
 
 
 

 
 
Figure 4. Differences on mode led epidemics. Box plots indicate the 95% reference range of a) The 
relative variation of the arrival times in any municipality between any pair of the three methods b) The 
Kendall tau probability by comparing D, L, D, C and L, C c) The maximum geographical distance achieved 
from the seed at 𝑡5\%. 𝑡5\% is the time when the 5% of the municipalities have been infected (𝑡5\%). 

Analysis of urban (U) and rural (R) epidemic seeds were done separately. d) Visualization on the map of 
the invasion probability 𝑝𝑖𝑛𝑣 at 𝑡5\% in the three methods with a municipality of the capital Dakar as seed 

and 𝑅0 = 1.1. The location with the red dot is the epidemic seed. 
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Figure 5. Epidemic invasion trees. Epidemic invasion trees have been computed for 𝑅0 = 1.1,1.5,3 
considering both an urban (U) and a rural seed (R). a) Box plots indicate the 95% reference range of the 
betweenness centrality distance index measured between the epidemic infection trees of any pair of 
methods. b) and c) The distribution of the invasion distance in the three methods when 𝑅0 = 1.1. d) and 
e) The invasion trees when 𝑅0 = 1.1. Epidemic seeds are in red. Locations directly infected by the seed 
are in orange, while locations infected by other nodes are in gray. 
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Figure 6. Sensitivity. a) The outgoing probability in January in D, L, C and D', L', C' by breaking down 
municipalities into Urban (U) and Rural (R) seeds, b) Kendall tau probability by comparing D, D', L, L' and 
C, C' by breaking down into urban and rural seeds. c) Betweenness centrality distance index measured 
between the epidemic invasion trees of any pair of methods. Box plots indicate the 95% reference range.  
Betweenness centrality is measured on the invasion trees by selecting only an urban (U) and a rural seed 
(R). d) Visualization on map of the epidemic invasion distance when the capital Dakar (red circle) is the 
epidemic seed and 𝑅0 = 1.1. 
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