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Abstract ”

Individual-level variation in susceptibility to infection and transmissibility of infection can 35

affect population-level dynamics in epidemic outbreaks. Prior work has incorporated 36
independent variation in susceptibility or transmissibility of individuals into epidemic 37
compartmental models. Here, we develop and assess a mathematical framework that 38
includes covariation in susceptibility and transmissibility. We show that uncorrelated 30
variation in susceptibility and transmissibility leads to an effective transmissibility 40
distribution that has a constant coefficient of variation such that the epidemic dynamics a
match those with variation in susceptibility alone, providing a baseline for comparison a2
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across different correlation structures. Increasing the correlation between susceptibility and 4
transmissibility increases both the speed and strength of the outbreak — and is indicative of 4
outbreaks which might be strongly structured by contact rate variation. In contrast, s
negative correlations between susceptibility and transmissibility lead to overall weaker "
outbreaks — with the caveat that the strength of effective transmission increases over time. 4
In either case, correlations can shift the transmissibility distribution, thereby modifying the s

speed of the epidemic as the susceptible population is depleted. Overall, this work 4
demonstrates how (often unaccounted) covariation in susceptibility and transmission can 50
shape the course of outbreaks and final outbreak sizes. 51
1 Introduction 2

Individuals differ in response to infection: some people may be more likely to get sick than s
others, and some people may be more likely to transmit an infection on to others. Variation s
in susceptibility to infection has been introduced into susceptible-infectious-recovered (SIR) s
(and related) compartmental epidemic models (Kermack & McKendrick, 1927) to account for s
intrinsic heterogeneity (Rose et al., 2021; Gomes et al., 2022), extrinsic differences based on, s
e.g., age-dependent contact rates (Davies et al., 2020; Lovell-Read et al., 2022), or differences s
in prior immunity (Gart, 1972). Prior research has found that variation in susceptibility s
reduces the epidemic burden (i.e., outbreak size) relative to the homogeneous model (Ball,
1985; Dushoff & Levin, 1995; Coutinho et al., 1999; Dushoff, 1999; Dwyer et al., 2000; &
Novozhilov, 2008; Novozhilov, 2012; Karev & Novozhilov, 2019; Britton et al., 2020; Rose e
et al., 2021; Gomes et al., 2022; Tuschhoff & Kennedy, 2024). Hence, the distribution of &
heterogeneity in susceptibility and the epidemic burden can jointly vary: when susceptible e
individuals become infected, the joint variation leads to the redistribution and ‘sculpting’ e
of the susceptibility distribution. The sculpting leads to epidemic slowdowns relative to e
that of the homogeneous case, reflecting a fundamental difference in the nonlinearity of &
incident infections. As shown in Rose et al., 2021, the susceptibility distribution is sculpted s
toward eigendistributions e.g., including gamma distributions with a constant coefficient of e
variation. Therefore, outbreaks may appear similar during the early stages, but heterogeneity 7
in susceptibility can slow the speed of the epidemic, leading to lower final outbreak sizes (Rose =
et al., 2021; Gomes et al., 2022), akin to similar impacts of awareness-induced behaviour =
change (Eksin et al., 2019). 73

Variability in transmission has also been studied in epidemic models. In practice, the
number of secondary infections caused by a focal infected individual can exhibit significant
variability, linked to pathogen type, host features, environmental context, and mode of 7
transmission (Lloyd-Smith et al., 2005; Wong & Collins, 2020; Meehan et al., 2023; Murayama =
et al., 2023). The extent of variation is often measured in terms of an effective ‘dispersion’
parameter of a negative binomial distribution fit to secondary cases (Lloyd-Smith et al.,
2005; Lloyd-Smith, 2007; Endo et al., 2020). During the COVID-19 pandemic, household
surveys suggest significant variation in both susceptibility and transmissibility (Anderson «
et al., 2023); and contact survey data has shown that age-dependent variation in contact s
rates can be a key driver of variation in transmission (Zhang et al., 2020; Quilty et al., s
2024) and susceptibility (Britton et al., 2020). Notably, the presence of heterogeneity in &
transmission may make diseases harder to control at the outset (Frieden & Lee, 2020; Goyal s
et al., 2022) but can make them more vulnerable to control via mitigation aimed at reducing s
the relatively small fraction of superspreading events (Frieden & Lee, 2020; Sneppen et al., &
2021). Variation both in susceptibility and transmissibility has previously been introduced s
to epidemic compartmental models. For instance, in a parasite-host system, susceptibility s
values were fit to dose-response data, revealing that the transmission rate is lower with o
more heterogeneity (Dwyer et al., 1997). Additionally, models with uncorrelated variation in = &
susceptibility and transmissibility have previously been explored — showing that power-law o
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distributions in transmission can arise from epidemic dynamics unfolding given initial gamma o
distributed susceptibility and transmissibility (Novozhilov, 2012). o

Together, variation in both susceptibility and transmissibility can shape disease dynamics, o
but compartmental epidemic models have not yet accounted for the effects of potential s
covariation on dynamics. For example, individuals who interact more with others may be o
more likely to become infected and more likely to infect others (e.g., if they continue to
interact at similar rates when infectious). In this way contact rates could be considered o
as being equivalent to correlated variation in susceptibility and transmission — but, we 10
caution that many other factors may also be in play. Moreover, individuals may be more 1n
vulnerable to infection due to health, behavioural, social, and/or genetic factors that mean e
they have limited interactions when infectious (e.g., with trained health-care providers) and 10
are therefore less likely to infect others. Here, we advance an approach that is agnostic with 10
respect to contact variation in order to consider both the sign and strength of potential 10s
correlations between suceptibility and transmissibility more generally. In this manuscript, 1
we provide a mathematical framework that includes individual-level variation in both 17
susceptibility and transmissibility. The framework allows for comparisons between different 108
model implementations of variation in susceptibility and transmissibility and makes explicit 100
the consequences of covariation between susceptibility and transmissibility on outbreak 1w
dynamics. m

2 Model Framework "

2.1 Epidemiological dynamics of models with susceptibility and
transmissibility 14

We extend the model framework developed in Rose et al., 2021 to incorporate heterogeneity in  us
both susceptibility and transmissibility into SIR-like epidemic models. To do so, we consider 1
the following population compartment states: susceptible (S), infected (I), and recovered (R). ur
We assume that each individual in the population has a fixed intrinsic susceptibility value, s
e, as well as fixed intrinsic transmissibility value, 6. Hence, the S-I-R compartments are 1
functions of susceptibility (¢) and transmissibility (§) that we denote as S(t,¢,0), I(t,&,0), 120
and R(t,e,d). We denote S(t), I(t), R(t) to represent the respective population densities 1=
of all susceptible, infected and recovered individuals. Then we can define sub-population 12
densities: the susceptible sub-population density with intrinsic susceptibility € and intrinsic 12

transmissibility § is given by 124
S(t.e,0)
t,e,0) = ———— 1
fS( &y ) S(t) ) ( )
the infected sub-population density is 125
I(t.e,9)
t,e,d) = ————= 2
fI( yEs ) I(t) ) ( )
and the recovered sub-population density is 126
R(t.¢,0)
t,e,0) = ————. 3
fR( & ) R(t) ( )

Note that these definitions are joint densities such that at any time, ¢, then fooo fooo fs(t,e,d)dedd =
IS fi(te 0)deds = [J° [ fr(t,e,8)dedd = 1. To calculate the mean susceptibility
and transmissibility over time, we consider the marginal distributions relevant to the disease
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dynamics:
gs(t,e) ::/ fs(t,e,6)dd  (Susceptibility Distribution) (4)
OOO
hi(t,0) = / fi(t,e,8)de  (Effective Transmissibility Distribution) . (5)
0

The other relevant marginal distribution is the potential transmissibility distribution in 17
the susceptible population. This distribution is indicative of the remaining infectivity 1
of the population who might have the potential to be infectious in the future. During 12
the exponential growth phase of the epidemic individuals are drawn from the susceptible 13
population at varying rates that depend on an individual’s susceptibility to infection. As 1
individuals become infected, their contribution to effective transmissibility is drawn from the 13
potential transmissibility distribution, and thus, the effective transmissibility distribution 133
(Equation 5) is “filled in” by the potential transmissibility distribution given by: 134

hs(t,0) = / fs(t,e,0)de (Potential Transmissibility Distribution) . (6)
0

Given the susceptibility distribution (Equation 4) and transmissibility distributions (Equa- 13
tions 5-6), we can define the mean susceptibility and transmissibility. The mean susceptibility 13
to infection within the susceptible population is: 137

g(t) = /Oooegs(t,s) de , (7)

the mean effective transmissibility of individuals within the infected population is: 138

5i(t) = /O S ha(t,6)ds (8)

and the mean potential transmissibility of individuals in the susceptible population is: 139

So(t) = / S he(t,5)ds. )
0
Then the force of infection to the susceptible population with susceptibility level ¢ is:

At e) = BI(t)5r(t)e, (10)

where 3 is the baseline transmission rate. For each subpopulation with (e, d), the SIR model
equations with susceptibility and transmissibility heterogeneity can be written as:

0S(t,e,0)

- =A(t,e) S(t,€,9)

w = At,e) S(t,e,0) —v1(t,¢,0)

OR(t,e,d

%:’yl(taev(s) ) (11)

where + is the recovery rate of all infected individuals. See Appendix A for the derivation of 10
Equation 11 from discrete model variables. See Figure 1 for a visual representation of the 1a
model framework using discrete susceptibility and transmissibility variables. 142

Integrating with respect to the continuous variables, € and §, we can obtain the total
population incidence:

n(t) = Bor(t) I(t)(t) S(t) - (12)
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From here, differential equations for the following variables can be identified: the mean
susceptibility (£(¢)); the mean potential transmissibility (65(t)); and the mean effective
transmissibility (67(¢)). This model can be described by the following 6-dimensional system
of ordinary differential equations (where, for convenience, we set Cg(t) = covg(e,d)(t)
to represent the covariance between susceptibility and transmissibility in the susceptible

subpopulation):
S=-BoIeS
I=B611S—~1
R= v

E= —,nglgg(t)
0g = *651[05(0
5]:551 (Cs(t)+€_537§5[)5. (13)

Here, the dependence on ¢ is implicit for all time-dependent variables except for the covariance 113
between susceptibility and transmissibility in the susceptible subpopulation, Cs(¢), and the 1
variance, o2 (t), of the susceptibility distribution, gs(t,). This system is not closed for s
arbitrary starting joint distributions in the susceptible population, as Cs(t) and o2(t) may e
change over time, impacting the mean susceptibility and transmissibility as the epidemic 14
progresses. 148

2.2 Associations of correlations with epidemic strength and disper-
sion 150

Using the dynamical system presented in Equation 13, we can define the basic reproduction s
number (Rp) and dispersion (k) of epidemics as a function of the correlation coefficient (p) 12
between susceptibility and transmissibility. First, in a fully susceptible population, S =1, 1s
the basic reproduction number is given by: 154
_ B0

=—¢

- (0)6(0), (14)

Ro

where §7(0) is the mean effective transmissibility during initial exponential growth, and s
£(0) is the initial mean susceptibility. Note that without correlations (i.e., p = 0) between 15
initial susceptibility and transmissibility values, then 6;(0) = 05(0), but with correlations s
(i-e., p # 0), they can differ. During exponential growth, the joint distribution of the s
susceptible population is fixed, which implies that the derivatives, & = §g = 0. Hence, 15
both € and §g remain fixed during the exponential growth phase. Since the covariance of 10
the joint distribution of the susceptible population, Cs(t), also remains fixed during the 1
exponential growth phase, then covg(e,d) + &5 — 05 is constant. Hence, in order to obtain s

the reproduction number, we need to find d7(0) relative to §5(0). In order for 07 = 0 during 1
exponential growth, then 6; must converge to 67(0) = (£(0) ds(0) + covs(e,8)(0)) /2(0), and 1

the reproduction number is 165
Ro = g (£(0) 05(0) + covs(z, 6)(0)) . (15)

Then the reproduction number can be written equivalently as: 166
Ro =2 (0)35(0) + p(2,8)02(0)03(0)) (16)

where the correlation coefficient between susceptibility and transmissibility (during exponen- 167

tial growth) is given by p(e,d) = %. 168
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Second, to define the dispersion, k(t), of an epidemic we first let the mean susceptibility, 16
&(t), serve as a dimensionless progress variable. Rose et al., 2021 used ¢(t) = S fg I(s)ds o
as a dimensionless progress variable, noting that ¢(t) is proportional to the cumulative
infectious force. We compute the mean susceptibility (£(t)), potential transmissibility (65(¢)), 1
and effective transmissibility (67(t)) as the epidemic progresses over time. We also compute 1

the variances o2(t) and o2(t) in order to obtain the corresponding squared coefficients of 17
variation over time. , 1

From Equation 13, we follow the analysis in Rose et al., 2021 and have that % = Eﬁ'g 176
Using differential notation, d(In(x)) = dz/x, then the square of the coefficient of variation 17
for the susceptibility distribution (C'V?) is given by: 178

dnE®) o)
"0 = AmS0) ~ 20 1)

For given initial distributions, we compute the squared coefficient of variation for the
susceptibility distribution as well as the squared coefficients of variation for the potential 1s

and effective transmissibility distributions over time. 181
A B
A A Positive Correlation
Transmissibility
S —_—
o= 2 A NoComeluion Susceptible Population, S Infected Population, [ Recovered Population, R
= »
o= % g . 51"'5]‘"'51\1
o= t Q g .51,1-~- IRTERRSIN R
g = . -
- E g : e 1 4 : 1y B : :
A Negative Correlation = : i NP & Riy - Rij - Rin
Q en Rny - Ry Ry.N
——
Susceptibility

Figure 1. Model diagram: susceptible (S), infected (I), and recovered (R)
populations with individual variation in susceptibility and transmissibility. (A)
Positive correlation, no correlation, and negative correlation between individual susceptibility
and transmissibility. (B) S-I-R compartments are discretized into subpopulations distributed
according to susceptibility (e;) and transmissibility (6;). Here, A;(t) = A(¢,¢;) is the force of
infection to the susceptible population with susceptibility, €;, and v is the mean recovery
rate for all infected individuals.

3 Results -

3.1 Uncorrelated gamma-distributed susceptibility and transmissi- s
bility 184

We first examine the dynamics of Equation 13 when susceptibility and transmissibility are
uncorrelated. In this case, the covariance, Cg, is zero. Hence, from Equation 13, dg =0 and
so dg remains constant over time. If the initial potential and effective transmissibility values

are equal, i.e., 65(0) = 7(0), then 31(0) =67 (6s(0) — 67(0)) S = 0. Since g is constant,

6,/32


https://doi.org/10.1101/2024.10.11.24315334
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.10.11.24315334; this version posted October 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

then §; remains constant and equal to the initial potential value, 55(0). Therefore, without
correlations, Equation 13 further simplifies to

S=—-pB6/IzS

I=B61eS —~I

R:fyl

E=-Bo6r1d%(t). (18)

This nonlinear dynamical system is equivalent to prior work on variation in susceptibility 1ss
alone (Rose et al., 2021; Gomes et al., 2022). Here, the variance in susceptibility o2(t) is 1
denoted with explicit time ¢ to emphasize that it may change over the course of the outbreak. 1
In this work, we also introduce a variation of Equation 18, which we term the ‘reduced s
model’, in which we approximate the variance term o2(¢) using analytical results from (Rose s

et al., 2021). For uncorrelated gamma distributions, the reduced model sets the variance 10
&2 (t)

ol(t) = %~ where k. is the shape parameter of the gamma distributed susceptibility
distribution gg(e,t). For uncorrelated Gaussian distributions, the reduced model sets the 1
variance o2 (t) = 02(0). 193

To examine how the initial distributions changes through the epidemic dynamics, we first 10
consider initially gamma-distributed susceptibility and transmissibility values and examine 10
the squared coefficient of variation in susceptibility, x(t) = ‘;—g (SQee Equation 17). For 1
initially uncorrelated gamma distributions, we find that: () = % = , where k is the 1o
shape parameter of the susceptibility distribution, gs(0,¢). Here, the mean transmissibility, 1
61(t), is a multiplicative factor that modifies the force of infection. However, since 07(t) is 1
constant, the system collapses to the system with variation in susceptibility alone. Hence, 20
initially gamma-distributed susceptibility distributions remain gamma-distributed with mean: 20
£(t) = S(t)* (Rose et al., 2021; Gomes et al., 2022). That is, the same power-law relationship 0
between susceptibility (¢) and the susceptible population (S(¢)) holds here with uncorrelated 20
gamma-distributed variation in susceptibility and transmissibility. 204

We can analyze the change in the joint distribution of susceptibility and transmissibility — 20s
in the susceptible population, fs(t,&,0), through the epidemic dynamics. We find that 20

fs(t, e, ) satisfies the partial differential equation: 207
Ofs(t,e,d - _
U0 _ 15, (e~ ) fs(t.z.0). (19)
see Appendix B.1. Note that we can integrate Equation 19 over all transmissibility values so 28
that the marginal susceptibility distribution gg(t,¢) satisfies: 200
Jgs(t, e < _
Aggrjcz—ﬁl&(e—e)mﬂu@. (20)

It has been shown (see Section S3 in Rose et al., 2021) that distributions of the exponential 2w
family, including initially uncorrelated gamma distributions, with shape parameter k, of the ou
form: . 212
k Ek—l ke /e
te)=[(=) =——ehe/f 21
satisfy the PDE given in Equation 20. We show that gamma distributions that evolve with 23
a fixed shape parameter and Gaussian distributions that evolve with a fixed variance satisfy 2
Equation 20 (see Appendix B.2). 215
To verify this analysis, we can compare the simulations of the discrete model given in 26

Equation 11 with the uncorrelated reduced model in Equation 18, which sets the variance a7

=2
o2(t) = Ek—(:) Details of model parameterization and simulation are given in Appendix C-E. s
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Figure 2. Uncorrelated gamma distributions for susceptibility and transmissibility
distributions during exponential growth. (A) Incident infections. (B) The coefficient
of variation (squared) for susceptibility remains constant over time for gamma-distributed
susceptibility values. (C) The coefficient of variation (squared) in transmissibility remains
constant over time for gamma-distributed transmissibility values. (D) Initial joint distribution
(uncorrelated gamma distributions) for susceptibility values () and potential transmissibility
values (§). (E) Comparing susceptibility distributions at time points: o = 0 and ¢; = 50
days. (F) Potential and effective transmissibility distributions at time points: ¢, = 0
and t; = 50 days. The transmission rate is equal to 8 = 0.2, and the recovery rate is
equal to v = 1/10 such that the basic reproduction number is Rg = 2.0. Initial gamma
distribution shape parameters: k. = 3, ks = 10. The reduced model refers to Equation 18
with o2(t) = %(:) = @

For initially uncorrelated gamma-distributed susceptibility and transmissibility, the dynamics 21
of incident infections (Figure 2A, blue) agree with Equation 18 (Figure 2A, green dashed). 2
They also agree with the case of variation in susceptibility alone (Figure 2A, dashed black). 2z
Consistent with results of Rose et al., 2021, variation in susceptibility slows down incident 2
infections compared to the conventional SIR model (Figure 2A, gray). As predicted, the £ 2
for both susceptibility transmissibility remain constant over time (Figure 2B,C). We show 22
the initial joint distribution, fs(0,¢,d), in the susceptible population with uncorrelated sus- 2
ceptibility (e; z-axis) and potential transmissibility (0; y-axis) (Figure 2D). In Figure 2E, we 2
compare the susceptibility distribution, gs(t, ), at two time points during exponential growth: 2
to = 0 days (black circle) and ¢; = 10 days (violet circle). The distribution remains constant 2
during exponential growth when susceptible depletion is negligible. In Figure 2F, we show 22
the potential and effective transmissibility distributions at these time points. The epidemic 23
is initialized with a few infected individuals, and the effective transmissibility distribution, s
hi(t,d), in the infected population is determined by potential transmissibility, hg(t,0), in 2
the susceptible population. Thus, to remove transients, we make the initial transmissibility 23
distributions equal: hr(0,6) = hg(0,0). Then, we show that h;(0,d) = hy(t1,0) remains o
fixed during exponential growth (Figure 2F, gray matches dashed violet). These results 23
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indicate that initially uncorrelated gamma distributions remain gamma-distributed such 23
that the mean susceptibility satisfies £(¢) = S(¢)*, and the effective mean transmissibility 2
7 remains constant such that the transmissibility distribution hy(t,d) is constant over the 2
course of the epidemic. 239

3.2 Uncorrelated Gaussian-distributed susceptibility and transmis- o
Sibility 241

As a prelude to introducing correlations we consider initially uncorrelated truncated Gaussian 2o
distributions with low (Figure S1) and high (Figure 3) variance, such that €, > 0. For 2
the low variance case we show incident infections from discrete model simulations (using 2«
Equation 11) in Figure S1A. The coefficient of variation (squared) for susceptibility is 2
constant during the initial exponential growth phase of the outbreak, but increases during 2
susceptible depletion because the mean decreases faster than the variance (see Figure S1B). 2
Here, we set 0.(t) = 0.(0) in simulations of the reduced model (using Equation 18) and 2
observe increases in k(t) (Figure S1B), meaning that the mean susceptibility decreases. s
As predicted by our analysis, in reducing Equation 13 in the absence of covariation to 2s0
Equation 18, the coefficient of variation (squared) for transmissibility remains constant s
over time (Figure S1C). Despite the differences in x of susceptibility between the full and 2
reduced models, the reduced model can still approximate incident infections. Consistent with  2s3
results from Rose et al., 2021, Gaussian and gamma distributions are eigendistributions with 2
respect to the epidemic dynamics. Moreover, gamma distributions have constant x, whereas s
Gaussian distributions have constant variance (approximately, considering that Gaussian — 2s
distributions have proper support on the whole real line). 257

To better see the effects of correlations when incorporated, we also examine a high s
variance case in which we increase the variance for both the initial potential susceptibility  2so
and transmissibility distributions (¢2(0) from 0.15 to 0.5; and ¢Z(0) from 0.05 to 0.35). In 20
doing so, the effects of truncation on the bivariate distribution become more pronounced. 26
Even when the initial variances are increased, we can see reasonable agreement, albeit less 26
than with smaller variance, between the full and reduced model simulations (Figure 3A). For 2
truncated Gaussian initial distributions, the k in the reduced model simulations increase more  2e
than in the discrete model simulations (Figure 3B). Due to truncation, susceptibility variance s
decreases over time as well as the mean susceptibility. The reduced model x diverges as this e
model is unable to capture this decrease in variance over time, as by definition o2(t) = 02(0). a2
Despite this, the reduced model in Equation 18 provides a reasonable approximation of s
incident infections in the discrete model simulations with the highest discrepancies observed 260
during the decay phase (Figure 3A). 270
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Figure 3. Uncorrelated (high variance) Gaussian distributions for susceptibility
and transmissibility during exponential growth. Similar to Figure S1 but with
higher variances in the initial susceptibility and transmissibility distribution. (A) Incident
infections. (B) & for susceptibility. (C) & for transmissibility. (D) Initial joint distribution
of susceptibility and transmissibility in the susceptible population, fs(tg,¢,d), is given by
uncorrelated Gaussian distribution, truncated to have positive support in both ¢ and §.
(E) Susceptibility distributions at ¢ty and ¢;. (F) Potential transmissibility distribution
at to matches the Effective transmissibility distribution during exponential growth at t;.
Parameters: The transmission rate is 8 = 0.2, and the recovery rate is v = 1/10 such that the
basic reproduction number is Rg = 2.0. The variance values in the initial joint: o2(0) = 0.50,
02(0) = 0.35. The reduced model refers to Equation 18 with ¢2(¢) = ¢2(0) = 0.5.

3.3 Correlations between susceptibility and transmissibility modify -
the basic reproduction number m

Next, we introduce covariation by considering correlations between susceptibility and trans- 2
missibility and compare the ensuing epidemic dynamics with respect to the case without 2
correlations. We vary the correlation coefficient (p) from negative to positive, in simulations s
we explore scenarios over the range of values from —0.6 to 0.6, and find that the speed, i.e., s
the exponential growth rate, increases with increasing correlation (Figure 4A). Recall that onr
the basic reproductive number is dependent on the correlations between susceptibility and 2
transmissibility (Equation 16). In the absence of correlations (p = 0), the basic reproduction 2
number is Ry = B2(0)s(0)/v, and the product of the initial mean susceptibility and 2o
transmissibility multiply the basic reproduction of the conventional SIR model, 5/v. Note
that R is an increasing function of the correlation coefficient, p, which is in agreement with 2
simulations (Figure 4B). For p > 0, the more susceptible individuals are infected earlier and 2
are also more transmissible than on average, causing more transmission during exponential s
growth such that the basic reproduction number is greater than in the uncorrelated case. s
For p < 0, the basic reproduction number is less than in the uncorrelated case because  2s
the more susceptible individuals are less transmissible on average (Figure 4B). For a given o

10/32


https://doi.org/10.1101/2024.10.11.24315334
http://creativecommons.org/licenses/by/4.0/

It is made available under a CC-BY 4.0 International license .

0.025 A , 25 B i
p=0.6 é’ ’
—p=03 N , ’
< 002} —p=0.0 | g y
s —p=-03 E <
o = v’
=] —_—p =-0.6 . ’
S 0015} 1 - ,
k3t 15) 4
S e
E £ o
= 0017 g ,
[} = 7
o
E Q
5} o ,/
= 0.005 o ,
% ,
M L
0! = ) 1.5 : : : :
0 50 100 150 200 250 300 0.6 0.3 0 0.3 0.6

Time (days) Correlation Coeflicient, p

Figure 4. The effects of correlations on the speed and strength of the epidemic.
(A) The speed of incident infections is the exponential growth rate which varies with the initial
correlation coefficient. Positive correlations between susceptibility and transmissibility result
in faster epidemic speeds with increased peak incident infections. (B) The basic reproduction
increases with increasing initial correlation coefficient. Comparison of Equation 14 with
computed &7 for the five simulations (colored dots corresponding to the scenarios in A)
and Equation 16 with (approximately) fixed initial standard deviations of the initial joint
susceptibility distribution (dashed line). Across all simulations, the means of the initial joint
in susceptibility (i.e., eg(0) = dg(0) = 1), the transmission rate is equal to § = 0.2, and the
recovery rate is equal to 7 = 1/10 so that when there is no correlation between susceptibility
and transmissibility (p = 0), then Ry = 2, as expected in the standard SIR framework.
Varying p = —0.6,—0.3,0,0.3, 0.6, the parameter values of initial joint distribution are given
by: 2(0) = [0.44,0.48,0.50, 0.48, 0.48] , 02(0) = [0.27,0.32,0.35,0.33,0.30]. See Figure S2
for the corresponding initial joint distributions.

transmission rate, 3, and recovery rate, v, the initial speed and strength of the epidemic
increases with the initial correlation coefficient between susceptibility and transmissibility,
leading to larger outbreaks by larger initial correlation coefficients (Figure 4A).

3.4 Sensitivity of heterogeneous model outcomes to an outbreak
index case

The introduction of population variability also raises questions about how the initiation
of an outbreak may effect epidemic outcomes — the transmissibility and susceptibility of
individuals in the the first chains of infection may have a large effect on how an outbreak
takes off (see Goyal et al., 2022). To probe this, we first assess how variation in the initial
distribution of the infected population may impact epidemic trajectory and timing; and
second, utilize stochastic simulations to additionally assess variation in outbreak occurrence
and epidemic trajectories. In Figure 5A, we show two potential points in susceptibility-
transmissibility parameter space that an index infection could take, and examine the impact
of these initial conditions on epidemic trajectories in Figure 5B. We find that differences in
the transmissibility (but, not susceptibility) of the initial infection can impact the timing
of the epidemic — essentially translating the epidemic trajectory in the time axis. When
more infectious individuals seed an outbreak, the epidemic trajectory emerges earlier than
if the initial case is less infectious than average — in which case the epidemic occurs more
slowly than expected under the outbreak eigendistribution and baseline SIR models. As
the infection has already occurred, the susceptibility of this (small) index infection does not
play a role in ongoing transmission or the long-term epidemic trajectory given mass-action
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Figure 5. Sensitivity of heterogeneous models with respect to an outbreaks
index case. (A) Two different choices for the characteristics of the initial index case
index with susceptibility ¢ = 1 and transmissibility values: 6 = 0.5 (gray dot) and § = 2
(black dot), superimposed atop the the initial joint distribution of the uncorrelated Gaussian
case. (B) Using the discrete model, we fix the mean susceptibility ¢ = 1 and show that
varying the transmissibility of the index cases chosen in A can shift the timing of epidemic
onsets and peaks. (C) Using stochastic simulations with a randomly chosen index case,
we show the probability of an outbreak of more than 50 infections occurring for the SIR
model, and for models incorporating negative correlations (p = —0.60), no correlations
(p = 0) and positive correlations (p = 0.60) between susceptibility and transmissibility.
(D) from the same stochastic ensembles as in C, variation in the final outbreak size (given
that outbreaks generate more than 50 infections) is shown, outliers are shown as jittered
points. Asterisk’s (*) show the results from the corresponding deterministic simulations from
Figure 4. Parameters: transmission rate is § = 0.2 and recovery rate is v = 0.1. Stochastic
simulations were initialized in a population of 10,000. Each stochastic ensemble consists of
1,000 trajectories.

kinetics. 300

However, the susceptibility (and transmissibility) of individuals in the first few chains of s
infection may be important. To examine this, we adapted our model to include individual su
transmission events — utilising stochastic Gillespie simulations (see Appendix E) for the a2
baseline SIR, and the heterogeneous cases with p = —0.6, p = 0, p = 0.6 examined in Figure 4. s
In doing so, we show that incorporating heterogeneity can additionally alter the probability s
of an outbreak (here defined as more than 50 infections, see Figure 5C). While the SIR model s
and the uncorrelated (p = 0) model both have an initial reproduction number of Ry = 2, they a1
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differ in the likelihood of an outbreak occurring. For the SIR model, the outbreak probability s
(given m initial infections) is expected as: p =1 — (7%0)m (Southall et al., 2023). With one s
initial index infection (m = 1) this supports an analytic outbreak probability of p = 0.5, a1
in close agreement with the proportion of stochastic SIR model simulations in which an 32
outbreak occurred (0.483); but further from the uncorrelated model (0.412). The correlated s
models also differ in the observed proportion of outbreaks relative to the expected outbreak s
probability; 0.339 vs p = 0.371 for the p = —0.6 case, and 0.474 vs. p = 0.5887 for the p = 0.6 32
condition. Regardless of correlation, the introduction of heterogeneity lowers the expected 3
outbreak probability relative to the SIR baseline. Utilizing a stochastic framework also allows s
us to assess variability in epidemic trajectories (see Figure 5D) whose average final sizes for s
simulations that ran to epidemic burnout (i.e., simulations which ended due to susceptible 3
depletion, rather than fizzling out) are in good agreement with the deterministic simulations. s
Histograms of final outbreak size and outbreak duration for all epidemic trajectories are s
shown in Figure S3. Together with Figure 4 we observe that within our framework, positive s
correlations between susceptibility and transmissibility lead to epidemics that are more likely  3a
to occur, and are faster (with shorter duration), stronger (higher incident infections and 3
final outbreak size) and less variable (final outbreak size interquartile range = 0.0112, for 33
p = 0.6), while negative correlation outbreaks are on average less likely to occur, have longer s

duration and lower, but more variable final size (final outbreak size interquartile range = 33
002397 for P = 706) 336
3.5 The effects of correlations on epidemic progress 337

Initial correlations between susceptibility and transmissibility of the population impact 33
the strength (Figure 4) and potential (Figure 5) of outbreaks. However, correlations have s
consequences throughout an outbreak. Hence, we next explore how correlations between 340
susceptibility and transmissibility impact epidemic trajectories. To do so, we vary the sa
correlation coefficient, p, between p = —0.6 and p = 0.6 and match the exponential growth s
rate of incident infections by adjusting the transmission rate, 3, to ensure an equivalent sz
basic reproduction number (R = 2) (see Figure 6A).We compare the epidemic dynamics s«
during susceptible depletion using the progress variable, &(t), i.e., the mean susceptibility s
(Figure 6B). For &(tg) = 0.99, and &(¢;) = 0.85, scenarios with positive (light blue), negative 1
(dark blue), and no correlations (blue) reach this susceptibility level at a similar rate; but s«
trajectories diverge as these scenarios move toward £(t2) = 0.62. For negative correlations, we s
find the effective transmission rate increases over time, whereas for positive correlations, the 40
effective transmission rate decreases over time (Figure 6C). The justification for this can be 35
seen from the temporal evolution of the bivariate susceptibility-transmissibility distributions s
(shown by the changes in fg with respect to £ in Figure 6D). As the epidemics progress, s
the most susceptible individuals are more likely to be infected causing a reduction in mean  ss3
susceptibility and effectively shifting the underlying distributions. The most salient effect here 354
is the reduction of mean susceptibility over time as the most susceptible individuals become 355
infected and then removed. With positive correlations, the most susceptible individuals are s
also the most transmissible; thus, as the most transmissible individuals are sculpted into s
the epidemic, the mean effective transmission rate of the remaining population declines. On s
the other hand, under negative correlations the effective transmission rates increase over s
time, as the least transmissible individuals are on average sculpted into the epidemic sooner e
such that the remaining population has higher average transmissibility. In Figure S4 and s«
Figure S5 we examine these effects on population distributions by showing how the marginal e
susceptibility and transmissibility distributions in these particular models evolve with the s
mean susceptibility over time: At mean susceptibility, £(¢1) = 0.9, the susceptible population 36
is depleted to about 80% of the population (Figure S4D). The marginal distributions for s
susceptibility are similar across p = —0.6 to p = 0.6, with small deviations which we e
attribute to differences in truncation associated with the different correlation coefficients s
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Figure 6. Temporal evolution of correlated susceptibility-transmissibility distri-
butions under fixed Rg = 2. (A) Incident infections. (B) Mean susceptibility decreases
over time as the susceptible population is depleted. (C) Without correlations, the effec-
tive transmission rate remains constant. Positive correlations cause the transmissibility to
decrease over time, whereas negative correlations cause transmissibility to increase over
time. (D) bivariate distributions of fg over time for p = 0.6 (top row), p = 0 (middle
row), p = —0.6 (bottom row) at positions marked by € in B (columns: left £ = 0.99, middle
€ = 0.85, right £ = 0.62). Dashed lines denote average susceptibility and transmissibility.

(Figure S4E). We find the marginal distributions for transmissibility differ at £(t;) = 0.9: e
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with positive correlation the transmissibility distribution is shifted to the right, whereas s
with negative correlations the transmissibility distribution is shifted to the left relative to s
the transmissibility distribution without correlations (Figure S4F). Since more susceptible s
individuals are infected earlier during the epidemic with positive correlations, the more s
susceptible individuals are also more transmissible, leading to increases in the initial speed and 373
strength of the outbreak. With negative correlations, individuals who are more susceptible 37
are less transmissible, leading to decreases in the initial speed and strength. We also further s
examined the susceptibility and transmissibility marginal distributions over time, comparing 37
across simulations using the epidemic progress variable at values: £ = 1.0,0.90,0.80,0.66 a7
(Figure S5A, middle). For different correlation coefficients, the mean susceptibility, &, s
decreases at different rates due to differences in the dynamics of the effective transmission s
rates (Figure S5A, bottom). We show the susceptibility (Figure S5B) and transmissibility — ss
distributions (Figure S5C) over the epidemic progress variable (panels going down): Without —se
correlations (p = 0), the effective transmission rate remains constant (Figure S5A). For s
positive correlations (p = 0.6), the effective transmission rate decreases over time, whereas s
for negative correlations (p = —0.6), the effective transmission rate increases over time. s
Hence, in either case, the transmissibility distributions tend toward the mean transmissibility s
of limy_,o 8(t) = 1 (Figure S5C), despite opposite tendencies in the effective transmission s
rate (Figure S5A, bottom panel). We note these differences in the temporal evolution of the s
marginal transmissibility distributions are offset by the differences in average transmission s
rate, 8 (which is 50% larger when p = —0.6 than when p = 0.6) in order to have the same 33
Ro. However, the underlying differences in correlations cause the differences in effective 300
transmission rate to evolve in opposite directions over time, which contribute to larger final 3
outbreak sizes under negative correlations (Figure S4A). 302

Overall, simulations of the full PDE model (Equation 11) agree with the qualitative 30
analysis (see Supplementary Information). In particular, correlations modify the speed of s
susceptible depletion such that the epidemic slows down with positive correlations and speeds s
up with negative correlations between susceptibility and transmissibility. Consistent with 3o
results on heterogeneity in susceptibility, the final outbreak sizes are all less than in the 3o
conventional SIR model (see Figures 1-6). In this example, the uncorrelated case leads to s
about 60% of the initial susceptible population becoming infected, whereas the SIR model  so
leads to about 80% of the susceptible population becoming infected (Figure SG6A). 400

4 Discussion w0

We developed an epidemic model framework incorporating population-level covariation in e
both individual susceptibility and transmissibility. Our work investigates how susceptibility 03
and transmissibility distributions are “sculpted” over the course of an epidemic, and how
correlated variation may affect population-level dynamical outcomes. Consistent with prior s
findings (Rose et al., 2021; Gomes et al., 2022) initial gamma and Gaussian distributions are 4
eigendistributions of the force of infection such that dynamics given uncorrelated susceptibility o7
and transmissibility are equivalent to those in which average transmissibility is fixed and only 40
susceptibility varies. Moving to exploring covariation, we identified a relation between Ry and 00
the correlation of initial potential transmissibility and susceptibility. Holding transmission s
and recovery rates constant, we found that when susceptibility and transmissibility are
correlated (anticorrelated), then R increases (decreases), epidemics initially grow faster s
(slower) and are more (less) likely to become outbreaks, and infect more (fewer) individuals. a3
However, if instead Ry is kept constant, we find models with covariation share the same s
initial epidemic speed, but differ in outcome. In order to keep Ry fixed, and introducing as
negative correlations between susceptibility and transmissibility necessitates increasing the 4
average transmission rate § (or decreasing the average recovery rate v), leading to larger v
epidemics and additionally leading to an increase in the effective transmission rate over as
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time, as individuals who are both highly susceptible and less transmissible are infected 4.
earlier on, leaving behind a less susceptible, but more transmissible population. Congruently 4
and counterintuitively, when Ry is fixed with positive correlations between susceptibility
and transmissibility, epidemics are smaller than for the uncorrelated case and the effective 2
transmission rate decreases over time. 423

This approach comes with caveats, insofar as we focus on inherent differences in individual 2
susceptibility and transmissibility in a well-mixed population without vital dynamics and s
without the potential for reinfections. Going beyond inherent differences, recent work has s
highlighted that individual-level susceptibility and transmissibility can be associated with
human behavior via risk-perceptive decision making (Salomon et al., 2021; Stolerman et al., s
2023). Importantly, coupling informed human behaviour with disease dynamics can lead 4
to conditions where dynamic changes in susceptibility (via changing behaviors) can explain
epidemic peaks, oscillations, and shoulder behaviors (Weitz et al., 2020; Berestycki et al.,
2023). The current model does not allow individual susceptibility or transmissibility to e
change in time, unlike Weitz et al., 2020 (while neglecting heterogeneity) and Berestycki a3
et al., 2023 (while neglecting variability in transmissibility). Incorporating reinfection and 4.
vital dynamics might also enrich the observed dynamics and could allow one to probe ;s
differences in heritability of epidemiologically relevant life-history traits. While epidemic 43
burnout is expected in well-mixed SIR models, even with vital dynamics (Parsons et al., 2024),
population contact structure is also a highly relevant driver of disease dynamics (Keeling & a3
Eames, 2005; Bansal et al., 2007; Funk et al., 2010; Prem et al., 2021). Our framework does a3
not explicitly represent contact heterogeneity, however, variation in contact rates could be 44w
incorporated by assuming a positive correlation between susceptibility and transmissibility — 4
with those who interact the most having the greatest potential to both catch and to transmit o
an infection. The degree to which contact rate variation factors as the strongest determinant 4
in structuring the underlying joint distribution in susceptibility and transmissibility remains 44
elusive and may differ between diseases and across contexts — however, our expectation s
is that for a naive and fully susceptible population there are likely positive correlations s
between susceptibility and transmissibility. Future extensions might consider additional s
dynamical effects caused by incorporating additional parameter covariation with recovery s
rates, heterogeneity in vaccination (Saad-Roy et al., 2024), social determinants of health 4o
(Manna et al., 2024; Surasinghe et al., 2024), or with explicit population contact structure. s
Additionally, further investigation of how susceptibility and transmissibility distributions s
connect to other distributions of interest, such as the secondary attack rate (Anderson et al., 4
2023), is warranted. 453

There are also important questions to be addressed related to parameter inference and s
outbreak control. As we and others have shown, incorporating individual-level variation s
provides departures from baseline SIR dynamics (Dushoff, 1999; Novozhilov, 2008; Novozhilov, s
2012; Karev & Novozhilov, 2019; Britton et al., 2020; Rose et al., 2021; Gomes et al., 2022; s
Anderson et al., 2023). In early outbreaks Ry is one of the first parameters epidemiologists s
attempt to infer, yet our framing suggests Rg might be entangled with covariation in s
susceptibility and transmissibility. For an identified value of Ry, we might expect different 40
epidemic trajectories depending on the degree of covariation in the population. On the other
hand, if Ry is identified via average estimations of transmission and recovery rates, the degree s
of co-variation in the population may lead to mischaracterization of Ry. Beyond covariation in 43
population-level susceptibility and transmissibility distributions, heterogeneities in population e
contact structure also factor into structuring transmission chains, which is not captured in s
our current models that assume well-mixed populations. Indeed, in network contexts Rg is 46
dependent on both the mean and variance of the degree distribution, as well as the correlation s
between vertex in- and out- degrees (Allard et al., 2023). Utilizing new inference approaches s
and data types will be required to identify the degree of covariation between relevant disease s
parameters e.g., (Kuylen et al., 2022; Anderson et al., 2023; Quilty et al., 2024; Tran-Kiem o
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& Bedford, 2024; Tuschhoff & Kennedy, 2024). Beyond inference of Ry as an early indicator
of implementing control measures, there may be additional ramifications if susceptibility 4
or transmissibility covary with infection severity. With a public health goal of minimizing s
severe outcomes across populations, then if severity is correlated with susceptibility and/or a7
anti-correlated with transmissibility then stronger control measures may be required. a7

In closing, our work shows how covariation in heterogeneous levels of susceptibiliy and s
transmissibility scales up to population-level epidemics. Identifying dynamical hallmarks of 4
covariation, and quantifying how multi-dimensional (dynamical) covariation drives population  a7s
dynamics offer important future avenues to explore. In particular, given the relevance of 4
heterogeneity to the liftoff and potential control of epidemics, we anticipate that decomposing s
the mechanistic basis of (co)variation of susceptibility and transmissibility will have both
fundamental and applied relevance. 482
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A Derivation of susceptibility and transmissibility from
discrete model variables a6

First, we write the susceptible (S) infected (I), and recovered (R) populations in terms
of discrete model variables: S; ;, I; j, and R; ;, where ¢ and j are indices for the discrete

susceptibility value, €;, and transmissibility value, §;. Then the force of infection for the
susceptible population with susceptibility level ¢; is

Ai(t) = Bei szllkl =BI(t)o;r(t) e, (A1)

where I(t) is the total infected population and 0;(t) is the mean of the effective transmissibility 7
distribution given by 678

Iy (1)
22T

We can write the discrete model equations as

Sii(t) = =Xi(t) Si;(t)
L j(t) = Xi(t) Sij (1) — v I (1)
Ri,j (t) =1 () , (A2)

where +y is the recovery rate for infected individuals. This discrete model forms the basis of
the continuous model equations given in Equation 11 with the connection between discrete
and continuous model variables given as follows: S; ; = S(t,¢€;,6;), I; ; = I(t,€;,0;), and
R; ; = R(t,&;,0;). We can calculate the the total incidence:

ZZ)\k Ska(t

=pBI(t) ZZEkSkl
= BI(t)os(t )5(t)S(t).

Next, we derive differential equations for &(t), Ss (t), and o1 (t) found in Equation 13 in terms e
of discrete model variables. For £(t), we examine the time derivative of total susceptibility, s

ES = ZZE}CS}CJ:—BIS] ZZE%S&[
l k l

k
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Note that 3, 37,25k, = &2 + 02. On the other hand, Es =S + &5 = £S — £7. Hence,
ES =—B6rI(E* +02)S+&n
= —B61(E* +02)S +¢ (BI6;2S)

= —B g[[ 0’? S 5
which leads to - 681
E=—-Bérla?. (A3)
For 55, we examine the time derivative of the total potential transmissibility in the susceptible s
population, 683

Fg(t) = Z Zélsk,l = —,851] (ZZEkngkJ) =-p S[ 1 (COVS(€, 5) + 555) S.
Here, covg(e, d) is the covariance betwee_n susceptibility and transmissibility in the susceptible
population. On the other hand, Fs=05S5+0d58 =055 —dg 1. Hence,

555 = —6511 (COVS(€,5) + 555) S+ 5577
= —ﬁS[I (COVS(€,5) +§Ss) S+5361515‘S
= —B6;Icovs(e,8) S,

so that . - 684
ds = —P0rIcovg(e,d). (A4)

For é;, we examine the time derivative the total effective transmissibility in the infected s

population, 686

Fr = ZZMW = Bo;1 (ZZEkélSkO — 611 = Bo;1 (COVS(E75) +§53) — o1 .

On the other hand, F; = 5r1 + 8,0 =6, + 51(n —~I). Equating sides and simplifying, we e
obtain . B _ B 688
0y = B0y (COVS(€,5)+5S§—(5[§)S. (A5)

B Derivations associated with Equation 19 and Equa- «
tiOIl 20 690

B.1 Derivation of Equation 19 601

We derive the partial differential equation that describes the evolution of the susceptible 60
sub-population density fs(t,e,0) with intrinsic susceptibility ¢ and intrinsic transmissibility — ees
0. Rearranging the definition of fs(t,¢,d) from Equation 1 and taking the partial derivative oo

with respect to time, we obtain 695
d(S(t)fs(t,e,8 dS(t,e, 8
(S()fs(t.2.0) _ 9S(t2,0) (56)
ot ot
Expansion of the left-hand side through the product rule and the use of Equation 11 give us o
. Ofs(t,e, 0

S0 stt,2,0) + 50 G2 - 3 oys01,2.0) (B7)
Recalling the definition of S (t) described in Equation 13, and expanding A from Equation 10, s
we obtain 698

- dfs(t,e, 0 -

—BI61ES(t) fs(t,e,0) + S(t)% = —B16;eS(t)fs(t,e,9), (B8)

which after rearrangement yields the partial differential equation in Equation 19. 699
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B.2 Gamma and Gaussian distributions satisfy Equation 20 700

We check that gamma distributions with fixed shape parameter and Gaussian distributions 7o
with constant variance satisfy Equation 20. Consider setting the marginal susceptibility 7
distribution as a gamma distribution: 703

ck

k _g—1 _=V
95@¢)=:(§> %@56 e . (BY)

Fixing the susceptibility € and the shape parameter k, we first take the partial derivative 7o
with respect to time ¢ and apply the product rule. Subsequently, using Equation 11 (i.e., os

£ = —B5;102(t)) and the fact that o2(t) = @ for gamma distributions, this expression 7o
simplifies and we recover Equation 20: 707
dgs(t,e) &1 _a [k M [-ke <k - _
= e |l=) E|l—+=| =-B01l(c—¢ t,e). B10
e (B) ¢ S| - e —austa. @B10)
Similarly, consider setting the marginal susceptibility distribution as a Gaussian distribution: 7o
L 3 ()
gs(e,t) = ez \"e /). (B11)
2o

Fixing the susceptibility ¢ and the standard deviation o (due to constant variance) and 7o

taking the partial derivative with respect to time ¢, and again recalling & = —35;I02(t) (see 7o
Equation 11), we show Gaussian distributions also satisfy Equation 20: m
8gs(E,t) 1 _1(e—g)2 B g _ -
TR v 2 (%°) ~(8—5)-§:—5511(5—5)95(5,1?). (B12)

C Initial joint distributions of susceptibility and trans-
missibility s

To incorporate variation in both susceptibility and transmissibility we use bivariate distri- 7
butions to initialize our epidemiological models. We do so by first creating the initial joint 75
bivariate distribution in S, using a built-in function from the Statistics and Machine Learning 7
Toolbox (MATLAB version 2023b and 2024a) for the specific probability distributions used. w7
Without correlations between susceptibility and transmissibility, the initial joint distributions 7.
in f; and fr are set equal to that in fg. When correlations are introduced, the initial 7o
conditions of f; and fr are approximated via the attracting eigendistribution during the 7o
exponential growth phase of the epidemic from a preliminary simulation. In this work, we m
consider three types of bivariate distributions: gamma, truncated Gaussian, and negative 7
binomial. 723

We first consider independent gamma distributions for the initial joint distribution for 7
susceptibility (¢) and transmissibility (6). However, these independent gamma distribu- s
tions do not allow for covariation in € and §. Hence, we consider the bivariate Gaussian 72
distribution with 2x2 covariance matrix, allowing us to compare the effects of increasing 7
covariation on epidemic dynamics. We increase the initial variance in susceptibility (o-(0)) 7
and transmissibility (o5(0)) to better see the effects of covariation. In doing so, the bivariate 70
Gaussian distributions are truncated, because their support lies on the whole real plane R2. 73
We ensure that mean values are set with £(0) = 05(0) = 1 and adjust variances to match the 7
specified correlation coefficient. In practice, truncation of distributions with high variance in 7
susceptibility and/or transmissibility can be hard to match with large (anti)correlations. In 73
our work, we restrict analysis to correlations between -0.6 and 0.6. 734
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D Model parameters -

For all figures, except for Figure 4 which shows the reproduction number as a function of s
correlation coefficient, we set Ry =2.0, a value representative of several respiratory viruses 7
such as flu and SARS. We assume that the average time to recovery is 10 days and is s
exponentially distributed so that the recovery rate is given by v = 1/10. Hence, we set s
B = 0.2, with the exception of Figure 6 (and related Supplemental figures) where § is adjusted 7o
to compensate for the effects of correlations (between susceptibility (¢) and transmissibility — 7a
(6)) and therefore, match the effective exponential growth rate of the epidemics across e
simulations. The model parameters (descriptions, values, and ranges, thereof) are shown in 73
Table D1. 744

Table D1. Epidemiological model parameters. Epidemic parameters and distribution
parameters explored in models with individual traits of susceptibility (¢) and transmissibility
(), with £(0) = 6(0) = 1. Baseline values refer to those used in the reference SIR model.
Ranges indicate that these parameters vary based on initial conditions which depend on the
correlation coefficient. Specific parameter values are noted in Figures.

Parameter Baseline value Values explored Description

Ro 2.0 1.5 to 2.5 Basic reproduction number
~y 1/10 day~* 1/10 day~! Recovery rate
B 0.2 0.165 to 0.254 day~! Transmission rate of infections
a2(0) 0 0.15 to 0.50 Initial variance in susceptibility
02(0) 0 0.05 to 0.35 Initial variance in potential
transmissibility
p NA -0.60 to 0.60 Correlation between susceptibility

and potential transmissibility

E Simulation methods a5

All simulations and analysis were performed using MATLAB (version 2023b and 2024a). s
All simulation code is available at https://github.com/Jeremy-D-Harris/SIR heterogeneity_ 7
project and archived on Zenodo (Harris et al., 2024). 748

E.1 Deterministic simulations 749

To approximate the continuous susceptibility and transmissibility model variables, we use 70
discrete variables composed of 100 uniformly spaced values between 0 and 6, such that the
initial joint distributions we consider are seeded onto a uniform mesh of size 100x100. In 7
visualization of the initial joint distributions we show only the range € ([0, 3], [0, 3]), which s
represents &~ 90% of the population. In all cases, distributions are chosen such that the 7s
initial population average susceptibility (£) and potential transmissibility (&) are equal to 1. s
Epidemic model simulations were numerically integrated using ode45 in MATLAB (Dormand 7

& Prince, 1980; Shampine & Reichelt, 1997). 757
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To implement initial conditions, we first create the initial joint distributions of ¢ and  7ss
d in the S, I, and R classes (see Appendix C). In all simulations except for in Figure 5, 0
we let the total population be N = 1, as in Rose et al., 2021 and let the total population o
initial conditions be: S = N, I = 0, R = 0, with a small perturbation in the direction e
of the eigenvector of the SIR model. (Adjusting the perturbation magnitude translates
the dynamics in time.) The initial conditions that are passed into the ode45 function are 3
calculated from Equation 1 - Equation 3. 764

E.2 Stochastic simulations 765

To analyze the outbreak potential of epidemics with different underlying susceptibility and s
transmissibility characteristics we utilize a stochastic simulation approach using the Gillespie 767
algorithm (Gillespie, 1976, 1977). We initialize simulations with a population of 10,000 whose s
susceptibility and transmissibility values are seeded with probabilities taken from the joint e
probability distributions used in discrete model simulations to characterize a representative o
population with explicit individual-level variation. In each stochastic simulation run, one m
individual, chosen at random, is designated as the index infection. For each of the initial
distributions we analyze (SIR, p = —0.6, p =0, p = 0.6) we run the stochastic simulation s
1,000 times to obtain ensembles of epidemic trajectories; and denote a threshold of 50 7
infections to represent the occurrence an outbreak. 75
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Supplemental Material -
From equations Equation 11 and Equation 13, the joint distribution in the infected population 7
satisfies the partial differential equation: 778
dfr(t,e,d - _
% =p015 (¢ fs(t,e,8) — € fi(t,e,0)) . (E13)
Integrating over ¢, the effective transmissibility distribution satisfies the partial differential 7o
equation: 780
Ohr(t,o - o
Ia(t’):B(SIS(/ Efs(t,s,é)ds—shj(t,(S)) . (E14)
0
In the case of uncorrelated susceptibility and transmissibility values, fooo e fs(t,e,0)de = m

£hg(t,d), which means that the effective transmissibility distribution remains constant 7
and equal to the potential transmissibility distribution in the susceptible population, if 7
they are initially equal. The mean effective transmissibility remains constant, here equal  7s
to 0y = 1 (Figure S5C; medium blue dot). For positive correlations, the mean effective 7ss
transmissibility is greater than in the case without correlations (Figure S5C; light blue s
dot), whereas for negative correlations, the mean effective transmissibility is less than in the 7
case without correlations (Figure S5C; dark blue dot). For positive (negative) correlations s
between susceptibility and transmissibility, initial incident infections are comprised of more 7
(less) transmissible individuals. Thus, for positive correlations, fooo e fs(t,e,8)de > Ehs(t,d) o
such that §; monotonically decreases toward d; = 1, whereas for negative correlations, o
fooo e fs(t,e,8) de < £hy(t,8) such that §; monotonically increases toward &7 = 1. 792
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Figure S1. Uncorrelated (low variance) Gaussian distributions for susceptibility
and transmissibility during exponential growth. Population dynamics with variation
in susceptibility and transmissibility. (A) Incident infections. (B) Coefficient of Variation
(squared) in susceptibility remains constant during exponential growth and increases over
time as the susceptible population decreases. (C) When transmissibility and susceptibility
are uncorrelated, Coefficient of Variation (squared) in transmissibility remains constant
over time for Gaussian distributions. (D) Initial joint distributions (uncorrelated Gaussian
distributions) of susceptibility values (¢) and potential transmissibility values (4). (E)
Susceptibility distributions remain constant during exponential growth, shown at two time
points: to = 0 and ¢; = 50 days. (F) Potential and effective transmissibility distributions at
the time points: tg = 0 and t; = 50 days. The transmission rate is equal to § = 0.2, and the
recovery rate is equal to v = 1/10 such that the basic reproduction number is Ry = 2.0. The
variance values in the initial joint: 02(0) = 0.15, ¢2(0) = 0.05. The reduced model refers to
Equation 18 with ¢2(t) = ¢2(0) = 0.15.
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Figure S2. Initial Gaussian Joint Distributions in S (top) and I (bottom).
Corresponding to simulations in Figure 4, where the joint distribution in I arises from the
eigendistribution: (A) p = —0.6, (B) p=—0.3, (C) p=0, (D) p =0.3, (E) p = 0.6.
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Figure S3. Stochastic variability in epidemic outbreak size and duration. Count
histograms from the four ensembles of 1,000 simulations of epidemic trajectories shown in
Figure 5C,D. Final outbreak size (A) and duration (days) (B) for the SIR model, where
51.7% of simulations generated <50 infections. Final outbreak size (C) and duration
(days) (D) for the model with negative correlation between susceptibility and potential
transmissibility (p = —0.6), where 66.1% of simulations generated <50 infections. Final
outbreak size (E) and duration (days) (F) for the model with no correlation between
susceptibility and potential transmissibility (p = 0), where 58.8% of simulations generated
<50 infections. Final outbreak size (G) and duration (days) (H) for the model with positive
correlation between susceptibility and potential transmissibility (p = 0.6), where 52.6% of
simulations generated <50 infections. Parameters: transmission rate is 8 = 0.2 and recovery
rate is v = 0.1. Stochastic simulations were initialized in a population of 10,000.
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Figure S4. The effects of correlations between susceptibility and transmissibility
when the exponential growth rate is matched. (A) Incident infections. (B) Mean
susceptibility decreases over time as the susceptible population is depleted. (C) Without
correlations, the effective transmission rate remains constant (medium blue). Positive
correlations cause the transmissibility to decrease over time (light blue), whereas negative
correlations cause transmissibility to increase over time (dark blue). (D) About 80% of the
susceptible population is depleted. (E) Susceptibility distributions plotted at &(¢1) = 0.9.
(F) Transmissibility distribution at time points corresponding to the progress variable,
g(t1) = 0.9. For positive (negative) correlations, the mean transmissibility is greater (less)
than the mean transmissibility without correlations. Across all simulations, the recovery rate
is v = 1/10 and the basic reproduction number is Rg = 2.0. The transmission rates vary:
B =0.254, 0.2, 0.165 for negative correlation (p = —0.6), no correlation (p = 0), and positive
correlation (p = 0.6), respectively. The initial variance values are: ¢2(0) = 0.44, 0.50, 0.30,
and 02(0) = 0.27,0.35, 0.30.
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Figure S5. The effects of correlations on susceptibility and transmissibility
distributions over time. (A) Population dynamics including incident infections (7), the
mean susceptibility (£) (both redrawn from Figure S4A B), and the effective transmission
rate (B867) . (B) Susceptibility distributions associated with four mean susceptibility values
going down the rows: & = [1.0,0.90,0.80,0.66]. (C) Effective transmissibility distributions
at the same four time points corresponding to the mean susceptibility values. Parameter
values are the same as in Figure S4. Corresponding coefficients of variation (squared) are
shown in Figure S6.
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Figure S6. The effects of correlations on cumulative infections and the coefficients
of variation. (A) Cumulative infections showing different final outbreak sizes for different
correlations between susceptibility and transmissibility. Parameter values are the same as in
Figure S4 and Figure S5. The coefficients of variation (squared) for susceptibility (B) and
transmissibility (C).
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