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Abstract 34

Individual-level variation in susceptibility to infection and transmissibility of infection can 35

affect population-level dynamics in epidemic outbreaks. Prior work has incorporated 36

independent variation in susceptibility or transmissibility of individuals into epidemic 37

compartmental models. Here, we develop and assess a mathematical framework that 38

includes covariation in susceptibility and transmissibility. We show that uncorrelated 39

variation in susceptibility and transmissibility leads to an effective transmissibility 40

distribution that has a constant coefficient of variation such that the epidemic dynamics 41

match those with variation in susceptibility alone, providing a baseline for comparison 42
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across different correlation structures. Increasing the correlation between susceptibility and 43

transmissibility increases both the speed and strength of the outbreak – and is indicative of 44

outbreaks which might be strongly structured by contact rate variation. In contrast, 45

negative correlations between susceptibility and transmissibility lead to overall weaker 46

outbreaks – with the caveat that the strength of effective transmission increases over time. 47

In either case, correlations can shift the transmissibility distribution, thereby modifying the 48

speed of the epidemic as the susceptible population is depleted. Overall, this work 49

demonstrates how (often unaccounted) covariation in susceptibility and transmission can 50

shape the course of outbreaks and final outbreak sizes. 51

1 Introduction 52

Individuals differ in response to infection: some people may be more likely to get sick than 53

others, and some people may be more likely to transmit an infection on to others. Variation 54

in susceptibility to infection has been introduced into susceptible-infectious-recovered (SIR) 55

(and related) compartmental epidemic models (Kermack & McKendrick, 1927) to account for 56

intrinsic heterogeneity (Rose et al., 2021; Gomes et al., 2022), extrinsic differences based on, 57

e.g., age-dependent contact rates (Davies et al., 2020; Lovell-Read et al., 2022), or differences 58

in prior immunity (Gart, 1972). Prior research has found that variation in susceptibility 59

reduces the epidemic burden (i.e., outbreak size) relative to the homogeneous model (Ball, 60

1985; Dushoff & Levin, 1995; Coutinho et al., 1999; Dushoff, 1999; Dwyer et al., 2000; 61

Novozhilov, 2008; Novozhilov, 2012; Karev & Novozhilov, 2019; Britton et al., 2020; Rose 62

et al., 2021; Gomes et al., 2022; Tuschhoff & Kennedy, 2024). Hence, the distribution of 63

heterogeneity in susceptibility and the epidemic burden can jointly vary: when susceptible 64

individuals become infected, the joint variation leads to the redistribution and ‘sculpting’ 65

of the susceptibility distribution. The sculpting leads to epidemic slowdowns relative to 66

that of the homogeneous case, reflecting a fundamental difference in the nonlinearity of 67

incident infections. As shown in Rose et al., 2021, the susceptibility distribution is sculpted 68

toward eigendistributions e.g., including gamma distributions with a constant coefficient of 69

variation. Therefore, outbreaks may appear similar during the early stages, but heterogeneity 70

in susceptibility can slow the speed of the epidemic, leading to lower final outbreak sizes (Rose 71

et al., 2021; Gomes et al., 2022), akin to similar impacts of awareness-induced behaviour 72

change (Eksin et al., 2019). 73

Variability in transmission has also been studied in epidemic models. In practice, the 74

number of secondary infections caused by a focal infected individual can exhibit significant 75

variability, linked to pathogen type, host features, environmental context, and mode of 76

transmission (Lloyd-Smith et al., 2005; Wong & Collins, 2020; Meehan et al., 2023; Murayama 77

et al., 2023). The extent of variation is often measured in terms of an effective ‘dispersion’ 78

parameter of a negative binomial distribution fit to secondary cases (Lloyd-Smith et al., 79

2005; Lloyd-Smith, 2007; Endo et al., 2020). During the COVID-19 pandemic, household 80

surveys suggest significant variation in both susceptibility and transmissibility (Anderson 81

et al., 2023); and contact survey data has shown that age-dependent variation in contact 82

rates can be a key driver of variation in transmission (Zhang et al., 2020; Quilty et al., 83

2024) and susceptibility (Britton et al., 2020). Notably, the presence of heterogeneity in 84

transmission may make diseases harder to control at the outset (Frieden & Lee, 2020; Goyal 85

et al., 2022) but can make them more vulnerable to control via mitigation aimed at reducing 86

the relatively small fraction of superspreading events (Frieden & Lee, 2020; Sneppen et al., 87

2021). Variation both in susceptibility and transmissibility has previously been introduced 88

to epidemic compartmental models. For instance, in a parasite-host system, susceptibility 89

values were fit to dose-response data, revealing that the transmission rate is lower with 90

more heterogeneity (Dwyer et al., 1997). Additionally, models with uncorrelated variation in 91

susceptibility and transmissibility have previously been explored – showing that power-law 92
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distributions in transmission can arise from epidemic dynamics unfolding given initial gamma 93

distributed susceptibility and transmissibility (Novozhilov, 2012). 94

Together, variation in both susceptibility and transmissibility can shape disease dynamics, 95

but compartmental epidemic models have not yet accounted for the effects of potential 96

covariation on dynamics. For example, individuals who interact more with others may be 97

more likely to become infected and more likely to infect others (e.g., if they continue to 98

interact at similar rates when infectious). In this way contact rates could be considered 99

as being equivalent to correlated variation in susceptibility and transmission – but, we 100

caution that many other factors may also be in play. Moreover, individuals may be more 101

vulnerable to infection due to health, behavioural, social, and/or genetic factors that mean 102

they have limited interactions when infectious (e.g., with trained health-care providers) and 103

are therefore less likely to infect others. Here, we advance an approach that is agnostic with 104

respect to contact variation in order to consider both the sign and strength of potential 105

correlations between suceptibility and transmissibility more generally. In this manuscript, 106

we provide a mathematical framework that includes individual-level variation in both 107

susceptibility and transmissibility. The framework allows for comparisons between different 108

model implementations of variation in susceptibility and transmissibility and makes explicit 109

the consequences of covariation between susceptibility and transmissibility on outbreak 110

dynamics. 111

2 Model Framework 112

2.1 Epidemiological dynamics of models with susceptibility and 113

transmissibility 114

We extend the model framework developed in Rose et al., 2021 to incorporate heterogeneity in 115

both susceptibility and transmissibility into SIR-like epidemic models. To do so, we consider 116

the following population compartment states: susceptible (S), infected (I), and recovered (R). 117

We assume that each individual in the population has a fixed intrinsic susceptibility value, 118

ε, as well as fixed intrinsic transmissibility value, δ. Hence, the S-I-R compartments are 119

functions of susceptibility (ε) and transmissibility (δ) that we denote as S(t, ε, δ), I(t, ε, δ), 120

and R(t, ε, δ). We denote S(t), I(t), R(t) to represent the respective population densities 121

of all susceptible, infected and recovered individuals. Then we can define sub-population 122

densities: the susceptible sub-population density with intrinsic susceptibility ε and intrinsic 123

transmissibility δ is given by 124

fS(t, ε, δ) =
S(t, ε, δ)

S(t)
, (1)

the infected sub-population density is 125

fI(t, ε, δ) =
I(t, ε, δ)

I(t)
, (2)

and the recovered sub-population density is 126

fR(t, ε, δ) =
R(t, ε, δ)

R(t)
. (3)

Note that these definitions are joint densities such that at any time, t, then
∫∞
0

∫∞
0

fS(t, ε, δ) dε dδ =∫∞
0

∫∞
0

fI(t, ε, δ) dε dδ =
∫∞
0

∫∞
0

fR(t, ε, δ) dε dδ = 1. To calculate the mean susceptibility
and transmissibility over time, we consider the marginal distributions relevant to the disease
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dynamics:

gS(t, ε) :=

∫ ∞

0

fS(t, ε, δ) dδ (Susceptibility Distribution) (4)

hI(t, δ) :=

∫ ∞

0

fI(t, ε, δ) dε (Effective Transmissibility Distribution) . (5)

The other relevant marginal distribution is the potential transmissibility distribution in 127

the susceptible population. This distribution is indicative of the remaining infectivity 128

of the population who might have the potential to be infectious in the future. During 129

the exponential growth phase of the epidemic individuals are drawn from the susceptible 130

population at varying rates that depend on an individual’s susceptibility to infection. As 131

individuals become infected, their contribution to effective transmissibility is drawn from the 132

potential transmissibility distribution, and thus, the effective transmissibility distribution 133

(Equation 5) is “filled in” by the potential transmissibility distribution given by: 134

hS(t, δ) =

∫ ∞

0

fS(t, ε, δ) dε (Potential Transmissibility Distribution) . (6)

Given the susceptibility distribution (Equation 4) and transmissibility distributions (Equa- 135

tions 5-6), we can define the mean susceptibility and transmissibility. The mean susceptibility 136

to infection within the susceptible population is: 137

ε̄(t) =

∫ ∞

0

ε gS(t, ε) dε , (7)

the mean effective transmissibility of individuals within the infected population is: 138

δ̄I(t) =

∫ ∞

0

δ hI(t, δ) dδ , (8)

and the mean potential transmissibility of individuals in the susceptible population is: 139

δ̄S(t) =

∫ ∞

0

δ hS(t, δ) dδ . (9)

Then the force of infection to the susceptible population with susceptibility level ε is:

λ(t, ε) = β I(t) δ̄I(t) ε , (10)

where β is the baseline transmission rate. For each subpopulation with (ε, δ), the SIR model
equations with susceptibility and transmissibility heterogeneity can be written as:

∂S(t, ε, δ)

∂t
= −λ(t, ε)S(t, ε, δ)

∂I(t, ε, δ)

∂t
= λ(t, ε)S(t, ε, δ)− γ I(t, ε, δ)

∂R(t, ε, δ)

∂t
= γ I(t, ε, δ) , (11)

where γ is the recovery rate of all infected individuals. See Appendix A for the derivation of 140

Equation 11 from discrete model variables. See Figure 1 for a visual representation of the 141

model framework using discrete susceptibility and transmissibility variables. 142

Integrating with respect to the continuous variables, ε and δ, we can obtain the total
population incidence:

η(t) = β δ̄I(t) I(t) ε̄(t)S(t) . (12)
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From here, differential equations for the following variables can be identified: the mean
susceptibility (ε̄(t)); the mean potential transmissibility (δ̄S(t)); and the mean effective
transmissibility (δ̄I(t)). This model can be described by the following 6-dimensional system
of ordinary differential equations (where, for convenience, we set CS(t) = covS(ε, δ)(t)
to represent the covariance between susceptibility and transmissibility in the susceptible
subpopulation):

Ṡ = −β δ̄II ε̄ S

İ = β δ̄II ε̄ S − γ I

Ṙ = γ I

˙̄ε = −β δ̄IIσ
2
ε(t)

˙̄δS = −β δ̄IICS(t)

˙̄δI = β δ̄I
(
CS(t) + ε̄ δ̄S − ε̄ δ̄I

)
S . (13)

Here, the dependence on t is implicit for all time-dependent variables except for the covariance 143

between susceptibility and transmissibility in the susceptible subpopulation, CS(t), and the 144

variance, σ2
ε(t), of the susceptibility distribution, gS(t, ε). This system is not closed for 145

arbitrary starting joint distributions in the susceptible population, as CS(t) and σ2
ε(t) may 146

change over time, impacting the mean susceptibility and transmissibility as the epidemic 147

progresses. 148

2.2 Associations of correlations with epidemic strength and disper- 149

sion 150

Using the dynamical system presented in Equation 13, we can define the basic reproduction 151

number (R0) and dispersion (κ) of epidemics as a function of the correlation coefficient (ρ) 152

between susceptibility and transmissibility. First, in a fully susceptible population, S = 1, 153

the basic reproduction number is given by: 154

R0 =
β

γ
ε̄(0) δ̄I(0) , (14)

where δ̄I(0) is the mean effective transmissibility during initial exponential growth, and 155

ε̄(0) is the initial mean susceptibility. Note that without correlations (i.e., ρ = 0) between 156

initial susceptibility and transmissibility values, then δ̄I(0) = δ̄S(0), but with correlations 157

(i.e., ρ ̸= 0), they can differ. During exponential growth, the joint distribution of the 158

susceptible population is fixed, which implies that the derivatives, ˙̄ε = ˙̄δS = 0. Hence, 159

both ε and δ̄S remain fixed during the exponential growth phase. Since the covariance of 160

the joint distribution of the susceptible population, CS(t), also remains fixed during the 161

exponential growth phase, then covS(ε, δ) + ε̄δ̄S − ε̄δ̄I is constant. Hence, in order to obtain 162

the reproduction number, we need to find δI(0) relative to δS(0). In order for ˙̄δI = 0 during 163

exponential growth, then δ̄I must converge to δ̄I(0) =
(
ε̄(0) δ̄S(0) + covS(ε, δ)(0)

)
/ε̄(0), and 164

the reproduction number is 165

R0 =
β

γ

(
ε̄(0) δ̄S(0) + covS(ε, δ)(0)

)
. (15)

Then the reproduction number can be written equivalently as: 166

R0 =
β

γ

(
ε̄(0)δ̄S(0) + ρ(ε, δ)σε(0)σδ(0)

)
, (16)

where the correlation coefficient between susceptibility and transmissibility (during exponen- 167

tial growth) is given by ρ(ε, δ) = covS(ε,δ)(0)
σε(0)σδ(0)

. 168
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Second, to define the dispersion, κ(t), of an epidemic we first let the mean susceptibility, 169

ε̄(t), serve as a dimensionless progress variable. Rose et al., 2021 used ϕ(t) = β
∫ t

0
I(s) ds 170

as a dimensionless progress variable, noting that ϕ(t) is proportional to the cumulative 171

infectious force. We compute the mean susceptibility (ε̄(t)), potential transmissibility (δ̄S(t)), 172

and effective transmissibility (δ̄I(t)) as the epidemic progresses over time. We also compute 173

the variances σ2
ε(t) and σ2

δ (t) in order to obtain the corresponding squared coefficients of 174

variation over time. 175

From Equation 13, we follow the analysis in Rose et al., 2021 and have that dε̄
dS =

σ2
ε

ε̄ S . 176

Using differential notation, d(ln(x)) = dx/x, then the square of the coefficient of variation 177

for the susceptibility distribution (CV 2) is given by: 178

κ(t) =
d(ln(ε̄(t)))

d(ln(S(t)))
=

σ2
ε(t)

ε̄2(t)
. (17)

For given initial distributions, we compute the squared coefficient of variation for the 179

susceptibility distribution as well as the squared coefficients of variation for the potential 180

and effective transmissibility distributions over time. 181

Figure 1. Model diagram: susceptible (S), infected (I), and recovered (R)
populations with individual variation in susceptibility and transmissibility. (A)
Positive correlation, no correlation, and negative correlation between individual susceptibility
and transmissibility. (B) S-I-R compartments are discretized into subpopulations distributed
according to susceptibility (εi) and transmissibility (δj). Here, λi(t) = λ(t, εi) is the force of
infection to the susceptible population with susceptibility, εi, and γ is the mean recovery
rate for all infected individuals.

3 Results 182

3.1 Uncorrelated gamma-distributed susceptibility and transmissi- 183

bility 184

We first examine the dynamics of Equation 13 when susceptibility and transmissibility are

uncorrelated. In this case, the covariance, CS , is zero. Hence, from Equation 13, ˙̄δS = 0 and
so δ̄S remains constant over time. If the initial potential and effective transmissibility values

are equal, i.e., δ̄S(0) = δ̄I(0), then
˙̄δI(0) = β δ̄I ε̄

(
δ̄S(0)− δ̄I(0)

)
S = 0. Since δ̄S is constant,
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then δ̄I remains constant and equal to the initial potential value, δ̄S(0). Therefore, without
correlations, Equation 13 further simplifies to

Ṡ = −β δ̄I Iε̄ S

İ = β δ̄I Iε̄ S − γI

Ṙ = γI

˙̄ε = −β δ̄I I σ
2
ε(t) . (18)

This nonlinear dynamical system is equivalent to prior work on variation in susceptibility 185

alone (Rose et al., 2021; Gomes et al., 2022). Here, the variance in susceptibility σ2
ε(t) is 186

denoted with explicit time t to emphasize that it may change over the course of the outbreak. 187

In this work, we also introduce a variation of Equation 18, which we term the ‘reduced 188

model’, in which we approximate the variance term σ2
ε(t) using analytical results from (Rose 189

et al., 2021). For uncorrelated gamma distributions, the reduced model sets the variance 190

σ2
ε(t) = ε̄2(t)

kε
where kε is the shape parameter of the gamma distributed susceptibility 191

distribution gS(ε, t). For uncorrelated Gaussian distributions, the reduced model sets the 192

variance σ2
ε(t) = σ2

ε(0). 193

To examine how the initial distributions changes through the epidemic dynamics, we first 194

consider initially gamma-distributed susceptibility and transmissibility values and examine 195

the squared coefficient of variation in susceptibility, κ(t) =
σ2
ε

ε̄2 (see Equation 17). For 196

initially uncorrelated gamma distributions, we find that: κ(t) =
σ2
ε

ε̄2 = 1
k , where k is the 197

shape parameter of the susceptibility distribution, gS(0, ε). Here, the mean transmissibility, 198

δ̄I(t), is a multiplicative factor that modifies the force of infection. However, since δ̄I(t) is 199

constant, the system collapses to the system with variation in susceptibility alone. Hence, 200

initially gamma-distributed susceptibility distributions remain gamma-distributed with mean: 201

ε̄(t) = S(t)
1
k (Rose et al., 2021; Gomes et al., 2022). That is, the same power-law relationship 202

between susceptibility (ε) and the susceptible population (S(t)) holds here with uncorrelated 203

gamma-distributed variation in susceptibility and transmissibility. 204

We can analyze the change in the joint distribution of susceptibility and transmissibility 205

in the susceptible population, fS(t, ε, δ), through the epidemic dynamics. We find that 206

fS(t, ε, δ) satisfies the partial differential equation: 207

∂fS(t, ε, δ)

∂t
= −β I δ̄I (ε− ε̄) fS(t, ε, δ) , (19)

see Appendix B.1. Note that we can integrate Equation 19 over all transmissibility values so 208

that the marginal susceptibility distribution gS(t, ε) satisfies: 209

∂gS(t, ε)

∂t
= −β I δ̄I (ε− ε̄) gS(t, ε) . (20)

It has been shown (see Section S3 in Rose et al., 2021) that distributions of the exponential 210

family, including initially uncorrelated gamma distributions, with shape parameter k, of the 211

form: 212

gS(t, ε) =

(
k

ε̄

)k
εk−1

Γ(k)
e−kε/ε̄ (21)

satisfy the PDE given in Equation 20. We show that gamma distributions that evolve with 213

a fixed shape parameter and Gaussian distributions that evolve with a fixed variance satisfy 214

Equation 20 (see Appendix B.2). 215

To verify this analysis, we can compare the simulations of the discrete model given in 216

Equation 11 with the uncorrelated reduced model in Equation 18, which sets the variance 217

σ2
ε(t) =

ε̄2(t)
kε

. Details of model parameterization and simulation are given in Appendix C-E. 218
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Figure 2. Uncorrelated gamma distributions for susceptibility and transmissibility
distributions during exponential growth. (A) Incident infections. (B) The coefficient
of variation (squared) for susceptibility remains constant over time for gamma-distributed
susceptibility values. (C) The coefficient of variation (squared) in transmissibility remains
constant over time for gamma-distributed transmissibility values. (D) Initial joint distribution
(uncorrelated gamma distributions) for susceptibility values (ε) and potential transmissibility
values (δ). (E) Comparing susceptibility distributions at time points: t0 = 0 and t1 = 50
days. (F) Potential and effective transmissibility distributions at time points: t0 = 0
and t1 = 50 days. The transmission rate is equal to β = 0.2, and the recovery rate is
equal to γ = 1/10 such that the basic reproduction number is R0 = 2.0. Initial gamma
distribution shape parameters: kε = 3, kδ = 10. The reduced model refers to Equation 18

with σ2
ε(t) =

ε̄2(t)
kε

= ε̄2(t)
3 .

For initially uncorrelated gamma-distributed susceptibility and transmissibility, the dynamics 219

of incident infections (Figure 2A, blue) agree with Equation 18 (Figure 2A, green dashed). 220

They also agree with the case of variation in susceptibility alone (Figure 2A, dashed black). 221

Consistent with results of Rose et al., 2021, variation in susceptibility slows down incident 222

infections compared to the conventional SIR model (Figure 2A, gray). As predicted, the κ 223

for both susceptibility transmissibility remain constant over time (Figure 2B,C). We show 224

the initial joint distribution, fS(0, ε, δ), in the susceptible population with uncorrelated sus- 225

ceptibility (ε; x-axis) and potential transmissibility (δ; y-axis) (Figure 2D). In Figure 2E, we 226

compare the susceptibility distribution, gS(t, ε), at two time points during exponential growth: 227

t0 = 0 days (black circle) and t1 = 10 days (violet circle). The distribution remains constant 228

during exponential growth when susceptible depletion is negligible. In Figure 2F, we show 229

the potential and effective transmissibility distributions at these time points. The epidemic 230

is initialized with a few infected individuals, and the effective transmissibility distribution, 231

hI(t, δ), in the infected population is determined by potential transmissibility, hS(t, δ), in 232

the susceptible population. Thus, to remove transients, we make the initial transmissibility 233

distributions equal: hI(0, δ) = hS(0, δ). Then, we show that hI(0, δ) = hI(t1, δ) remains 234

fixed during exponential growth (Figure 2F, gray matches dashed violet). These results 235
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indicate that initially uncorrelated gamma distributions remain gamma-distributed such 236

that the mean susceptibility satisfies ε̄(t) = S(t)
1
k , and the effective mean transmissibility 237

δ̄I remains constant such that the transmissibility distribution hI(t, δ) is constant over the 238

course of the epidemic. 239

3.2 Uncorrelated Gaussian-distributed susceptibility and transmis- 240

sibility 241

As a prelude to introducing correlations we consider initially uncorrelated truncated Gaussian 242

distributions with low (Figure S1) and high (Figure 3) variance, such that ε, δ > 0. For 243

the low variance case we show incident infections from discrete model simulations (using 244

Equation 11) in Figure S1A. The coefficient of variation (squared) for susceptibility is 245

constant during the initial exponential growth phase of the outbreak, but increases during 246

susceptible depletion because the mean decreases faster than the variance (see Figure S1B). 247

Here, we set σε(t) = σε(0) in simulations of the reduced model (using Equation 18) and 248

observe increases in κ(t) (Figure S1B), meaning that the mean susceptibility decreases. 249

As predicted by our analysis, in reducing Equation 13 in the absence of covariation to 250

Equation 18, the coefficient of variation (squared) for transmissibility remains constant 251

over time (Figure S1C). Despite the differences in κ of susceptibility between the full and 252

reduced models, the reduced model can still approximate incident infections. Consistent with 253

results from Rose et al., 2021, Gaussian and gamma distributions are eigendistributions with 254

respect to the epidemic dynamics. Moreover, gamma distributions have constant κ, whereas 255

Gaussian distributions have constant variance (approximately, considering that Gaussian 256

distributions have proper support on the whole real line). 257

To better see the effects of correlations when incorporated, we also examine a high 258

variance case in which we increase the variance for both the initial potential susceptibility 259

and transmissibility distributions (σ2
ε(0) from 0.15 to 0.5; and σ2

δ (0) from 0.05 to 0.35). In 260

doing so, the effects of truncation on the bivariate distribution become more pronounced. 261

Even when the initial variances are increased, we can see reasonable agreement, albeit less 262

than with smaller variance, between the full and reduced model simulations (Figure 3A). For 263

truncated Gaussian initial distributions, the κ in the reduced model simulations increase more 264

than in the discrete model simulations (Figure 3B). Due to truncation, susceptibility variance 265

decreases over time as well as the mean susceptibility. The reduced model κ diverges as this 266

model is unable to capture this decrease in variance over time, as by definition σ2
ε(t) = σ2

ε(0). 267

Despite this, the reduced model in Equation 18 provides a reasonable approximation of 268

incident infections in the discrete model simulations with the highest discrepancies observed 269

during the decay phase (Figure 3A). 270
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Figure 3. Uncorrelated (high variance) Gaussian distributions for susceptibility
and transmissibility during exponential growth. Similar to Figure S1 but with
higher variances in the initial susceptibility and transmissibility distribution. (A) Incident
infections. (B) κ for susceptibility. (C) κ for transmissibility. (D) Initial joint distribution
of susceptibility and transmissibility in the susceptible population, fS(t0, ε, δ), is given by
uncorrelated Gaussian distribution, truncated to have positive support in both ε and δ.
(E) Susceptibility distributions at t0 and t1. (F) Potential transmissibility distribution
at t0 matches the Effective transmissibility distribution during exponential growth at t1.
Parameters: The transmission rate is β = 0.2, and the recovery rate is γ = 1/10 such that the
basic reproduction number is R0 = 2.0. The variance values in the initial joint: σ2

ε(0) = 0.50,
σ2
δ (0) = 0.35. The reduced model refers to Equation 18 with σ2

ε(t) = σ2
ε(0) = 0.5.

3.3 Correlations between susceptibility and transmissibility modify 271

the basic reproduction number 272

Next, we introduce covariation by considering correlations between susceptibility and trans- 273

missibility and compare the ensuing epidemic dynamics with respect to the case without 274

correlations. We vary the correlation coefficient (ρ) from negative to positive, in simulations 275

we explore scenarios over the range of values from −0.6 to 0.6, and find that the speed, i.e., 276

the exponential growth rate, increases with increasing correlation (Figure 4A). Recall that 277

the basic reproductive number is dependent on the correlations between susceptibility and 278

transmissibility (Equation 16). In the absence of correlations (ρ = 0), the basic reproduction 279

number is R0 = β ε̄(0) δ̄S(0)/γ, and the product of the initial mean susceptibility and 280

transmissibility multiply the basic reproduction of the conventional SIR model, β/γ. Note 281

that R0 is an increasing function of the correlation coefficient, ρ, which is in agreement with 282

simulations (Figure 4B). For ρ > 0, the more susceptible individuals are infected earlier and 283

are also more transmissible than on average, causing more transmission during exponential 284

growth such that the basic reproduction number is greater than in the uncorrelated case. 285

For ρ < 0, the basic reproduction number is less than in the uncorrelated case because 286

the more susceptible individuals are less transmissible on average (Figure 4B). For a given 287
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Figure 4. The effects of correlations on the speed and strength of the epidemic.
(A) The speed of incident infections is the exponential growth rate which varies with the initial
correlation coefficient. Positive correlations between susceptibility and transmissibility result
in faster epidemic speeds with increased peak incident infections. (B) The basic reproduction
increases with increasing initial correlation coefficient. Comparison of Equation 14 with
computed δ̄I,0 for the five simulations (colored dots corresponding to the scenarios in A)
and Equation 16 with (approximately) fixed initial standard deviations of the initial joint
susceptibility distribution (dashed line). Across all simulations, the means of the initial joint
in susceptibility (i.e., εS(0) = δS(0) = 1), the transmission rate is equal to β = 0.2, and the
recovery rate is equal to γ = 1/10 so that when there is no correlation between susceptibility
and transmissibility (ρ = 0), then R0 = 2, as expected in the standard SIR framework.
Varying ρ = −0.6,−0.3, 0, 0.3, 0.6, the parameter values of initial joint distribution are given
by: σ2

ε(0) = [0.44, 0.48, 0.50, 0.48, 0.48] , σ2
δ (0) = [0.27, 0.32, 0.35, 0.33, 0.30]. See Figure S2

for the corresponding initial joint distributions.

transmission rate, β, and recovery rate, γ, the initial speed and strength of the epidemic 288

increases with the initial correlation coefficient between susceptibility and transmissibility, 289

leading to larger outbreaks by larger initial correlation coefficients (Figure 4A). 290

3.4 Sensitivity of heterogeneous model outcomes to an outbreak 291

index case 292

The introduction of population variability also raises questions about how the initiation 293

of an outbreak may effect epidemic outcomes – the transmissibility and susceptibility of 294

individuals in the the first chains of infection may have a large effect on how an outbreak 295

takes off (see Goyal et al., 2022). To probe this, we first assess how variation in the initial 296

distribution of the infected population may impact epidemic trajectory and timing; and 297

second, utilize stochastic simulations to additionally assess variation in outbreak occurrence 298

and epidemic trajectories. In Figure 5A, we show two potential points in susceptibility- 299

transmissibility parameter space that an index infection could take, and examine the impact 300

of these initial conditions on epidemic trajectories in Figure 5B. We find that differences in 301

the transmissibility (but, not susceptibility) of the initial infection can impact the timing 302

of the epidemic – essentially translating the epidemic trajectory in the time axis. When 303

more infectious individuals seed an outbreak, the epidemic trajectory emerges earlier than 304

if the initial case is less infectious than average – in which case the epidemic occurs more 305

slowly than expected under the outbreak eigendistribution and baseline SIR models. As 306

the infection has already occurred, the susceptibility of this (small) index infection does not 307

play a role in ongoing transmission or the long-term epidemic trajectory given mass-action 308
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Figure 5. Sensitivity of heterogeneous models with respect to an outbreaks
index case. (A) Two different choices for the characteristics of the initial index case
index with susceptibility ε = 1 and transmissibility values: δ = 0.5 (gray dot) and δ = 2
(black dot), superimposed atop the the initial joint distribution of the uncorrelated Gaussian
case. (B) Using the discrete model, we fix the mean susceptibility ε = 1 and show that
varying the transmissibility of the index cases chosen in A can shift the timing of epidemic
onsets and peaks. (C) Using stochastic simulations with a randomly chosen index case,
we show the probability of an outbreak of more than 50 infections occurring for the SIR
model, and for models incorporating negative correlations (ρ = −0.60), no correlations
(ρ = 0) and positive correlations (ρ = 0.60) between susceptibility and transmissibility.
(D) from the same stochastic ensembles as in C, variation in the final outbreak size (given
that outbreaks generate more than 50 infections) is shown, outliers are shown as jittered
points. Asterisk’s (*) show the results from the corresponding deterministic simulations from
Figure 4. Parameters: transmission rate is β = 0.2 and recovery rate is γ = 0.1. Stochastic
simulations were initialized in a population of 10,000. Each stochastic ensemble consists of
1,000 trajectories.

kinetics. 309

However, the susceptibility (and transmissibility) of individuals in the first few chains of 310

infection may be important. To examine this, we adapted our model to include individual 311

transmission events – utilising stochastic Gillespie simulations (see Appendix E) for the 312

baseline SIR, and the heterogeneous cases with ρ = −0.6, ρ = 0, ρ = 0.6 examined in Figure 4. 313

In doing so, we show that incorporating heterogeneity can additionally alter the probability 314

of an outbreak (here defined as more than 50 infections, see Figure 5C). While the SIR model 315

and the uncorrelated (ρ = 0) model both have an initial reproduction number of R0 = 2, they 316
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differ in the likelihood of an outbreak occurring. For the SIR model, the outbreak probability 317

(given m initial infections) is expected as: p = 1− ( 1
R0

)m (Southall et al., 2023). With one 318

initial index infection (m = 1) this supports an analytic outbreak probability of p = 0.5, 319

in close agreement with the proportion of stochastic SIR model simulations in which an 320

outbreak occurred (0.483); but further from the uncorrelated model (0.412). The correlated 321

models also differ in the observed proportion of outbreaks relative to the expected outbreak 322

probability; 0.339 vs p = 0.371 for the ρ = −0.6 case, and 0.474 vs. p = 0.5887 for the ρ = 0.6 323

condition. Regardless of correlation, the introduction of heterogeneity lowers the expected 324

outbreak probability relative to the SIR baseline. Utilizing a stochastic framework also allows 325

us to assess variability in epidemic trajectories (see Figure 5D) whose average final sizes for 326

simulations that ran to epidemic burnout (i.e., simulations which ended due to susceptible 327

depletion, rather than fizzling out) are in good agreement with the deterministic simulations. 328

Histograms of final outbreak size and outbreak duration for all epidemic trajectories are 329

shown in Figure S3. Together with Figure 4 we observe that within our framework, positive 330

correlations between susceptibility and transmissibility lead to epidemics that are more likely 331

to occur, and are faster (with shorter duration), stronger (higher incident infections and 332

final outbreak size) and less variable (final outbreak size interquartile range = 0.0112, for 333

ρ = 0.6), while negative correlation outbreaks are on average less likely to occur, have longer 334

duration and lower, but more variable final size (final outbreak size interquartile range = 335

0.0239, for ρ = −0.6). 336

3.5 The effects of correlations on epidemic progress 337

Initial correlations between susceptibility and transmissibility of the population impact 338

the strength (Figure 4) and potential (Figure 5) of outbreaks. However, correlations have 339

consequences throughout an outbreak. Hence, we next explore how correlations between 340

susceptibility and transmissibility impact epidemic trajectories. To do so, we vary the 341

correlation coefficient, ρ, between ρ = −0.6 and ρ = 0.6 and match the exponential growth 342

rate of incident infections by adjusting the transmission rate, β, to ensure an equivalent 343

basic reproduction number (R0 = 2) (see Figure 6A).We compare the epidemic dynamics 344

during susceptible depletion using the progress variable, ε̄(t), i.e., the mean susceptibility 345

(Figure 6B). For ε̄(t0) = 0.99, and ε̄(t1) = 0.85, scenarios with positive (light blue), negative 346

(dark blue), and no correlations (blue) reach this susceptibility level at a similar rate; but 347

trajectories diverge as these scenarios move toward ε̄(t2) = 0.62. For negative correlations, we 348

find the effective transmission rate increases over time, whereas for positive correlations, the 349

effective transmission rate decreases over time (Figure 6C). The justification for this can be 350

seen from the temporal evolution of the bivariate susceptibility-transmissibility distributions 351

(shown by the changes in fS with respect to ε̄ in Figure 6D). As the epidemics progress, 352

the most susceptible individuals are more likely to be infected causing a reduction in mean 353

susceptibility and effectively shifting the underlying distributions. The most salient effect here 354

is the reduction of mean susceptibility over time as the most susceptible individuals become 355

infected and then removed. With positive correlations, the most susceptible individuals are 356

also the most transmissible; thus, as the most transmissible individuals are sculpted into 357

the epidemic, the mean effective transmission rate of the remaining population declines. On 358

the other hand, under negative correlations the effective transmission rates increase over 359

time, as the least transmissible individuals are on average sculpted into the epidemic sooner 360

such that the remaining population has higher average transmissibility. In Figure S4 and 361

Figure S5 we examine these effects on population distributions by showing how the marginal 362

susceptibility and transmissibility distributions in these particular models evolve with the 363

mean susceptibility over time: At mean susceptibility, ε̄(t1) = 0.9, the susceptible population 364

is depleted to about 80% of the population (Figure S4D). The marginal distributions for 365

susceptibility are similar across ρ = −0.6 to ρ = 0.6, with small deviations which we 366

attribute to differences in truncation associated with the different correlation coefficients 367
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Figure 6. Temporal evolution of correlated susceptibility-transmissibility distri-
butions under fixed R0 = 2. (A) Incident infections. (B) Mean susceptibility decreases
over time as the susceptible population is depleted. (C) Without correlations, the effec-
tive transmission rate remains constant. Positive correlations cause the transmissibility to
decrease over time, whereas negative correlations cause transmissibility to increase over
time. (D) bivariate distributions of fS over time for ρ = 0.6 (top row), ρ = 0 (middle
row), ρ = −0.6 (bottom row) at positions marked by ε̄ in B (columns: left ε̄ = 0.99, middle
ε̄ = 0.85, right ε̄ = 0.62). Dashed lines denote average susceptibility and transmissibility.

(Figure S4E). We find the marginal distributions for transmissibility differ at ε̄(t1) = 0.9: 368
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with positive correlation the transmissibility distribution is shifted to the right, whereas 369

with negative correlations the transmissibility distribution is shifted to the left relative to 370

the transmissibility distribution without correlations (Figure S4F). Since more susceptible 371

individuals are infected earlier during the epidemic with positive correlations, the more 372

susceptible individuals are also more transmissible, leading to increases in the initial speed and 373

strength of the outbreak. With negative correlations, individuals who are more susceptible 374

are less transmissible, leading to decreases in the initial speed and strength. We also further 375

examined the susceptibility and transmissibility marginal distributions over time, comparing 376

across simulations using the epidemic progress variable at values: ε̄ = 1.0, 0.90, 0.80, 0.66 377

(Figure S5A, middle). For different correlation coefficients, the mean susceptibility, ε̄, 378

decreases at different rates due to differences in the dynamics of the effective transmission 379

rates (Figure S5A, bottom). We show the susceptibility (Figure S5B) and transmissibility 380

distributions (Figure S5C) over the epidemic progress variable (panels going down): Without 381

correlations (ρ = 0), the effective transmission rate remains constant (Figure S5A). For 382

positive correlations (ρ = 0.6), the effective transmission rate decreases over time, whereas 383

for negative correlations (ρ = −0.6), the effective transmission rate increases over time. 384

Hence, in either case, the transmissibility distributions tend toward the mean transmissibility 385

of limt→∞ δ̄(t) = 1 (Figure S5C), despite opposite tendencies in the effective transmission 386

rate (Figure S5A, bottom panel). We note these differences in the temporal evolution of the 387

marginal transmissibility distributions are offset by the differences in average transmission 388

rate, β (which is 50% larger when ρ = −0.6 than when ρ = 0.6) in order to have the same 389

R0. However, the underlying differences in correlations cause the differences in effective 390

transmission rate to evolve in opposite directions over time, which contribute to larger final 391

outbreak sizes under negative correlations (Figure S4A). 392

Overall, simulations of the full PDE model (Equation 11) agree with the qualitative 393

analysis (see Supplementary Information). In particular, correlations modify the speed of 394

susceptible depletion such that the epidemic slows down with positive correlations and speeds 395

up with negative correlations between susceptibility and transmissibility. Consistent with 396

results on heterogeneity in susceptibility, the final outbreak sizes are all less than in the 397

conventional SIR model (see Figures 1-6). In this example, the uncorrelated case leads to 398

about 60% of the initial susceptible population becoming infected, whereas the SIR model 399

leads to about 80% of the susceptible population becoming infected (Figure S6A). 400

4 Discussion 401

We developed an epidemic model framework incorporating population-level covariation in 402

both individual susceptibility and transmissibility. Our work investigates how susceptibility 403

and transmissibility distributions are “sculpted” over the course of an epidemic, and how 404

correlated variation may affect population-level dynamical outcomes. Consistent with prior 405

findings (Rose et al., 2021; Gomes et al., 2022) initial gamma and Gaussian distributions are 406

eigendistributions of the force of infection such that dynamics given uncorrelated susceptibility 407

and transmissibility are equivalent to those in which average transmissibility is fixed and only 408

susceptibility varies. Moving to exploring covariation, we identified a relation between R0 and 409

the correlation of initial potential transmissibility and susceptibility. Holding transmission 410

and recovery rates constant, we found that when susceptibility and transmissibility are 411

correlated (anticorrelated), then R0 increases (decreases), epidemics initially grow faster 412

(slower) and are more (less) likely to become outbreaks, and infect more (fewer) individuals. 413

However, if instead R0 is kept constant, we find models with covariation share the same 414

initial epidemic speed, but differ in outcome. In order to keep R0 fixed, and introducing 415

negative correlations between susceptibility and transmissibility necessitates increasing the 416

average transmission rate β (or decreasing the average recovery rate γ), leading to larger 417

epidemics and additionally leading to an increase in the effective transmission rate over 418
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time, as individuals who are both highly susceptible and less transmissible are infected 419

earlier on, leaving behind a less susceptible, but more transmissible population. Congruently 420

and counterintuitively, when R0 is fixed with positive correlations between susceptibility 421

and transmissibility, epidemics are smaller than for the uncorrelated case and the effective 422

transmission rate decreases over time. 423

This approach comes with caveats, insofar as we focus on inherent differences in individual 424

susceptibility and transmissibility in a well-mixed population without vital dynamics and 425

without the potential for reinfections. Going beyond inherent differences, recent work has 426

highlighted that individual-level susceptibility and transmissibility can be associated with 427

human behavior via risk-perceptive decision making (Salomon et al., 2021; Stolerman et al., 428

2023). Importantly, coupling informed human behaviour with disease dynamics can lead 429

to conditions where dynamic changes in susceptibility (via changing behaviors) can explain 430

epidemic peaks, oscillations, and shoulder behaviors (Weitz et al., 2020; Berestycki et al., 431

2023). The current model does not allow individual susceptibility or transmissibility to 432

change in time, unlike Weitz et al., 2020 (while neglecting heterogeneity) and Berestycki 433

et al., 2023 (while neglecting variability in transmissibility). Incorporating reinfection and 434

vital dynamics might also enrich the observed dynamics and could allow one to probe 435

differences in heritability of epidemiologically relevant life-history traits. While epidemic 436

burnout is expected in well-mixed SIR models, even with vital dynamics (Parsons et al., 2024), 437

population contact structure is also a highly relevant driver of disease dynamics (Keeling & 438

Eames, 2005; Bansal et al., 2007; Funk et al., 2010; Prem et al., 2021). Our framework does 439

not explicitly represent contact heterogeneity, however, variation in contact rates could be 440

incorporated by assuming a positive correlation between susceptibility and transmissibility – 441

with those who interact the most having the greatest potential to both catch and to transmit 442

an infection. The degree to which contact rate variation factors as the strongest determinant 443

in structuring the underlying joint distribution in susceptibility and transmissibility remains 444

elusive and may differ between diseases and across contexts – however, our expectation 445

is that for a näıve and fully susceptible population there are likely positive correlations 446

between susceptibility and transmissibility. Future extensions might consider additional 447

dynamical effects caused by incorporating additional parameter covariation with recovery 448

rates, heterogeneity in vaccination (Saad-Roy et al., 2024), social determinants of health 449

(Manna et al., 2024; Surasinghe et al., 2024), or with explicit population contact structure. 450

Additionally, further investigation of how susceptibility and transmissibility distributions 451

connect to other distributions of interest, such as the secondary attack rate (Anderson et al., 452

2023), is warranted. 453

There are also important questions to be addressed related to parameter inference and 454

outbreak control. As we and others have shown, incorporating individual-level variation 455

provides departures from baseline SIR dynamics (Dushoff, 1999; Novozhilov, 2008; Novozhilov, 456

2012; Karev & Novozhilov, 2019; Britton et al., 2020; Rose et al., 2021; Gomes et al., 2022; 457

Anderson et al., 2023). In early outbreaks R0 is one of the first parameters epidemiologists 458

attempt to infer, yet our framing suggests R0 might be entangled with covariation in 459

susceptibility and transmissibility. For an identified value of R0, we might expect different 460

epidemic trajectories depending on the degree of covariation in the population. On the other 461

hand, if R0 is identified via average estimations of transmission and recovery rates, the degree 462

of co-variation in the population may lead to mischaracterization ofR0. Beyond covariation in 463

population-level susceptibility and transmissibility distributions, heterogeneities in population 464

contact structure also factor into structuring transmission chains, which is not captured in 465

our current models that assume well-mixed populations. Indeed, in network contexts R0 is 466

dependent on both the mean and variance of the degree distribution, as well as the correlation 467

between vertex in- and out- degrees (Allard et al., 2023). Utilizing new inference approaches 468

and data types will be required to identify the degree of covariation between relevant disease 469

parameters e.g., (Kuylen et al., 2022; Anderson et al., 2023; Quilty et al., 2024; Tran-Kiem 470
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& Bedford, 2024; Tuschhoff & Kennedy, 2024). Beyond inference of R0 as an early indicator 471

of implementing control measures, there may be additional ramifications if susceptibility 472

or transmissibility covary with infection severity. With a public health goal of minimizing 473

severe outcomes across populations, then if severity is correlated with susceptibility and/or 474

anti-correlated with transmissibility then stronger control measures may be required. 475

In closing, our work shows how covariation in heterogeneous levels of susceptibiliy and 476

transmissibility scales up to population-level epidemics. Identifying dynamical hallmarks of 477

covariation, and quantifying how multi-dimensional (dynamical) covariation drives population 478

dynamics offer important future avenues to explore. In particular, given the relevance of 479

heterogeneity to the liftoff and potential control of epidemics, we anticipate that decomposing 480

the mechanistic basis of (co)variation of susceptibility and transmissibility will have both 481

fundamental and applied relevance. 482
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role of directionality, heterogeneity, and correlations in epidemic risk and spread. 503

SIAM Review, 65 (2), 471–492. https://doi.org/10.1137/20m1383811 504

Anderson, T. L., Nande, A., Merenstein, C., Raynor, B., Oommen, A., Kelly, B. J., Levy, M. Z., 505

& Hill, A. L. (2023). Quantifying individual-level heterogeneity in infectiousness and 506

susceptibility through household studies. Epidemics, 44, 100710. https://doi.org/10. 507

1016/j.epidem.2023.100710 508

Ball, F. (1985). Deterministic and stochastic epidemics with several kinds of susceptibles. 509

Advances in applied probability, 17 (1), 1–22. https://doi.org/10.2307/1427049 510

Bansal, S., Grenfell, B. T., & Meyers, L. A. (2007). When individual behaviour matters: 511

Homogeneous and network models in epidemiology. Journal of The Royal Society 512

Interface, 4 (16), 879–891. https://doi.org/10.1098/rsif.2007.1100 513

17/32

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.11.24315334doi: medRxiv preprint 

https://github.com/Jeremy-D-Harris/SIR_heterogeneity_project
https://doi.org/10.1137/20m1383811
https://doi.org/10.1016/j.epidem.2023.100710
https://doi.org/10.1016/j.epidem.2023.100710
https://doi.org/10.1016/j.epidem.2023.100710
https://doi.org/10.2307/1427049
https://doi.org/10.1098/rsif.2007.1100
https://doi.org/10.1101/2024.10.11.24315334
http://creativecommons.org/licenses/by/4.0/


Berestycki, H., Desjardins, B., Weitz, J. S., & Oury, J.-M. (2023). Epidemic modeling 514

with heterogeneity and social diffusion. Journal of Mathematical Biology, 86 (4), 60. 515

https://doi.org/10.1007/s00285-022-01861-w 516

Britton, T., Ball, F., & Trapman, P. (2020). A mathematical model reveals the influence of 517

population heterogeneity on herd immunity to SARS-CoV-2. Science, 369 (6505), 518

846–849. https://doi.org/10.1126/science.abc6810 519

Coutinho, F., Massad, E., Lopez, L., Burattini, M., Struchiner, C., & Azevedo-Neto, R. (1999). 520

Modelling heterogeneities in individual frailties in epidemic models.Mathematical and 521

computer modelling, 30 (1-2), 97–115. https://doi.org/10.1016/S0895-7177(99)00119- 522

3 523

Davies, N. G., Klepac, P., Liu, Y., Prem, K., Jit, M., & Eggo, R. M. (2020). Age-dependent 524

effects in the transmission and control of COVID-19 epidemics. Nature medicine, 525

26 (8), 1205–1211. https://doi.org/10.1038/s41591-020-0962-9 526

Dormand, J. R., & Prince, P. J. (1980). A family of embedded Runge-Kutta formulae. Journal 527

of computational and applied mathematics, 6 (1), 19–26. https://doi.org/10.1016/ 528

0771-050X(80)90013-3 529

Dushoff, J. (1999). Host heterogeneity and disease endemicity: A moment-based approach. 530

Theoretical Population Biology, 56 (3), 325–335. https://doi.org/10.1006/tpbi.1999. 531

1428 532

Dushoff, J., & Levin, S. (1995). The effects of population heterogeneity on disease invasion. 533

Mathematical Biosciences, 128 (1-2), 25–40. https://doi.org/10.1016/0025-5564(94) 534

00065-8 535

Dwyer, G., Dushoff, J., Elkinton, J. S., & Levin, S. A. (2000). Pathogen-driven outbreaks in 536

forest defoliators revisited: Building models from experimental data. The American 537

Naturalist, 156 (2), 105–120. https://doi.org/10.1086/303379 538

Dwyer, G., Elkinton, J. S., & Buonaccorsi, J. P. (1997). Host heterogeneity in susceptibility 539

and disease dynamics: Tests of a mathematical model. The American Naturalist, 540

150 (6), 685–707. https://doi.org/10.1086/286089 541

Eksin, C., Paarporn, K., & Weitz, J. S. (2019). Systematic biases in disease forecasting – the 542

role of behavior change. Epidemics, 27, 96–105. https://doi.org/10.1016/j.epidem. 543

2019.02.004 544

Endo, A., Abbott, S., Kucharski, A. J., & Funk, S. (2020). Estimating the overdispersion 545

in COVID-19 transmission using outbreak sizes outside China. Wellcome Open 546

Research, 5, 67. https://doi.org/10.12688/wellcomeopenres.15842.3 547

Frieden, T. R., & Lee, C. T. (2020). Identifying and interrupting superspreading events—implications548

for control of severe acute respiratory syndrome coronavirus 2. Emerging Infectious 549

Diseases, 26 (6), 1059–1066. https://doi.org/10.3201/eid2606.200495 550
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Gonçalves, C., Gonçalves, G., Chikina, M., Pegden, W., & Aguas, R. (2022). Individ- 562

ual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity 563

threshold. Journal of Theoretical Biology, 111063. https://doi.org/10.1016/j.jtbi. 564

2022.111063 565

18/32

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.11.24315334doi: medRxiv preprint 

https://doi.org/10.1007/s00285-022-01861-w
https://doi.org/10.1126/science.abc6810
https://doi.org/10.1016/S0895-7177(99)00119-3
https://doi.org/10.1016/S0895-7177(99)00119-3
https://doi.org/10.1016/S0895-7177(99)00119-3
https://doi.org/10.1038/s41591-020-0962-9
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1006/tpbi.1999.1428
https://doi.org/10.1006/tpbi.1999.1428
https://doi.org/10.1006/tpbi.1999.1428
https://doi.org/10.1016/0025-5564(94)00065-8
https://doi.org/10.1016/0025-5564(94)00065-8
https://doi.org/10.1016/0025-5564(94)00065-8
https://doi.org/10.1086/303379
https://doi.org/10.1086/286089
https://doi.org/10.1016/j.epidem.2019.02.004
https://doi.org/10.1016/j.epidem.2019.02.004
https://doi.org/10.1016/j.epidem.2019.02.004
https://doi.org/10.12688/wellcomeopenres.15842.3
https://doi.org/10.3201/eid2606.200495
https://doi.org/10.1098/rsif.2010.0142
https://doi.org/10.2307/2528629
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1021/j100540a008
https://doi.org/10.1016/j.jtbi.2022.111063
https://doi.org/10.1016/j.jtbi.2022.111063
https://doi.org/10.1016/j.jtbi.2022.111063
https://doi.org/10.1101/2024.10.11.24315334
http://creativecommons.org/licenses/by/4.0/


Goyal, A., Reeves, D. B., & Schiffer, J. T. (2022). Multi-scale modelling reveals that early 566

super-spreader events are a likely contributor to novel variant predominance. Journal 567

of The Royal Society Interface, 19 (189). https://doi.org/10.1098/rsif.2021.0811 568

Harris, J. D., Gallmeier, E., Dushoff, J., Beckett, S. J., & Weitz, J. S. (2024). Code for: 569

”Infections are not alike: the effects of covariation between individual susceptibility 570

and transmissibility on epidemic dynamics” [Zenodo, doi: 10.5281/zenodo.13891898]. 571

https://doi.org/10.5281/zenodo.13891898 572

Karev, G. P., & Novozhilov, A. S. (2019). How trait distributions evolve in populations with 573

parametric heterogeneity. Mathematical Biosciences, 315, 108235. https://doi.org/ 574

10.1016/j.mbs.2019.108235 575

Keeling, M. J., & Eames, K. T. (2005). Networks and epidemic models. Journal of the Royal 576

Society Interface, 2 (4), 295–307. https://doi.org/10.1098/rsif.2005.0051 577

Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of 578

epidemics. Proceedings of the Royal Society of London. Series A, Containing papers 579

of a Mathematical and Physical Character, 115 (772), 700–721. https://doi.org/10. 580

1098/rspa.1927.0118 581

Kuylen, E. J., Torneri, A., Willem, L., Libin, P. J., Abrams, S., Coletti, P., Franco, N., Verelst, 582

F., Beutels, P., Liesenborgs, J., & Hens, N. (2022). Different forms of superspreading 583

lead to different outcomes: Heterogeneity in infectiousness and contact behavior 584

relevant for the case of SARS-CoV-2. PLoS Computational Biology, 18 (8), e1009980. 585

https://doi.org/10.1371/journal.pcbi.1009980 586

Lloyd-Smith, J. O. (2007). Maximum likelihood estimation of the negative binomial dispersion 587

parameter for highly overdispersed data, with applications to infectious diseases. 588

PLoS ONE, 2 (2), e180. https://doi.org/10.1371/journal.pone.0000180 589

Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E., & Getz, W. M. (2005). Superspreading and 590

the effect of individual variation on disease emergence. Nature, 438 (7066), 355–359. 591

https://doi.org/10.1038/nature04153 592

Lovell-Read, F. A., Shen, S., & Thompson, R. N. (2022). Estimating local outbreak risks 593

and the effects of non-pharmaceutical interventions in age-structured populations: 594

SARS-CoV-2 as a case study. Journal of Theoretical Biology, 535, 110983. https: 595

//doi.org/10.1016/j.jtbi.2021.110983 596

Manna, A., Koltai, J., & Karsai, M. (2024). Importance of social inequalities to contact 597

patterns, vaccine uptake, and epidemic dynamics. Nature Communications, 15 (1). 598

https://doi.org/10.1038/s41467-024-48332-y 599

Meehan, M. T., Hughes, A., Ragonnet, R. R., Adekunle, A. I., Trauer, J. M., Jayasundara, P., 600

McBryde, E. S., & Henderson, A. S. (2023). Replicating superspreader dynamics 601

with compartmental models. Scientific Reports, 13 (1), 15319. https://doi.org/10. 602

1038/s41598-023-42567-3 603

Murayama, H., Pearson, C. A. B., Abbott, S., Miura, F., Jung, S.-m., Fearon, E., Funk, S., & 604

Endo, A. (2023). Accumulation of immunity in heavy-tailed sexual contact networks 605

shapes Mpox outbreak sizes. The Journal of Infectious Diseases, 229 (1), 59–63. 606

https://doi.org/10.1093/infdis/jiad254 607

Novozhilov, A. S. (2012). Epidemiological models with parametric heterogeneity: Determinis- 608

tic theory for closed populations. Mathematical Modelling of Natural Phenomena, 609

7 (3), 147–167. https://doi.org/10.1051/mmnp/20127310 610

Novozhilov, A. S. (2008). On the spread of epidemics in a closed heterogeneous population. 611

Mathematical Biosciences, 215 (2), 177–185. https://doi.org/10.1016/j.mbs.2008.07. 612

010 613

Parsons, T. L., Bolker, B. M., Dushoff, J., & Earn, D. J. (2024). The probability of epidemic 614

burnout in the stochastic SIR model with vital dynamics. Proceedings of the National 615

Academy of Sciences, 121 (5), e2313708120. https://doi.org/10.1073/pnas.2313708120 616

19/32

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.11.24315334doi: medRxiv preprint 

https://doi.org/10.1098/rsif.2021.0811
https://doi.org/10.5281/zenodo.13891898
https://doi.org/10.1016/j.mbs.2019.108235
https://doi.org/10.1016/j.mbs.2019.108235
https://doi.org/10.1016/j.mbs.2019.108235
https://doi.org/10.1098/rsif.2005.0051
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1371/journal.pcbi.1009980
https://doi.org/10.1371/journal.pone.0000180
https://doi.org/10.1038/nature04153
https://doi.org/10.1016/j.jtbi.2021.110983
https://doi.org/10.1016/j.jtbi.2021.110983
https://doi.org/10.1016/j.jtbi.2021.110983
https://doi.org/10.1038/s41467-024-48332-y
https://doi.org/10.1038/s41598-023-42567-3
https://doi.org/10.1038/s41598-023-42567-3
https://doi.org/10.1038/s41598-023-42567-3
https://doi.org/10.1093/infdis/jiad254
https://doi.org/10.1051/mmnp/20127310
https://doi.org/10.1016/j.mbs.2008.07.010
https://doi.org/10.1016/j.mbs.2008.07.010
https://doi.org/10.1016/j.mbs.2008.07.010
https://doi.org/10.1073/pnas.2313708120
https://doi.org/10.1101/2024.10.11.24315334
http://creativecommons.org/licenses/by/4.0/


Prem, K., Zandvoort, K. v., Klepac, P., Eggo, R. M., Davies, N. G., Cook, A. R., & Jit, M. 617

(2021). Projecting contact matrices in 177 geographical regions: An update and 618

comparison with empirical data for the COVID-19 era. PLOS Computational Biology, 619

17 (7), e1009098. https://doi.org/10.1371/journal.pcbi.1009098 620

Quilty, B. J., Chapman, L. A., Munday, J. D., Wong, K. L., Gimma, A., Pickering, S., 621

Neil, S. J., Galao, R., Edmunds, W. J., Jarvis, C. I., & Kucharski, A. J. (2024). 622

Disentangling the drivers of heterogeneity in SARS-CoV-2 transmission from data 623

on viral load and daily contact rates. bioRxiv. https://doi.org/10.1101/2024.08.15. 624

24311977 625

Rose, C., Medford, A. J., Goldsmith, C. F., Vegge, T., Weitz, J. S., & Peterson, A. A. (2021). 626

Heterogeneity in susceptibility dictates the order of epidemic models. Journal of 627

Theoretical Biology, 528, 110839. https://doi.org/10.1016/j.jtbi.2021.110839 628

Saad-Roy, C. M., Morris, S. E., Boots, M., Baker, R. E., Lewis, B. L., Farrar, J., Marathe, 629

M. V., Graham, A. L., Levin, S. A., Wagner, C. E., Metcalf, C. J. E., & Grenfell, 630

B. T. (2024). Impact of waning immunity against SARS-CoV-2 severity exacerbated 631

by vaccine hesitancy. PLOS Computational Biology, 20 (8), e1012211. https://doi. 632

org/10.1371/journal.pcbi.1012211 633

Salomon, J. A., Reinhart, A., Bilinski, A., Chua, E. J., La Motte-Kerr, W., Rönn, M. M., 634
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A Derivation of susceptibility and transmissibility from 675

discrete model variables 676

First, we write the susceptible (S) infected (I), and recovered (R) populations in terms
of discrete model variables: Si,j , Ii,j , and Ri,j , where i and j are indices for the discrete
susceptibility value, εi, and transmissibility value, δj . Then the force of infection for the
susceptible population with susceptibility level εi is

λi(t) = β εi

∑
k

∑
l

δl Ik,l(t)

 = β I(t) δ̄I(t) εi , (A1)

where I(t) is the total infected population and δ̄I(t) is the mean of the effective transmissibility 677

distribution given by 678

δ̄I(t) =

∑
k

∑
l

δl
Ik,l(t)

I(t)

 .

We can write the discrete model equations as

Ṡi,j(t) = −λi(t)Si,j(t)

İi,j(t) = λi(t)Si,j(t)− γ Ii,j(t)

Ṙi,j(t) = γ Ii,j(t) , (A2)

where γ is the recovery rate for infected individuals. This discrete model forms the basis of
the continuous model equations given in Equation 11 with the connection between discrete
and continuous model variables given as follows: Si,j = S(t, εi, δj), Ii,j = I(t, εi, δj), and
Ri,j = R(t, εi, δj). We can calculate the the total incidence:

η(t) =
∑
k

∑
l

λk(t)Sk,l(t)

= β I(t) δ̄I(t)
∑
k

∑
l

εkSk,l(t)

= β I(t) δ̄I(t) ε̄(t)S(t) .

Next, we derive differential equations for ˙̄ε(t), ˙̄δS(t), and
˙̄δI(t) found in Equation 13 in terms 679

of discrete model variables. For ˙̄ε(t), we examine the time derivative of total susceptibility, 680

ĖS :=
∑
k

∑
l

εk Ṡk,l = −β I δ̄I

∑
k

∑
l

ε2k Sk,l

 .
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Note that
∑

k

∑
l ε

2
kSk,l = ε̄2 + σ2

ε . On the other hand, ĖS = ˙̄ε S + ε̄ Ṡ = ˙̄ε S − ε̄ η. Hence,

˙̄ε S = −βδ̄II(ε̄
2 + σ2

ε)S + ε̄ η

= −βδ̄II(ε̄
2 + σ2

ε)S + ε̄
(
β I δ̄I ε̄ S

)
= −β δ̄II σ

2
ε S ,

which leads to 681

˙̄ε = −β δ̄I I σ
2
ε . (A3)

For ˙̄δS , we examine the time derivative of the total potential transmissibility in the susceptible 682

population, 683

ḞS(t) :=
∑∑

δlṠk,l = −βδ̄II
(∑∑

εkδlSk,l

)
= −β δ̄I I

(
covS(ε, δ) + ε̄ δ̄S

)
S .

Here, covS(ε, δ) is the covariance between susceptibility and transmissibility in the susceptible

population. On the other hand, ḞS = ˙̄δS S + δ̄S Ṡ = ˙̄δS S − δ̄S η. Hence,

˙̄δS S = −β δ̄I I
(
covS(ε, δ) + ε̄ δ̄S

)
S + δ̄S η

= −β δ̄I I
(
covS(ε, δ) + ε̄ δ̄S

)
S + δ̄S β I δ̄I ε̄ S

= −β δ̄I I covS(ε, δ)S ,

so that 684

˙̄δS = −β δ̄I I covS(ε, δ) . (A4)

For δ̇I , we examine the time derivative the total effective transmissibility in the infected 685

population, 686

ḞI =
∑∑

δlİk,l = β δ̄II
(∑∑

εkδlSk,l

)
− γ δ̄II = β δ̄II

(
covS(ε, δ) + ε̄ δ̄S

)
− γ δ̄II .

On the other hand, ḞI = ˙̄δII + δ̄I İ = ˙̄δII + δ̄I(η − γ I). Equating sides and simplifying, we 687

obtain 688

˙̄δI = βδ̄I
(
covS(ε, δ) + δ̄S ε̄− δ̄I ε̄

)
S . (A5)

B Derivations associated with Equation 19 and Equa- 689

tion 20 690

B.1 Derivation of Equation 19 691

We derive the partial differential equation that describes the evolution of the susceptible 692

sub-population density fS(t, ε, δ) with intrinsic susceptibility ε and intrinsic transmissibility 693

δ. Rearranging the definition of fS(t, ε, δ) from Equation 1 and taking the partial derivative 694

with respect to time, we obtain 695

∂
(
S(t)fS(t, ε, δ)

)
∂t

=
∂S(t, ε, δ)

∂t
. (B6)

Expansion of the left-hand side through the product rule and the use of Equation 11 give us 696

Ṡ(t)fS(t, ε, δ) + S(t)
∂fS(t, ε, δ)

∂t
= −λ(t, ε)S(t, ε, δ). (B7)

Recalling the definition of Ṡ(t) described in Equation 13, and expanding λ from Equation 10, 697

we obtain 698

−βIδ̄I ε̄S(t)fS(t, ε, δ) + S(t)
∂fS(t, ε, δ)

∂t
= −βIδ̄IεS(t)fS(t, ε, δ), (B8)

which after rearrangement yields the partial differential equation in Equation 19. 699
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B.2 Gamma and Gaussian distributions satisfy Equation 20 700

We check that gamma distributions with fixed shape parameter and Gaussian distributions 701

with constant variance satisfy Equation 20. Consider setting the marginal susceptibility 702

distribution as a gamma distribution: 703

gS(t, ε) =

(
k

ε

)k
εk−1

Γ(k)
e
−
εk

ε . (B9)

Fixing the susceptibility ε and the shape parameter k, we first take the partial derivative 704

with respect to time t and apply the product rule. Subsequently, using Equation 11 (i.e., 705

˙̄ε = −βδ̄IIσ
2
ε(t)) and the fact that σ2

ε(t) =
ε̄2(t)
k for gamma distributions, this expression 706

simplifies and we recover Equation 20: 707

∂gS(t, ε)

∂t
=

εk−1

Γ(k)
e

−εk
ε̄

(
k

ε̄

)k

˙̄ε

[
−kε̄

ε̄
+

εk

ε̄2

]
= −βδ̄II(ε− ε̄)gS(t, ε). (B10)

Similarly, consider setting the marginal susceptibility distribution as a Gaussian distribution: 708

gS(ε, t) =
1√
2πσ

e
−1
2 ( ε−ε̄

σ )
2

. (B11)

Fixing the susceptibility ε and the standard deviation σ (due to constant variance) and 709

taking the partial derivative with respect to time t, and again recalling ˙̄ε = −βδ̄IIσ
2
ε(t) (see 710

Equation 11), we show Gaussian distributions also satisfy Equation 20: 711

∂gS(ε, t)

∂t
=

1√
2πσ

e
−1
2 ( ε−ε̄

σ )
2

· (ε− ε̄) ·
˙̄ε

σ2
= −βδ̄II(ε− ε̄)gS(ε, t). (B12)

C Initial joint distributions of susceptibility and trans- 712

missibility 713

To incorporate variation in both susceptibility and transmissibility we use bivariate distri- 714

butions to initialize our epidemiological models. We do so by first creating the initial joint 715

bivariate distribution in S, using a built-in function from the Statistics and Machine Learning 716

Toolbox (MATLAB version 2023b and 2024a) for the specific probability distributions used. 717

Without correlations between susceptibility and transmissibility, the initial joint distributions 718

in fI and fR are set equal to that in fS . When correlations are introduced, the initial 719

conditions of fI and fR are approximated via the attracting eigendistribution during the 720

exponential growth phase of the epidemic from a preliminary simulation. In this work, we 721

consider three types of bivariate distributions: gamma, truncated Gaussian, and negative 722

binomial. 723

We first consider independent gamma distributions for the initial joint distribution for 724

susceptibility (ε) and transmissibility (δ). However, these independent gamma distribu- 725

tions do not allow for covariation in ε and δ. Hence, we consider the bivariate Gaussian 726

distribution with 2×2 covariance matrix, allowing us to compare the effects of increasing 727

covariation on epidemic dynamics. We increase the initial variance in susceptibility (σε(0)) 728

and transmissibility (σδ(0)) to better see the effects of covariation. In doing so, the bivariate 729

Gaussian distributions are truncated, because their support lies on the whole real plane R2. 730

We ensure that mean values are set with ε̄(0) = δ̄S(0) = 1 and adjust variances to match the 731

specified correlation coefficient. In practice, truncation of distributions with high variance in 732

susceptibility and/or transmissibility can be hard to match with large (anti)correlations. In 733

our work, we restrict analysis to correlations between -0.6 and 0.6. 734
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D Model parameters 735

For all figures, except for Figure 4 which shows the reproduction number as a function of 736

correlation coefficient, we set R0 =2.0, a value representative of several respiratory viruses 737

such as flu and SARS. We assume that the average time to recovery is 10 days and is 738

exponentially distributed so that the recovery rate is given by γ = 1/10. Hence, we set 739

β = 0.2, with the exception of Figure 6 (and related Supplemental figures) where β is adjusted 740

to compensate for the effects of correlations (between susceptibility (ε) and transmissibility 741

(δ)) and therefore, match the effective exponential growth rate of the epidemics across 742

simulations. The model parameters (descriptions, values, and ranges, thereof) are shown in 743

Table D1. 744

Table D1. Epidemiological model parameters. Epidemic parameters and distribution
parameters explored in models with individual traits of susceptibility (ε) and transmissibility
(δ), with ε̄(0) = δ̄(0) = 1. Baseline values refer to those used in the reference SIR model.
Ranges indicate that these parameters vary based on initial conditions which depend on the
correlation coefficient. Specific parameter values are noted in Figures.

Parameter Baseline value Values explored Description

R0 2.0 1.5 to 2.5 Basic reproduction number

γ 1/10 day−1 1/10 day−1 Recovery rate

β 0.2 0.165 to 0.254 day−1 Transmission rate of infections

σ2
ε(0) 0 0.15 to 0.50 Initial variance in susceptibility

σ2
δ (0) 0 0.05 to 0.35 Initial variance in potential

transmissibility

ρ NA -0.60 to 0.60 Correlation between susceptibility
and potential transmissibility

E Simulation methods 745

All simulations and analysis were performed using MATLAB (version 2023b and 2024a). 746

All simulation code is available at https://github.com/Jeremy-D-Harris/SIR heterogeneity 747

project and archived on Zenodo (Harris et al., 2024). 748

E.1 Deterministic simulations 749

To approximate the continuous susceptibility and transmissibility model variables, we use 750

discrete variables composed of 100 uniformly spaced values between 0 and 6, such that the 751

initial joint distributions we consider are seeded onto a uniform mesh of size 100×100. In 752

visualization of the initial joint distributions we show only the range ∈ ([0, 3], [0, 3]), which 753

represents ≈ 90% of the population. In all cases, distributions are chosen such that the 754

initial population average susceptibility (ε̄) and potential transmissibility (δ̄) are equal to 1. 755

Epidemic model simulations were numerically integrated using ode45 in MATLAB (Dormand 756

& Prince, 1980; Shampine & Reichelt, 1997). 757
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To implement initial conditions, we first create the initial joint distributions of ε and 758

δ in the S, I, and R classes (see Appendix C). In all simulations except for in Figure 5, 759

we let the total population be N = 1, as in Rose et al., 2021 and let the total population 760

initial conditions be: S = N , I = 0, R = 0, with a small perturbation in the direction 761

of the eigenvector of the SIR model. (Adjusting the perturbation magnitude translates 762

the dynamics in time.) The initial conditions that are passed into the ode45 function are 763

calculated from Equation 1 - Equation 3. 764

E.2 Stochastic simulations 765

To analyze the outbreak potential of epidemics with different underlying susceptibility and 766

transmissibility characteristics we utilize a stochastic simulation approach using the Gillespie 767

algorithm (Gillespie, 1976, 1977). We initialize simulations with a population of 10,000 whose 768

susceptibility and transmissibility values are seeded with probabilities taken from the joint 769

probability distributions used in discrete model simulations to characterize a representative 770

population with explicit individual-level variation. In each stochastic simulation run, one 771

individual, chosen at random, is designated as the index infection. For each of the initial 772

distributions we analyze (SIR, ρ = −0.6, ρ = 0, ρ = 0.6) we run the stochastic simulation 773

1,000 times to obtain ensembles of epidemic trajectories; and denote a threshold of 50 774

infections to represent the occurrence an outbreak. 775
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Supplemental Material 776

From equations Equation 11 and Equation 13, the joint distribution in the infected population 777

satisfies the partial differential equation: 778

∂fI(t, ε, δ)

∂t
= β δ̄I S

(
ε fS(t, ε, δ)− ε̄ fI(t, ε, δ)

)
. (E13)

Integrating over ε, the effective transmissibility distribution satisfies the partial differential 779

equation: 780

∂hI(t, δ)

∂t
= β δ̄I S

(∫ ∞

0

ε fS(t, ε, δ) dε− ε̄ hI(t, δ)

)
. (E14)

In the case of uncorrelated susceptibility and transmissibility values,
∫∞
0

ε fS(t, ε, δ) dε = 781

ε̄ hS(t, δ), which means that the effective transmissibility distribution remains constant 782

and equal to the potential transmissibility distribution in the susceptible population, if 783

they are initially equal. The mean effective transmissibility remains constant, here equal 784

to δ̄I = 1 (Figure S5C; medium blue dot). For positive correlations, the mean effective 785

transmissibility is greater than in the case without correlations (Figure S5C; light blue 786

dot), whereas for negative correlations, the mean effective transmissibility is less than in the 787

case without correlations (Figure S5C; dark blue dot). For positive (negative) correlations 788

between susceptibility and transmissibility, initial incident infections are comprised of more 789

(less) transmissible individuals. Thus, for positive correlations,
∫∞
0

ε fS(t, ε, δ) dε > ε̄ hI(t, δ) 790

such that δ̄I monotonically decreases toward δ̄I = 1, whereas for negative correlations, 791∫∞
0

ε fS(t, ε, δ) dε < ε̄ hI(t, δ) such that δ̄I monotonically increases toward δ̄I = 1. 792
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Supplemental Figures 793
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Figure S1. Uncorrelated (low variance) Gaussian distributions for susceptibility
and transmissibility during exponential growth. Population dynamics with variation
in susceptibility and transmissibility. (A) Incident infections. (B) Coefficient of Variation
(squared) in susceptibility remains constant during exponential growth and increases over
time as the susceptible population decreases. (C) When transmissibility and susceptibility
are uncorrelated, Coefficient of Variation (squared) in transmissibility remains constant
over time for Gaussian distributions. (D) Initial joint distributions (uncorrelated Gaussian
distributions) of susceptibility values (ε) and potential transmissibility values (δ). (E)
Susceptibility distributions remain constant during exponential growth, shown at two time
points: t0 = 0 and t1 = 50 days. (F) Potential and effective transmissibility distributions at
the time points: t0 = 0 and t1 = 50 days. The transmission rate is equal to β = 0.2, and the
recovery rate is equal to γ = 1/10 such that the basic reproduction number is R0 = 2.0. The
variance values in the initial joint: σ2

ε(0) = 0.15, σ2
δ (0) = 0.05. The reduced model refers to

Equation 18 with σ2
ε(t) = σ2

ε(0) = 0.15.
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Figure S2. Initial Gaussian Joint Distributions in S (top) and I (bottom).
Corresponding to simulations in Figure 4, where the joint distribution in I arises from the
eigendistribution: (A) ρ = −0.6, (B) ρ = −0.3, (C) ρ = 0, (D) ρ = 0.3, (E) ρ = 0.6.
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Figure S3. Stochastic variability in epidemic outbreak size and duration. Count
histograms from the four ensembles of 1,000 simulations of epidemic trajectories shown in
Figure 5C,D. Final outbreak size (A) and duration (days) (B) for the SIR model, where
51.7% of simulations generated ≤50 infections. Final outbreak size (C) and duration
(days) (D) for the model with negative correlation between susceptibility and potential
transmissibility (ρ = −0.6), where 66.1% of simulations generated ≤50 infections. Final
outbreak size (E) and duration (days) (F) for the model with no correlation between
susceptibility and potential transmissibility (ρ = 0), where 58.8% of simulations generated
≤50 infections. Final outbreak size (G) and duration (days) (H) for the model with positive
correlation between susceptibility and potential transmissibility (ρ = 0.6), where 52.6% of
simulations generated ≤50 infections. Parameters: transmission rate is β = 0.2 and recovery
rate is γ = 0.1. Stochastic simulations were initialized in a population of 10,000.
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Figure S4. The effects of correlations between susceptibility and transmissibility
when the exponential growth rate is matched. (A) Incident infections. (B) Mean
susceptibility decreases over time as the susceptible population is depleted. (C) Without
correlations, the effective transmission rate remains constant (medium blue). Positive
correlations cause the transmissibility to decrease over time (light blue), whereas negative
correlations cause transmissibility to increase over time (dark blue). (D) About 80% of the
susceptible population is depleted. (E) Susceptibility distributions plotted at ε̄(t1) = 0.9.
(F) Transmissibility distribution at time points corresponding to the progress variable,
ε̄(t1) = 0.9. For positive (negative) correlations, the mean transmissibility is greater (less)
than the mean transmissibility without correlations. Across all simulations, the recovery rate
is γ = 1/10 and the basic reproduction number is R0 = 2.0. The transmission rates vary:
β = 0.254, 0.2, 0.165 for negative correlation (ρ = −0.6), no correlation (ρ = 0), and positive
correlation (ρ = 0.6), respectively. The initial variance values are: σ2

ε(0) = 0.44, 0.50, 0.30,
and σ2

δ (0) = 0.27, 0.35, 0.30.
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Figure S5. The effects of correlations on susceptibility and transmissibility
distributions over time. (A) Population dynamics including incident infections (η), the
mean susceptibility (ε̄) (both redrawn from Figure S4A,B), and the effective transmission
rate (β δ̄I) . (B) Susceptibility distributions associated with four mean susceptibility values
going down the rows: ε̄ = [1.0, 0.90, 0.80, 0.66]. (C) Effective transmissibility distributions
at the same four time points corresponding to the mean susceptibility values. Parameter
values are the same as in Figure S4. Corresponding coefficients of variation (squared) are
shown in Figure S6.
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Figure S6. The effects of correlations on cumulative infections and the coefficients
of variation. (A) Cumulative infections showing different final outbreak sizes for different
correlations between susceptibility and transmissibility. Parameter values are the same as in
Figure S4 and Figure S5. The coefficients of variation (squared) for susceptibility (B) and
transmissibility (C).
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