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STRUCTURED ABSTRACT 
 

INTRODUCTION: Understanding the heterogeneity of brain structure in individuals with the 
Motoric Cognitive Risk Syndrome (MCR) may improve the current risk assessments of 
dementia.  
 
METHODS: We used data from 6 cohorts from the MCR consortium (N=1987). A weakly-
supervised clustering algorithm called HYDRA was applied to volumetric MRI measures to 
identify distinct subgroups in the population with gait speeds lower than one standard deviation 
(1SD) above mean.  
 
RESULTS: Three subgroups (Groups A, B & C) were identified through MRI-based clustering 
with significant differences in regional brain volumes, gait speeds, and performance on Trail 
Making (Part-B) and Free and Cued Selective Reminding Tests.  
  
DISCUSSION: Based on structural MRI, our results reflect heterogeneity in the population with 
moderate and slow gait, including those with MCR. Such a data-driven approach could help pave 
new pathways toward dementia at-risk stratification and have implications for precision health 
for patients. 
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1. BACKGROUND 

Dementia is marked by a progressive decline in cognitive and functional. Accessible and informative 

clinical indicators that help identify individuals at risk of incident dementia could enable targeted, earlier 

and more effective interventions. Like Mild Cognitive Impairment (MCI), Motoric Cognitive Risk 

(MCR) syndrome is a pre-dementia state characterized by subjective cognitive complaints coupled with 

objectively measured impairment.1 While MCI which is characterized by reduced performance on 

objective cognitive tests, MCR is characterized by slow gait speed and subjective cognitive impairment 2. 

Prior studies indicate that MCR is a significant risk factor for dementia in older adults3. Compared to 

MCI, MCR does not require neuropsychological assessments, which are generally time-consuming. This 

makes MCR a more efficient and accessible solution for risk stratification of dementia in community-

dwelling adults and across various settings, from primary care to specialized neurology clinics 4. 

Both components of MCR, slow gait and subjective cognitive impairment, are also independently 

predictive of future cognitive decline and incident dementia – but the MCR phenotype has higher 

predictive validity for dementia than either of the individual components alone 5,6.  

 

In older adults, slow gait speed can stem from various factors such as neurological issues, muscle-related 

conditions, arthritis, or a combination of these factors. Neurodegeneration caused by various dementia 

etiologies, such as Alzheimer’s disease (AD), is considered one of the primary reasons behind declines in 

both gait speed and cognitive function7. The brain regions that are known to mediate executive functions 

(EFs), such as the frontal and prefrontal-lobe networks, also control gait ability8,9. These brain regions are 

involved in integrating information from many cortical sensory systems, modulate and produce goal-

directed actions and behavior 10. Atrophy in these regions causes both cognitive and gait decline, 

concurrently with the aging process 11-14. Preliminary intervention trials using cognitive training or brain 

stimulation to enhance EF have also shown improvements in gait velocity 15,16. MCR, despite these shared  

neuroanatomical pathways, describes people who are still cognitively intact but with cognitive complaints 
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and slowing of gait. The precise neuroanatomical signatures that correspond to the clinical manifestations 

in MCR, however, are unknown. To study the biological underpinnings of MCR, an MCR-neuroimaging 

consortium was established, incorporating data from seven cohorts across five different countries, and 

three continents. that collected structural MRIs, gait speeds, cognitive assessments, and other clinical 

symptoms. This consortium provides a valuable opportunity to study neurodegeneration patterns as 

identified through structural MRIs and to connect these findings with MCR, its components, and other 

clinical symptoms. 

 

There is substantial neuroanatomical heterogeneity in preclinical stages of dementia 17.  Several studies 

have linked MCR to specific patterns of brain atrophy, specifically in prefrontal, supplementary motor, 

insular and motor cortices 13,14. However, very few data-driven studies have explored the variability of 

neuroanatomical patterns in MCR and its components14. Therefore, in this study, we adopted a machine 

learning based data-driven approach to investigate structural brain differences among participants in the 

MCR consortium using volumetric imaging. We employed a novel semi-supervised clustering approach 

called HYDRA (Heterogeneity through Discriminative Analysis) 18, to identify subgroups with distinct 

structural brain patterns within the MCR Consortium. Several other approaches were previously proposed 

to reveal the inherent disease heterogeneity. But most of these methods either relied on predefined clinical 

subgroups, ignoring multivariate relationships in the data 19,20, or applied clustering directly to brain 

anatomies, risking the identification of normal inter-individual variability, some of which could be due to 

confounding factors such as sex, age etc. rather than disease-specific heterogeneity 21,22.  The HYDRA 

method enables us to mitigate these challenges and disentangles the heterogeneity in a population, using 

another reference population. This was achieved by leveraging data from a reference group composed of 

individuals with faster gait speeds (population FG, those with gait speed faster than 1 standard deviation 

above the population mean within each cohort). Identifying subgroups  with homogenous 

neuroanatomical patterns in a cohort population with gait variability has a potential to further our 

understanding of biological underpinnings of MCR, and in developing interventions for dementia. 
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2. Methods 

 

2.1. Participants 

Data from 2,007 older adults in the MCR consortium was examined. The data were obtained from 7 

different cohorts and 5 different countries. The cohorts were : (i) the Central Control of Mobility in Aging 

Study (CCMA) 7,23 in the US, (ii) the LonGenity study 24 in the US, (iii) the Einstein Aging Study (EAS) 

2,25 in the US, (iv) the Tasmanian Study of Cognition and Gait (TASCOG) 26,27 in Australia, (v) the 

National Center for Geriatrics and Gerontology–Study of Geriatric Syndromes (NCGG-SGS) 28,29 in 

Japan, (vi) the Kerala-Einstein Study 30 in India, and (vii) the Gait and Alzheimer’s Interactions Tracking 

study (GAIT) 9,31 in France. All the study procedures in each of the cohorts were approved by the local 

institutional review boards. All the cohorts excluded individuals with prevalent dementia.  

 

Data from all the cohorts were used in the analyses. We reserved a subset of population from each cohort 

as the reference population for the clustering model, that had faster gait speeds (FG). 

 

This analysis was approved by the institutional review board of the Albert Einstein College of Medicine, 

NY. All participating cohorts have received approval from their local ethics committees. 

 

2.2. Study Measures 

Data from all the cohorts included population demographics. To harmonize this data and address 

cohort variability, we followed a standardized process for the preparation of each modality of 

data. 
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Gait Speeds: Gait speed (cm/s) was available in all the studies. More detailed description of gait speed 

measurements and quantification were presented in previous studies 5,32,33. Gait speed was normalized 

within each study, then the individuals with the normalized gait speed greater than 1 standard deviation 

above the mean of the study population were labelled as FG. The study population was the remaining 

individuals with gait speeds less than 1 SD above population mean (normal and slower gait speeds). The 

FG participants from all the studies were used as the reference population for the HYDRA clustering 

algorithm.  

 

Volumetric MRI: MRI measures of all the individuals across all the cohorts were available, which were 

collected at the respective study sites and harmonized at a single site using the FreeSurfer pipeline, using 

the standard parcellation and correction methods, as described elsewhere 13. For this study, we used the 

volumetric measures of 41 brain regions (Supplementary Table 1), both the hemispheres added where 

applicable, and total Intra Cranial Volume (tICV). To account for the individual differences in tICV, 

within each cohort, the volume of each region (VR) was normalized according to the mean tICV of the 

population within that cohort. The adjusted volume (VRa) of a brain region of an individual was 

calculated as  

 

VRa = (VR/tICV) * mean(tICV) 

 

 

Neuropsychological evaluations: For the post-hoc analyses of objective cognitive scores of different 

subgroups obtained in our analyses, we used available neuropsychological scores from different studies, 

normalized per study,  wherever applicable. The following were the neuropsychological tests that were 

used : 
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- Trail Making Test, Part B (TMT-B) 34; available in CCMA, LonGenity, EAS, NCGG-SGS 

(evaluated using tablet version 35), KES and GAIT   

- Stroop Color Word test 36, consisting of subtests measuring time required to name the colors 

seen (COLOR), read the given words (WORD) and name the color of the printed word 

(COLOR_WORD); we used Interference (Stroop-INT) which is the difference between the 

third subtask and the first task (COLOR_WORD - COLOR), available in EAS, TASCOG and 

GAIT  

- Free and Cued Selective Reminding Test (FCSRT) 37, a recall test that uses either words or 

images.  Scores includes the sum of free recall (FR) alone (range 0-48) and combined with 

cued recall as total recall (TR), and the sum of FR and TR (FR96: range 0-96); available in 

CCMA, EAS and LonGenity 

 

Diagnosis of MCR: MCR is characterized by slow gait accompanied by cognitive complaints. In our 

study, slow gait was defined as gait speed lesser than one standard deviation below the age and sex-

specific means in each cohort 38. Gait speed in older adults from different cohorts and countries can 

vary due to differences in factors such as height, sex, race and ethnicity, education, and 

socioeconomic status.39,40  Hence, using a universal single gait speed cut score, although used in 

some prior studies to define normal or abnormal performance, is problematic as it introduces 

greater heterogeneity between different populations. Different cognitive complaint questionnaires 

were used across the 7 cohorts, sometimes with difference in their versions. For our study, subjective 

cognitive complaint was determined using the memory item from Geriatric Depression Scale (GDS) 

uniformly in all cohorts41 or the Instrumental Activities of Daily Living (I-ADL) 42, where available in 

cohorts CCMA and KES. 
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2.3. Analytic Approach 

Figure 1 depicts the overall analytic pipeline of our study. The primary goal of this study was to identify 

subgroups with neuroanatomical heterogeneity among individuals with slower gait speeds using a 

machine learning clustering algorithm. There were as many as 41 brain region volumes available through 

preprocessing of structural MRIs via the automated FreeSurfer pipeline. Some of the brain region 

volumes are highly correlated with each other and using all of them together in a clustering model may 

lead to skewness and bias in the clustering results and making them less representative of the true 

underlying patterns in the data. Moreover, in high-dimensional spaces with many correlated features, 

there's an increased risk of finding weak correlations that may result in misleading subgroup formations. 

Therefore, we used Factor Analyses (FA) to reduce the number of input variables to the clustering model 

that results in heterogeneous subgroups of population.   

 

Factor Analyses:  For the Factor Analyses, we used maximum likelihood estimation method and 

varimax rotation with the 41 regions available as input variables to obtain a substantially smaller number 

of latent factors. The relationship between each variable (region) and the latent factors is described by a 

matrix of weights, or factor loadings, generated from an FA model. We chose one variable within each 

factor that had the highest loading to make the feature set (RegionsFactor) for the subsequent clustering 

model. Therefore, before performing factor analysis, we thoroughly evaluated the “factorability” of the 

combined all-cohort dataset. Bartlett’s test of sphericity 43, which checks whether or not the observed 

variables intercorrelate, returned a significant value of χ2 = 48722.9, p<0.0001. If the test found 

statistically insignificant, the dataset would not have been suitable for factor analysis. We also performed 

the Kaiser-Meyer-Olkin (KMO) test which assesses the suitability of data for FA by measuring the 

sampling adequacy for each variable using the proportion of variance 44. The overall KMO value of our 

dataset was 0.94 indicating a more than adequate sampling in the data (KMO value below 0.6 is 

considered insufficient to proceed with FA). Thus, we proceeded with the Factor Analyses of the dataset 
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with the available 41 volumetric MRI variables. We must specify the number of factors desired to the 

Factor Analyzer method being used. We performed an exploratory FA with several possible number of 

factors up to 25 and chose the number of factors for the model using the Kaiser criterion 44, based on the 

eigenvalues of the factors greater than 1, which represent the amount of variance explained by each 

factor.  

 

Weakly-Supervised Clustering: Traditional clustering methods in machine learning are referred as 

‘unsupervised’ clustering where only specific measures from the desired population are used as input for 

the model that results in the subgroups (clusters) of that population. The challenge with unsupervised 

clustering approaches is that they are not capable of accounting for ‘healthy state’ or ‘disease state’, and 

clustering is only performed on the specified measure (e.g., imaging biomarkers). To mitigate this 

problem and to obtain the subgroups in our study population relative to the FG group (i.e. healthy state in 

our population), we used a novel clustering variant, a weakly-supervised algorithm called HYDRA 

(Heterogeneity through Discriminative Analysis), that also considers the characteristics of population in 

FG group with faster gait speeds as reference, such that the population to be clustered can be 

simultaneously separated from the controls (FG) while quantifying the heterogeneity within the 

population through their association to the sub-classifiers that separate them from the reference group 18. 

As input features, we used only those regions that had the highest loading within each factor in the result 

of FA in the previous step. Age and sex were added as covariates to the clustering algorithm.  

 

Statistical Analyses: The descriptive characteristics of the entire population, each cohort, and subgroups 

resulted from clustering were examined. The demographic variables such as age, sex, education, and 

ethnicity were included in the descriptive characteristics. An Analysis of Variance (ANOVA) was 

conducted for the quantitative demographics such as age and education. For categorical variables such as 

ethnicity and sex, Fisher’s exact test was performed. For the volumetric MRI measures, gait speeds and 
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cognitive scores, an ANCOVA analysis was performed, which included age and sex as covariates to 

identify differences across the subgroups. For the MRI measures, we first compared a set of regions 

known to be associated with MCR based on previous studies 13. We also compared the volumes of regions 

used as input for the clustering model. Similar analyses were performed for gait speeds and cognitive 

scores across the subgroups. In case of significant differences found in the ANCOVA analyses, pairwise 

comparisons were performed accounted by a post-hoc Tukey's honest significant difference (HSD) test (p 

< 0.05). 

 

All the data preprocessing, Factor Analyses and HYDRA clustering were performed using Python with 

scikit-learn library for FA and mlni package for HYDRA clustering 18. The statistical analyses were 

conducted using the R statistical software, version 4.2.2 for MacOS. 

 

3. Results 

Population Characteristics  

A total of 1,987 participants were part of the final clustering model after excluding those with missing 

data or outliers in their volumetric MRI measures (mean age, 71.73±6.87 years; 47.7% female). There 

were 294 participants  in the reference FG group (mean age, 69.30±5.52 years; 47.3% female) and 1693 

participants in the remaining study population (mean age, 72.15±6.99 years; 47.8% female). The FG 

group had younger population compared to the study population (p<0.001, effect size of -0.52). Both the 

groups differed in the mean years of education of the population (p=0.03, effect size of 0.14). There were 

no sex-differences found between the groups. There was no significant difference found in both the 

groups in terms of cohort membership. The reference group FG differed from the study population in the 

proportion of participants with MCR diagnosis, as defined by ‘slow gait’, depending on threshold specific 

to the cohort, and subjective cognitive complaint as determined by either GDS or ADL (3.3% in the FG 

group, 13.3% in the study population, p<0.001) (see Table 1).  
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Factor Analyses 

We found the number of factors to be 8 and conducted FA with the same. Supplementary Table 1 

summarizes the factor loadings of each variable in all the 8 factors. For simplicity, we presented only 

those variables which had loadings of at least 0.4 in any factor. We chose one variable (region) from each 

factor that had the highest loading as the input for clustering model. The eight regions that were chosen to 

be the input features for the clustering model, RegionsFactor, were the following - Accumbensarea, 

Caudate, Banks of the Superior Temporal Sulcus (banksSTS), Caudal Anterior Cingulate, Entorhinal 

Cortex, Pars Triangularis, Pericalcarine, and Precentral Gyrus. 

 

HYDRA Clustering Analyses 

We obtained 3 subgroups within the study population from HYDRA, with an adjusted rand index (ARI) 

of 0.1. We performed statistical analyses to assess the differences across the 3 subgroups, Group A, 

Group B and Group C, between each of them as well as with respect to the FG group. Table 1 includes 

descriptive characteristics of the population in each subgroup obtained. Of the 1693 individuals, 585 were 

grouped under Group A (mean age, 72.07±6.80 years; 47.4% female), 455 were grouped under Group B 

(mean age±SD, 70.94±6.77 years; 50.3% female), and 653 under Group C (mean age, 73.06±7.18 years; 

46.4% female). The mean gait speed (±SD) in Group A was 104.91(±17.05) , 103.79(±18.28) in Group B 

and 100.04(±21.34) in Group C. 

   

Heterogeneity in Brain Patterns in the MCR Consortium participants 

Post-hoc pairwise group comparisons revealed significant differences across the subgroups for most of 

the regions (Table 2 and Figure 2, Factors). Among all the subgroups, Group A had the highest volumes 

of Accumbensarea (mean z-score of 0.481±0.140), followed by the group FG (0.434±0.126), Group B 

(0.425 ±0.106) and Group C (0.329±0.106). Group A had the highest volumes of Caudal Anterior 
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Cingulate  (mean z-score of 0.513±0.117), followed by the Group B (0.478±0.113), FG (0.465±0.126), 

and Group C (0.392±0.118). Except the Groups FG & B, all the pairs of groups differed significantly in 

their volumes of Accumbensarea and Caudal Anterior Cingulate (p<0.0001). All the pairs of subgroups 

differed significantly in their volumes of banksSTS, parstriangularis, pericalcarine and precentral gyrus. 

While Group A had the highest volume of banksSTS and precentral gyrus, Group B had the highest 

volume of parstriangularis and pericalcarine. Group B & FG did not differ significantly in their precentral 

gyrus volumes. 

 

Next, we combined the volumes of brain regions into respective cortical, subcortical and other regions 

that were generally implied in MCR and dementia - C/S ROIs  – Frontal, Temporal, Parietal, Occipital, 

Hippocampus, Cerebellum and Subcortical (Basal Ganglia nuclei, Amygdala, and Thalamus). We 

repeated the ANCOVA analyses and post-hoc pairwise comparisons to examine the differences across the 

subgroups. Differences in the C/S ROIs between the subgroups is reported in Table 3; Figure 2, 

Cortical). Group B did not show any significant differences in the volumes of C/S ROIs compared to that 

of  FG, except in the Occipital lobe. Group A showed significant differences in all the C/S ROIs volumes 

compared to those of  Group B, except in the Occipital lobe. Group A had the highest volumes across all 

the C/S ROIs while Group C had the least. Group C showed significant differences in the all the C/S ROIs 

volumes compared to those of  FG, except in the Subcortical regions. Group C showed significant 

differences in the all the C/S ROIs volumes compared to those of Group B, except in the Cerebellum and 

Subcortical regions. Finally, Group C and Group A differed across all the C/S ROIs  volumes.  

 

Heterogeneity in Gait Speeds and Cognition in the MCR Consortium participants  

ANCOVA analyses showed that the subgroups differed in their gait speeds. A post-hoc analysis was 

performed to evaluate subgroups differences. While Group B did not show a significant difference with 

either Group A or Group C, the mean gait speed of Group A was higher than that of Group C (-
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0.192±0.739 vs -0.364±0.864, p=0.003). In the ANCOVA analyses with each cognitive score as the 

outcome, all subgroups differed in their TMT-B and FR96 scores but not in their Stroop-INT scores. For 

TMT-B, the FG group had better scores (mean±SD: -0.354±0.892) compared to Group B (-0.066±0.906, 

p=0.03), Group A (-0.044±0.905, p=0.05), and Group C (0.174±1.153, p<0.001). Within the subgroups, 

only Groups A and C showed a significant difference (p=0.02). With respect to FR96 scores, the FG 

group had higher scores (0.599±0.716) compared to Group C (-0.125±1.136, p=0.02). Group A also had 

higher scores (0.389±0.778) compared to Group C (p=0.01).The groups did not show significant 

differences in their Stroop-Int scores. Table 4 and Figure 3 summarize the ANCOVA and post-hoc 

pairwise comparison results for gait speed, and cognitive scores across the subgroups. 

 

4. Discussion 

 

The MCR Consortium comprises over 2,000 MRIs from older adults without dementia from multiple 

locations across different continents. It provides an invaluable repository of neuroimaging and other 

measures to further our understanding of MCR as a crucial risk factor for dementia. Using a novel data-

driven machine learning approach, we focused on exploring the heterogeneity in the population with fast 

and normative gait speeds (slower than 1 SD above the population mean), while accounting for the 

distinct neuroanatomical patterns that separate each subgroup from the population with fast gait speeds. 

Among the participants without dementia and  gait speeds in the normal to slow range, we found three 

subgroups which significantly differed in the patterns of brain regional volumes, gait speeds, and 

cognitive performance.  

Group A had slower gait speeds compared to the reference fast gait speed (FG) group and largest volumes 

of cortical and subcortical regions. Group B had intermediate gait speeds and cortical volumes similar to 

the reference group. Group C had the slowest gait speeds, the smallest overall regional brain volumes in 
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most brain regions and the highest prevalence of MCR. The subgroups also differed in their performance 

in Trail Making Test (Part B) and Free & Cued Selective Reminder Test. 

 

Abnormal gait has been shown to be a reliable predictor of non-Alzheimer dementia 45,46. Since slowing 

of gait speed precedes cognitive decline32,33, understanding the heterogeneity related to gait speed patterns 

can be very valuable in characterizing predementia syndromes such as MCR. MCR, which is 

characterized by slow gait and subjective cognitive impairment, depends on varying thresholds to 

determine slow gait ranging from 44.4-101.9 cm/s among men and 36.9-97.4 cm/s among women as 

observed across different study locations 5. In our analyses, instead of studying abnormal gait using fixed 

thresholds, we considered a broader group of older population without dementia with gait speeds that are 

fast or normative (less than 1 SD above population mean). We were interested in studying 

neuroanatomical patterns within this population in relation to their gait speed and in exploring possible 

differences in their cognition. As hypothesized, we found homogenous subgroups that showed significant 

differences in their mean gait speeds accompanied by corresponding distinct neuroanatomical patterns as 

shown by  differences in their brain region volumes. The subgroup with the slowest mean gait speed 

(Group C) had the least volumes across the prefrontal, temporal, and parietal cortex regions, hippocampus 

and cerebellar cortex than any other subgroups, resembling a pathological pattern of an MCR subtype 

accompanied by olfactory dysfunction that is more likely to be associated with Alzheimer and Lewy body 

dementias 47. Our  results were consistent with the previous MCR studies that showed higher association 

of lower cortical gray matter volumes and total hippocampal volumes with incident MCR 8,9,13. Similar 

results were observed across the regions that were used in the clustering model, except for the Caudate 

nucleus, for which no significant difference was found across any of the groups. Interestingly, Group A, 

which had a slower mean gait speed compared to the reference fast gait group, had higher brain region 

volumes across prefrontal, hippocampal, temporal, parietal regions. We could not find a specific 

neuroanatomical pattern that could explain why Group A may have slower gait speeds than the reference 

group FG while having greater brain region volumes. This finding might be explainable by other 
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comorbidities. However, due to the lack of detailed data on these comorbidities, we were not able to study 

them in the context of the current study. 

 

Prior studies indicate that MCR syndrome is associated with worse performance in different cognitive 

domains such as attention and memory, as well as global cognition 48. In a study of 314 nondemented 

older adults 49, it was shown that different MCR subtypes show differences in cognitive profiles, with 

different gait attributes such as speed, stride length and swing being differently associated with global 

cognition and memory.  In this study, we evaluated possible subgroup differences in their cognitive 

performance as measured by different tests. We compared the performances of the individuals across all 

the subgroups in TMT-B, FCSRT (as measured by FR96) and Stroop Task - Interference. All the 

subgroups showed worse performance in TMT-B and FCSRT compared to that of the faster gait speed 

group.  All the subgroup pairs, except Groups A and B, differed in their TMT-B scores, underscoring the 

previously established links between executive function and gait speed, accompanied by cognitive 

complaints8,15. Whereas only the slowest gait subgroup, Group C, differed in its mean FR96 scores 

compared to FG and Group A. None of the subgroups differed in their cued recall scores and Stroop-

Interference scores, which is likely attributable to the fact that the study populations were all dementia-

free at baseline visit. Our findings underscore various results from previous studies that highlighted the 

negative association between gait speed and impairment in executive function and global cognition 48,50,51.    

 

We used the data from a large multi-center consortium of studies involving community-dwelling non-

demented adults. However, a few limitations should be noted.   Due to cross-sectional analyses, it is not 

possible to establish any causal relationships between identified structural brain changes among groups 

and clinical outcomes. A future direction for us is to study if these subgroups that differ in their 

neuroanatomic and gait speed patterns, would show different trajectories in their gait speed slowdown or 

cognitive decline. Previous studies that both cortical volume and thickness correlate with cognitive 

function and neurodegeneration52, while particularly in the case of MCR it was shown that cortical 
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thickness detected neurodegeneration easier than cortical volumes13. However, it was shown that cortical 

volume can be more sensitive to detecting changes in brain structure associated with aging and 

neurodegenerative processes53 and numerous studies have successfully used cortical volumes in machine 

learning models for various neurological conditions54,55. Therefore, we used cortical volumes as the inputs 

for our model. The effects of using cortical thickness on the resulting subgroups should be further 

explored. We used a novel method of combining factor analyses with weakly-supervised clustering, 

which might not be necessarily the most fitting approach to study the relation between gait speeds and 

neuroanatomical heterogeneity. However, this approach handles the problem of collinearity in brain 

region volumes very well. We must highlight that the results of the analyses of subgroup differences in 

their cognitive performance may not be generalizable since different cognitive tests and different versions 

have been used across the cohorts and some of the cognitive tests were not available for some cohorts. In 

combination with longitudinal measures and harmonized cognitive measures, novel machine learning 

methods such as HYDRA or the most recent generative methods 56 that are specialized in studying 

heterogeneity in imaging, have a huge potential to explore disease-subtypes and disease-staging in gait 

abnormalities and MCR syndrome. 

 

The significance of our work lies in its potential to encourage further research related to previously 

unexplored heterogeneity within the at-risk population with slower gait speeds. By identifying distinct 

subgroups based on brain volume patterns as well as other biomarkers, we can potentially improve our 

understanding of the underlying pathophysiology associated with slow gait and its relation to MCR 

syndrome and subsequent progression to dementia. This approach might help paving pathways toward 

patient stratification at early asymptomatic stages and have implications for precision health. As the 

multi-site study consortiums such as MCR Imaging Consortium are invaluable to the research of aging 

and dementia, our methodology succeeds in handling the challenges of such complex datasets, offering a 

robust framework for analyzing neuroimaging data across diverse populations. Ultimately, our work 
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contributes to the growing body of knowledge on MCR and may pave the way for more nuanced 

approaches to early dementia detection and prevention. 

 

 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.11.24315328doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.11.24315328
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18

References 
 

1. Campbell NL, Unverzagt F, LaMantia MA, Khan BA, Boustani MA. Risk Factors for the 
Progression of Mild Cognitive Impairment to Dementia. Clin Geriatr Med. 2013;29(4):873-893. 
doi:10.1016/j.cger.2013.07.009 
2. Verghese J, Wang C, Lipton RB, Holtzer R. Motoric cognitive risk syndrome and the risk 
of dementia. J Gerontol A Biol Sci Med Sci. Apr 2013;68(4):412-8. doi:10.1093/gerona/gls191 
3. Meiner Z, Ayers E, Verghese J. Motoric Cognitive Risk Syndrome: A Risk Factor for 
Cognitive Impairment and Dementia in Different Populations. Ann Geriatr Med Res. Mar 
2020;24(1):3-14. doi:10.4235/agmr.20.0001 
4. Belleville S, Fouquet C, Hudon C, Zomahoun HTV, Croteau J, Disease-Quebec 
CftEIoAs. Neuropsychological measures that predict progression from mild cognitive 
impairment to Alzheimer's type dementia in older adults: a systematic review and meta-analysis. 
Neuropsychol Rev. 2017;27:328-353.  
5. Verghese J, Ayers E, Barzilai N, et al. Motoric cognitive risk syndrome. Neurology. 
2014;83(24):2278-2284. doi:doi:10.1212/WNL.0000000000001084 
6. Semba RD, Tian Q, Carlson MC, Xue Q-L, Ferrucci L. Motoric cognitive risk syndrome: 
Integration of two early harbingers of dementia in older adults. Ageing Research Reviews. 
2020/03/01/ 2020;58:101022. doi:https://doi.org/10.1016/j.arr.2020.101022 
7. Holtzer R, Mahoney J, Verghese J. Intraindividual variability in executive functions but 
not speed of processing or conflict resolution predicts performance differences in gait speed in 
older adults. J Gerontol A Biol Sci Med Sci. Aug 2014;69(8):980-6. doi:10.1093/gerona/glt180 
8. Ezzati A, Katz MJ, Lipton ML, Lipton RB, Verghese J. The association of brain structure 
with gait velocity in older adults: a quantitative volumetric analysis of brain MRI. 
Neuroradiology. Aug 2015;57(8):851-61. doi:10.1007/s00234-015-1536-2 
9. Beauchet O, Allali G, Annweiler C, Verghese J. Association of Motoric Cognitive Risk 
Syndrome With Brain Volumes: Results From the GAIT Study. J Gerontol A Biol Sci Med Sci. 
Aug 2016;71(8):1081-8. doi:10.1093/gerona/glw012 
10. Holtzer R, Wang C, Lipton R, Verghese J. The protective effects of executive functions 
and episodic memory on gait speed decline in aging defined in the context of cognitive reserve. J 
Am Geriatr Soc. Nov 2012;60(11):2093-8. doi:10.1111/j.1532-5415.2012.04193.x 
11. Martin KL, Blizzard L, Wood AG, et al. Cognitive function, gait, and gait variability in 
older people: a population-based study. J Gerontol A Biol Sci Med Sci. Jun 2013;68(6):726-32. 
doi:10.1093/gerona/gls224 
12. Nagamalla V, Verghese J, Ayers E, et al. Distinct Patterns of Brain Atrophy in amnestic 
Mild Cognitive Impairment and Motoric Cognitive Risk Syndromes. Neurodegener Dis. Aug 5 
2024;doi:10.1159/000540512 
13. Blumen HM, Schwartz E, Allali G, et al. Cortical Thickness, Volume, and Surface Area 
in the Motoric Cognitive Risk Syndrome. J Alzheimers Dis. 2021;81(2):651-665. 
doi:10.3233/jad-201576 
14. Blumen HM, Allali G, Beauchet O, Lipton RB, Verghese J. A Gray Matter Volume 
Covariance Network Associated with the Motoric Cognitive Risk Syndrome: A Multicohort MRI 
Study. J Gerontol A Biol Sci Med Sci. May 16 2019;74(6):884-889. doi:10.1093/gerona/gly158 
15. Marusic U, Verghese J, Mahoney JR. Cognitive-Based Interventions to Improve 
Mobility: A Systematic Review and Meta-analysis. J Am Med Dir Assoc. Jun 2018;19(6):484-
491.e3. doi:10.1016/j.jamda.2018.02.002 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.11.24315328doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.11.24315328
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19

16. Wrightson JG, Twomey R, Ross EZ, Smeeton NJ. The effect of transcranial direct 
current stimulation on task processing and prioritisation during dual-task gait. Exp Brain Res. 
May 2015;233(5):1575-83. doi:10.1007/s00221-015-4232-x 
17. Ezzati A, Zammit AR, Habeck C, Hall CB, Lipton RB, for the Alzheimer’s Disease 
Neuroimaging I. Detecting biological heterogeneity patterns in ADNI amnestic mild cognitive 
impairment based on volumetric MRI. Brain Imaging Behav. 2020/10/01 2020;14(5):1792-1804. 
doi:10.1007/s11682-019-00115-6 
18. Varol E, Sotiras A, Davatzikos C. HYDRA: Revealing heterogeneity of imaging and 
genetic patterns through a multiple max-margin discriminative analysis framework. Neuroimage. 
2017/01/15/ 2017;145:346-364. doi:https://doi.org/10.1016/j.neuroimage.2016.02.041 
19. Whitwell JL, Dickson DW, Murray ME, et al. Neuroimaging correlates of pathologically 
defined subtypes of Alzheimer's disease: a case-control study. The Lancet Neurology. 
2012;11(10):868-877. doi:10.1016/S1474-4422(12)70200-4 
20. Zhang T, Koutsouleris N, Meisenzahl E, Davatzikos C. Heterogeneity of Structural Brain 
Changes in Subtypes of Schizophrenia Revealed Using Magnetic Resonance Imaging Pattern 
Analysis. Schizophr Bull. 2014;41(1):74-84. doi:10.1093/schbul/sbu136 
21. Whitwell JL, Petersen RC, Negash S, et al. Patterns of Atrophy Differ Among Specific 
Subtypes of Mild Cognitive Impairment. Archives of Neurology. 2007;64(8):1130-1138. 
doi:10.1001/archneur.64.8.1130 
22. Noh Y, Jeon S, Lee JM, et al. Anatomical heterogeneity of Alzheimer disease. 
Neurology. 2014;83(21):1936-1944. doi:doi:10.1212/WNL.0000000000001003 
23. Blumen HM, Holtzer R, Brown LL, Gazes Y, Verghese J. Behavioral and neural 
correlates of imagined walking and walking-while-talking in the elderly. Hum Brain Mapp. Aug 
2014;35(8):4090-104. doi:10.1002/hbm.22461 
24. Rajpathak SN, Liu Y, Ben-David O, et al. Lifestyle factors of people with exceptional 
longevity. J Am Geriatr Soc. Aug 2011;59(8):1509-12. doi:10.1111/j.1532-5415.2011.03498.x 
25. Verghese J, Wang C, Lipton RB, Holtzer R, Xue X. Quantitative gait dysfunction and 
risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry. Sep 2007;78(9):929-35. 
doi:10.1136/jnnp.2006.106914 
26. Callisaya ML, Beare R, Phan TG, Chen J, Srikanth VK. Global and regional associations 
of smaller cerebral gray and white matter volumes with gait in older people. PLoS One. 
2014;9(1):e84909. doi:10.1371/journal.pone.0084909 
27. Srikanth V, Phan TG, Chen J, Beare R, Stapleton JM, Reutens DC. The location of white 
matter lesions and gait--a voxel-based study. Ann Neurol. Feb 2010;67(2):265-9. 
doi:10.1002/ana.21826 
28. Doi T, Blumen HM, Verghese J, et al. Gray matter volume and dual-task gait 
performance in mild cognitive impairment. Brain Imaging Behav. Jun 2017;11(3):887-898. 
doi:10.1007/s11682-016-9562-1 
29. Shimada H, Tsutsumimoto K, Lee S, et al. Driving continuity in cognitively impaired 
older drivers. Geriatr Gerontol Int. Apr 2016;16(4):508-14. doi:10.1111/ggi.12504 
30. Wang N, Allali G, Kesavadas C, et al. Cerebral Small Vessel Disease and Motoric 
Cognitive Risk Syndrome: Results from the Kerala-Einstein Study. Journal of Alzheimer's 
Disease. 2016;50:699-707. doi:10.3233/JAD-150523 
31. Beauchet O, Allali G, Launay C, Herrmann FR, Annweiler C. Gait variability at fast-pace 
walking speed: a biomarker of mild cognitive impairment? J Nutr Health Aging. Mar 
2013;17(3):235-9. doi:10.1007/s12603-012-0394-4 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.11.24315328doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.11.24315328
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20

32. Mielke MM, Roberts RO, Savica R, et al. Assessing the temporal relationship between 
cognition and gait: slow gait predicts cognitive decline in the Mayo Clinic Study of Aging. J 
Gerontol A Biol Sci Med Sci. Aug 2013;68(8):929-37. doi:10.1093/gerona/gls256 
33. Buracchio T, Dodge HH, Howieson D, Wasserman D, Kaye J. The trajectory of gait 
speed preceding mild cognitive impairment. Arch Neurol. Aug 2010;67(8):980-6. 
doi:10.1001/archneurol.2010.159 
34. Army U. Army individual test battery. Manual of directions and scoring. 1944; 
35. Makizako H, Shimada H, Park H, et al. Evaluation of multidimensional neurocognitive 
function using a tablet personal computer: test-retest reliability and validity in community-
dwelling older adults. Geriatr Gerontol Int. Oct 2013;13(4):860-6. doi:10.1111/ggi.12014 
36. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 
1935;18(6):643.  
37. Grober E, Buschke H. Genuine memory deficits in dementia. Developmental 
Neuropsychology. 1987/01/01 1987;3(1):13-36. doi:10.1080/87565648709540361 
38. Verghese J, Annweiler C, Ayers E, et al. Motoric cognitive risk syndrome: multicountry 
prevalence and dementia risk. Neurology. Aug 19 2014;83(8):718-26. 
doi:10.1212/wnl.0000000000000717 
39. Boulifard DA, Ayers E, Verghese J. Home-Based Gait Speed Assessment: Normative 
Data and Racial/Ethnic Correlates Among Older Adults. J Am Med Dir Assoc. Oct 
2019;20(10):1224-1229. doi:10.1016/j.jamda.2019.06.002 
40. Capistrant BD, Glymour MM, Berkman LF. Assessing mobility difficulties for cross-
national comparisons: results from the World Health Organization Study on Global AGEing and 
Adult Health. J Am Geriatr Soc. Feb 2014;62(2):329-35. doi:10.1111/jgs.12633 
41. Yesavage JA, Brink TL, Rose TL, et al. Development and validation of a geriatric 
depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37-49. 
doi:10.1016/0022-3956(82)90033-4 
42. Depp CA, Jeste DV. Definitions and predictors of successful aging: a comprehensive 
review of larger quantitative studies. Am J Geriatr Psychiatry. Jan 2006;14(1):6-20. 
doi:10.1097/01.JGP.0000192501.03069.bc 
43. BARTLETT MS. TESTS OF SIGNIFICANCE IN FACTOR ANALYSIS. British 
Journal of Statistical Psychology. 1950;3(2):77-85. doi:https://doi.org/10.1111/j.2044-
8317.1950.tb00285.x 
44. Kaiser HF. A second generation little jiffy. Psychometrika. 1970/12/01 1970;35(4):401-
415. doi:10.1007/BF02291817 
45. Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ, Buschke H. Abnormality of gait 
as a predictor of non-Alzheimer's dementia. N Engl J Med. Nov 28 2002;347(22):1761-8. 
doi:10.1056/NEJMoa020441 
46. Kerminen H, Marzetti E, D’Angelo E. Biological and Physical Performance Markers for 
Early Detection of Cognitive Impairment in Older Adults. Journal of Clinical Medicine. 
2024;13(3):806.  
47. Kravatz NL, Ayers E, Bennett DA, Verghese J. Olfactory Dysfunction and Incidence of 
Motoric Cognitive Risk Syndrome: A Prospective Clinical-Pathologic Study. Neurology. Oct 24 
2022;99(17):e1886-e1896. doi:10.1212/wnl.0000000000201030 
48. Maguire FJ, Killane I, Creagh AP, Donoghue O, Kenny RA, Reilly RB. Baseline 
Association of Motoric Cognitive Risk Syndrome With Sustained Attention, Memory, and 
Global Cognition. J Am Med Dir Assoc. Jan 2018;19(1):53-58. doi:10.1016/j.jamda.2017.07.016 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.11.24315328doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.11.24315328
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

49. Allali G, Ayers EI, Verghese J. Motoric Cognitive Risk Syndrome Subtypes and 
Cognitive Profiles. J Gerontol A Biol Sci Med Sci. Mar 2016;71(3):378-84. 
doi:10.1093/gerona/glv092 
50. Sekhon H, Allali G, Launay CP, Chabot J, Beauchet O. The spectrum of pre-dementia 
stages: cognitive profile of motoric cognitive risk syndrome and relationship with mild cognitive 
impairment. Eur J Neurol. Aug 2017;24(8):1047-1054. doi:10.1111/ene.13331 
51. Shim H, Kim M, Won CW. Motoric cognitive risk syndrome is associated with 
processing speed and executive function, but not delayed free recall memory: The Korean frailty 
and aging cohort study (KFACS). Arch Gerontol Geriatr. Mar-Apr 2020;87:103990. 
doi:10.1016/j.archger.2019.103990 
52. Popuri K, Ma D, Wang L, Beg MF. Using machine learning to quantify structural MRI 
neurodegeneration patterns of Alzheimer's disease into dementia score: Independent validation 
on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases. Hum Brain Mapp. Oct 1 
2020;41(14):4127-4147. doi:10.1002/hbm.25115 
53. Kim M-J, Hong E, Yum M-S, Lee Y-J, Kim J, Ko T-S. Deep learning-based, fully 
automated, pediatric brain segmentation. Scientific Reports. 2024/02/22 2024;14(1):4344. 
doi:10.1038/s41598-024-54663-z 
54. Mateos-Pérez JM, Dadar M, Lacalle-Aurioles M, Iturria-Medina Y, Zeighami Y, Evans 
AC. Structural neuroimaging as clinical predictor: A review of machine learning applications. 
NeuroImage: Clinical. 2018/01/01/ 2018;20:506-522. 
doi:https://doi.org/10.1016/j.nicl.2018.08.019 
55. Jang J-W, Kim J, Park S-W, et al. Machine learning-based automatic estimation of 
cortical atrophy using brain computed tomography images. Scientific Reports. 2022/08/30 
2022;12(1):14740. doi:10.1038/s41598-022-18696-6 
56. Yang Z, Nasrallah IM, Shou H, et al. A deep learning framework identifies dimensional 
representations of Alzheimer’s Disease from brain structure. Nature Communications. 
2021/12/03 2021;12(1):7065. doi:10.1038/s41467-021-26703-z 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.11.24315328doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.11.24315328
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

Acknowledgements  
The authors gratefully acknowledge the contributions of the participants, families, and study staff from all 
the studies in the consortium that provided the data for this research. We also thank the funding agencies 
and institutions that have supported these studies.  
 

Conflicts of Interests 
HMB serves as a consultant for Neural+. RBL is the Edwin S. Lowe Professor of Neurology at the Albert 
Einstein College of Medicine in New York.  He also receives support from the Migraine Research 
Foundation and the National Headache Foundation and research grants from TEVA, Satsuma and Amgen.  
He serves on the editorial board of Neurology, senior advisor to Headache, and associate editor to 
Cephalalgia.  He has reviewed for the NIA and NINDS, holds stock and stock options in Axon, Biohaven 
Holdings, CoolTech and Manistee; serves as consultant, advisory board member, or has received 
honoraria from:  Abbvie (Allergan), American Academy of Neurology, American Headache Society, 
Amgen, Avanir, Axon, Axsome, Biohaven, Biovision, Boston Scientific, Dr. Reddy’s (Promius), 
Electrocore, Eli Lilly, eNeura Therapeutics, Equinox, GlaxoSmithKline, Grifols, Lundbeck (Alder), 
Manistee, Merck, Pernix, Pfizer, Satsuma, Supernus, Teva, Trigemina, Vector, Vedanta.  He receives 
royalties from Wolff’s Headache 7th and 8th Edition, Oxford Press University, 2009, Wiley and Informa. 
JV serves as an Advisory Committee Member for MedRhythms, and a holds a uncompensated voluntary 
position at CatchU. Authors BTN, AE, KKP, EA, VGPK, SV, RB, OB, TD, HS, SM, and SA do not have 
any conflicts of interest to disclose. 

 

Funding Sources:  
This study was supported by NIH/NIA grants: 1R56AG057548-01, R01AG057548-01A1 and 
2R01AG039330 (JV), NIH RO1 DK129320-01 2021-2026 (RB), NIA R01AG062659-01A1 (HB), NIA 
K23 AG063993, AG080635, AG003949, the Alzheimer’s Association (SG-24-988292 ISAVRAD); Cure 
Alzheimer’s Fund, the Leonard and Sylvia Marx Foundation (AE, RL), NIH/NIA 1K76AG083274 (SA). 
None of the funding sources had any role in the conduct of the analysis, interpretation of data and 
preparation of the article.  
 

Consent Statement: 
All human subjects across all the study locations provided informed consent.  

 

Keywords: 
gait; Dementia; MCR; cognitive complaints; volumetric imaging; Machine Learning; weakly-supervised 
clustering 
 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.11.24315328doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.11.24315328
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

Figure 1: Study Plan - Plan of our study. CCMA: Central Control of Mobility in Aging Study 
in the US, the LonGenity study in the US, EAS : Einstein Aging Study in the US, TASCOG : 
Tasmanian Study of Cognition and Gait in Australia, NCGG-SGS: the National Center for 
Geriatrics and Gerontology–Study of Geriatric Syndromes in Japan, KES:  Kerala-Einstein Study 
in India, and GAIT:  the Gait and Alzheimer’s Interactions Tracking study; MRI: Magnetic 
Resonance Imaging; ICV: Intracranial Volume; SD: Standard Deviation; 
 
Figure 2: Subgroup differences in MRI Volumes by regions - Group differences in MRI 
Volumes.: PreCen: Precentral Gyrus, EC=Entorhinal Cortex, ParsTri=Parstriangularis, 
BanksSTS=Banks of Superior Temporal Sulcus, PeriCal=Pericalcarine, Cau=Caudate Nucleus, 
CauACC=Caudal Anterior Cingulate, AccArea=Nucleus Accumbens, FRO=Frontal Cortex,  
PAR=Parietal Cortex, TEM=Temporal Lobe, OCC=Occipital Lobe,  HIPP=Hippocampus, 
CEREB: Cerebellar Cortex, SUBCORT=Subcortical regions (Basal Ganglia nuclei, Amygdala, 
Thalamus) 
 
Figure 3: Subgroup differences in MRI Volumes by regions - Group differences in Gait speed 
and Cognition. TMT-B : Trail Making Test, Part B, log-transformed, z-score normalized, 
available in CCMA, LonGenity, EAS, NCGG-SGS, Kes and GAIT. FR96: Free and Cued 
Selective Reminding Test (FCSRT), a recall test that uses either words or images.  Scores 
includes the sum of free recall (FR) alone (range 0-48) and combined with cued recall as total 
recall (TR), FR96: the sum of FR and TR (range 0-96); available in CCMA, EAS and 
LonGenity; Stroop-INT : Stroop Color Word test, consisting of subtests measuring time required 
to name the colors seen (COLOR), read the given words (WORD) and name the color of the 
printed word (COLOR_WORD); Stroop-INT: the difference between the third subtask and the 
first task (COLOR_WORD - COLOR), available in EAS, TASCOG and GAIT. 
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 2 

Table 1: Study Characteristics  
 

 All 
participants 

FG Group A Group B Group C P 
valu

e 
N 1987 294 585 455 653  

Age, mean 
(SD), y 

71.73(±6.87) 69.30(±5.52) 72.07(±6.80) 70.94(±6.77) 73.06(±7.18) <0.00
1 

Sex, Female 
(%) 

948(47.7%) 139(47.3%) 277(47.4%) 229(50.3%) 303(46.4%) 0.625 

Education, 
mean (SD), y# 

12.30(±3.50) 12.73(±3.70) 12.27(±3.51) 12.39(±3.22) 12.08(±3.56) 0.08 

Race/Ethnicit
y, N(%) 

     0.016 

Asian 1146(57.7%) 176(59.9%) 329(56.2%) 282(62.0%) 359(55.0%)  

White 769(38.7%) 112(38.1%) 225(38.5%) 160(35.2%) 272(41.7%)  

Other* 59(3.6%) 2(2.0%) 27(5.3%) 9(2.8%) 21(3.3%)  

Gait Speed, 
cm/s 

108.42(±22.85) 141.21(±11.5
2) 

104.91(±17.05
) 

103.79(±18.28
) 

100.04(±21.3
4) 

<0.00
1 

MCR, 
Positive**, 

N(%) 

117(6.6%,N=177
8) 

- 38(7.4%,N=51
5) 

26(6.4%,N=40
5) 

53(9%,N=58
8) 

<0.00
1 

 
 
   

 

Table 1: FG: Fast Gait, a subgroup of participants with gait speed greater than 1 standard deviation above mean; Groups A,B&C : gait speed 

lower than 1 SD above cohort specific mean; Subgroups obtained by the clustering model.  

p-values reported for significant differences between FG and Subgroups;    
#
 Education was not available for the GAIT cohort. 

*Other in race/ethnicity included primarily Black (3.0% of total population), Hispanic Black, Hispanic White and others. 

**MCR positive is defined as slow gait (as defined by a cohort specific threshold) and any cognitive complaint in Geriatric Depression Scale 

(GDS) or Assisted Daily Living (ADL) questionnaire. 
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Table 2: Subgroup differences in Brain Region volumes - Factors 
Measure FG Grou

p A 
Group 

B 
Group 

C 
Pairwise Comparisons (Tukey) 

Gro
up 
A - 
FG 

Group B 
- FG 

Group C 
- FG 

Group A - 
Group B 

Grou
p C - 
Grou
p A 

Group 
C - 

Group 
B 

RegionsFactor           

Accumbensarea 0.434 
(±0.12

6) 

0.481 
(±0.1
40) 

0.425 
(±0.10

6) 

0.329 
(±0.10

6) 

*** 0.92 *** *** *** *** 

Caudate 0.277 
(±0.12

1) 

0.283 
(±0.1
08) 

0.262 
(±0.10

2) 

0.301 
(±0.15

1) 

1 0.22 0.14 0.05 0.08 *** 

bankssts 0.488 
(±0.12

9) 

0.551 
(±0.1
07) 

0.404 
(±0.10

1) 

0.418 
(±0.11

0) 

*** *** *** *** *** *** 

caudalanteriorci
ngulate 

0.465 
(±0.12

6) 

0.513 
(±0.1
17) 

0.478 
(±0.11

3) 

0.392 
(±0.11

8) 

*** 0.34 *** *** *** *** 

entorhinal 0.508 
(±0.09

7) 

0.536 
(±0.0
96) 

0.506 
(±0.09

0) 

0.484 
(±0.10

5) 

*** 0.96 0.55 *** *** 0.14 

parstriangularis 0.576 
(±0.10

6) 

0.599 
(±0.1
03) 

0.620 
(±0.09

9) 

0.476 
(±0.08

0) 

*** *** *** 0.02* *** *** 

pericalcarine 0.436 
(±0.16

8) 

0.403 
(±0.1
34) 

0.540 
(±0.14

6) 

0.372 
(±0.14

0) 

0.04
* 

*** *** *** 0.00
3** 

*** 

precentral 0.528 
(±0.10

9) 

0.565 
(±0.1
06) 

0.502 
(±0.10

8) 

0.468 
(±0.11

3) 

*** 0.06 *** *** *** 0.008** 

  
Table 2: FG: Population with fast gait, gait speed greater than 1SD above population-mean; Groups A,B&C : result of HYDRA Clustering of 

remaining population (gait speed slower than 1 SD above population-mean); P-value: Significance Pr(>F) in ANCOVA corrected for age and 

sex; Pairwise comparisons: Multiple Comparisons of Means with Tukey Contrasts. 

RegionsFactor Brain regions chosen from each of the factors from Factor Analyses, with one region with the highest loading within a 

factor. Precentral: Precentral Gyrus, entorhinal: Entorhinal Cortex, BanksSTS=Banks of Superior Temporal Sulcus, caudate: Caudate Nucleus 
*** 

P-values < 0.001 
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Table 3: Subgroup differences in Brain Region volumes – Cortical and Subcortical Regions 
Measure FG Group 

A 
Group 

B 
Group 

C 
Pairwise Comparisons (Tukey) 

 Group 
A - 
FG 

Group B - 
FG 

Group C 
- FG 

Group 
A - 

Group 
B 

Group 
C - 

Group 
A 

Group 
C - 

Group 
B 

C/S ROIs           

Frontal 0.300 
(±0.030) 

0.309 
(±0.028) 

0.300 
(±0.027) 

0.279 
(±0.030) 

*** 0.47 *** *** *** *** 

Temporal 0.320 
(±0.041) 

0.330 
(±0.038) 

0.315 
(±0.041) 

0.296 
(±0.042) 

*** 0.99 *** *** *** *** 

Parietal 0.312 
(±0.032) 

0.322 
(±0.031) 

0.306 
(±0.029) 

0.293 
(±0.034) 

*** 0.47 *** *** *** *** 

Occipital 0.354 
(±0.045) 

0.359 
(±0.042) 

0.360 
(±0.040) 

0.333 
(±0.043) 

*** 0.002** *** 0.78 *** *** 

Hippocampus 0.371 
(±0.058) 

0.381 
(±0.057) 

0.370 
(±0.061) 

0.339 
(±0.059) 

*** 0.71 *** *** *** *** 

Cerebellum 0.404 
(±0.046) 

0.411 
(±0.047) 

0.398 
(±0.046) 

0.386 
(±0.049) 

*** 0.79 0.01* *** *** 0.09 

Subcortical$ 0.321 
(±0.033) 

0.327 
(±0.030) 

0.317 
(±0.033) 

0.312 
(±0.038) 

*** 0.86 0.66 *** *** 0.98 

  
Table 3: FG: Population with fast gait, gait speed greater than 1SD above population-mean; Groups A,B&C : result of HYDRA Clustering of 

the remaining population (gait speed slower than 1 SD above population-mean); P-value: Significance Pr(>F) in ANCOVA corrected for age 

and sex; Pairwise comparisons: Multiple Comparisons of Means with Tukey Contrasts. 

C/S ROIs : Brain regions grouped into major cortical regions. 
$
Subcortical : Includes Basal Ganglia nuclei, Amygdala and Thalamus. 

*** 
P-values < 0.001 
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Table 4: Pairwise Subgroup Differences in Gait speed and Cognition 
Measure FG Grou

p A 
Group 

B 
Group 

C 
P-

value 
Gro
up 
A - 
FG 

Group 
B - FG 

Group 
C - FG 

Group A 
- Group 

B 

Grou
p C - 
Grou
p A 

Group C 
- Group 

B 

Gait Speed 
(Z-score) 

1.531 
(±0.466) 

-
0.192 
(±0.7
39) 

-0.223 
(±0.793) 

-0.364 
(±0.864) 

*** *** *** *** 0.58 0.00
3** 

0.22 

Cognition            

TMT-B -0.354 
(±0.892) 

-
0.044 
(±0.9
05) 

-0.066 
(±0.906) 

0.174 
(±1.153) 

*** 0.05
* 

0.03* *** 0.98 0.02* 0.09 

FR96 0.599 
(±0.716) 

= 0.148 
(±0.871) 

-0.125 
(±1.136) 

0.005
** 

0.95 0.23 0.02* 0.31 0.01* 0.61 

Stroop-INT -0.025 
(±0.918) 

0.069 
(±1.1
75) 

0.061 
(±0.923) 

0.076 
(±1.122) 

0.99 - - - - - - 

  
Table 4: FG: Population with fast gait, gait speed greater than 1SD above population-mean; Groups A,B&C : result of HYDRA Clustering of 

the remaining population (gait speed slower than 1 SD above population-mean); P-value: Significance Pr(>F) in ANCOVA corrected for age 

and sex; Pairwise comparisons: Multiple Comparisons of Means with Tukey Contrasts. 

TMT-B : Trail Making Test, Part B, log-transformed, z-score normalized, available in CCMA, LonGenity, EAS, NCGG-SGS, Kes and GAIT   

Stroop-INT : Stroop Color Word test, consisting of subtests measuring time required to name the colors seen (COLOR), read the given words 

(WORD) and name the color of the printed word (COLOR_WORD); Stroop-INT: the difference between the third subtask and the first task 

(COLOR_WORD - COLOR), available in EAS, TASCOG and GAIT  

FR96: Free and Cued Selective Reminding Test (FCSRT), a recall test that uses either words or images.  Scores includes the sum of free recall 

(FR) alone (range 0-48) and combined with cued recall as total recall (TR), FR96: the sum of FR and TR (range 0-96); available in CCMA, EAS 

and LonGenity 
*** 

P-values < 0.0001 
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Table 5: MCR Consortium Participant Subgroup Characteristics  
 

Group Gait speed, Imaging, and Cognition 
Fast Gait (FG) 
Gait Speed > 
mean+1SD 

Reference group, used by the clustering algorithm 
Best scores in FCSRT and TMT-B, No cortical or subcortical 

atrophy 
Study Population 
Gait Speed < 
mean+1SD 

 

Group A Fastest gait, largest volumes across almost all ROIs 
Group B Intermediate gait speed,  similar cortical volumes as reference 

group 
Group C Slowest gait, lowest cortical volumes, highest prevalence of 

MCR 
 Table 5: FG: Population with fast gait, gait speed greater than 1SD above population-mean; Groups A,B&C : result of HYDRA Clustering of 

the remaining population (gait speed slower than 1 SD above population-mean); P-value: Significance Pr(>F) in ANCOVA corrected for age 

and sex; Pairwise comparisons: Multiple Comparisons of Means with Tukey Contrasts. SD: Standard Deviation 

TMT-B : Trail Making Test, Part B, log-transformed, z-score normalized, available in CCMA, LonGenity, EAS, NCGG-SGS, Kes and GAIT   

FCSRT: Free and Cued Selective Reminding Test (FCSRT), a recall test that uses either words or images.  Scores includes the sum of free 

recall (FR) alone (range 0-48) and combined with cued recall as total recall (TR),FR96: the sum of FR and TR (range 0-96); available in CCMA, 

EAS and LonGenity 
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