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Abstract 

Osteoarthritis (OA) and rheumatoid arthritis (RA) are the two most common rheumatic diseases 

worldwide, causing pain and disability. Both conditions are highly heterogeneous, and their onset 

occurs insidiously with non-specific symptoms, so they are not always distinguishable from other 

arthritis during the initial stages. This makes early diagnosis difficult and resource-demanding in 

clinical environments. Here, we estimated its diagnostic performance in classifying ATR-FTIR 

spectra obtained from serum samples from OA patients, RA patients, and healthy controls. 

Altogether, 334 serum samples were obtained from 100 OA patients, 134 RA patients, and 100 

healthy controls. The infrared spectral acquisition was performed on air-dried 1µl of serum with a 

diamond-ATR-FTIR spectrometer. Machine learning models combining Partial Least Squares 

Discriminant Analysis (PLS-DA) and Support Vector Machine (SVM) were trained to binary classify 

preprocessed ATR-FTIR spectra as follows: controls vs. OA, controls vs. RA, and OA vs. RA. For a 

separated test dataset and the validation dataset, the overall model performance was better in 

classifying OA and RA patients, followed by the RA and controls, and lastly, between OA and 

controls, with corresponding AUC-ROC values: 0.84, 0.76, 0.72 (test dataset) and 0.94, 0.92, 79 

(validation dataset). In conclusion, this study reports robust binary classifier models to differentiate 

blood serum from the two most common rheumatic diseases, showing the potential of ATR-FTIR as 

an effective aid in rheumatic disease classification. 
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1. Introduction 

Osteoarthritis (OA) and rheumatoid arthritis (RA) are the two most common forms of arthritis, 

responsible for disability and chronic pain in adults, causing significant socioeconomic burden 

worldwide [1,2]. Both diseases are highly heterogeneous, with a complex pathophysiology of an 

unknown origin. OA is best characterized as a degenerative whole-joint disease most frequently 

occurring in knees, where various joint tissues undergo structural modifications, leading to failure. 

[3,4]. RA is a systemic inflammatory autoimmune disease often characterized as symmetrical 

polyarthritis, affecting small and large synovial joints throughout the body. In addition, some patients 

develop extra-articular disease manifestations, such as interstitial lung disease, vasculitis, neuropathy, 

serositis, glomerulonephritis, inflammatory eye involvement, felty syndrome, myopathy, 

and amyloidosis. [5,6] It is well-recognized that in both OA and RA, the disruption at the molecular 

level occurs years before the clinical symptoms, making them asymptomatic and thus difficult to 

diagnose in the initial stages. [5,7] Therefore, the diagnostic process for OA and RA is complex, 

relying on a combination of clinical exams, serological tests, and imaging, as there is no single 

diagnostic marker. Current classification criteria (ACR/EULAR [8] and NICE [9]) show varying 

sensitivity and specificity over time [10,11], highlighting the need for faster, more efficient diagnostic 

tools for early-stage detection and personalized treatment. 

 

In recent years, Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) 

studies with blood serum and machine learning (ML) based analysis techniques have been the subject 

of active research to develop diagnostic methods for various diseases [12–15]. ATR-FTIR is a non-

expensive vibrational spectroscopy method that provides a label-free, analytical way to study the 

biochemical composition of small sample volumes with minimal preparation. In ATR-FTIR 

spectroscopy, the sample is placed in contact with the ATR reflection element that directs the IR 

radiation into the sample. Due to the optical properties of the ATR element, the IR light travels 
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through the element as an evanescent wave as a frequency-dependent absorption occurs within the 

sample if the chemical bond of the molecule is vibrating at the same frequency as the incident IR 

radiation. [16] The absorbance spectrum represents the convolution of individual spectra initiated by 

all covalent bonds of infrared-active biomolecules, providing characteristic information of the 

biochemical composition of the sample, i.e., the molecular “fingerprint.”  

 

This is also evidenced by previous studies demonstrating the potential of ATR-FTIR and FTIR 

spectroscopy to discriminate rheumatic diseases from human blood serum samples [17–22] and 

synovial fluid [23]. Although synovial fluid can reflect a more detailed metabolic status of OA and 

RA and may lead to better diagnostic results, as the early study suggests, the clinical value of blood 

serum is higher since it is more available and better represents the systematic effects of a disease in 

individuals, considering the complexity of rheumatic diseases. [24,25] Recent studies in food science 

[26], pharmacology [27], and cancer research [28–31] have utilized Partial Least Squares 

Discriminant Analysis (PLS-DA) as a dimension reduction technique in combination with Support 

Vector Machine (SVM) to classify spectral data.  

 

In this study, we assessed the potential of ATR-FTIR spectroscopy in diagnosing two common 

rheumatic diseases. We aimed to investigate the classification of OA and RA patients from healthy 

controls using blood serum with IR spectra using an innovative approach, combining both PLS-DA 

and SVM algorithms. We determined the robustness and potential of the model in diagnosing arthritic 

diseases.  
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2. Material and Methods 

2.1 Ethics and Study Design 

All the blood serum samples were collected from a local biobank, Biobank Borealis of Northern 

Finland (Oulu, Finland), governed by the Finnish Biobank Act 688/2012. The biobank approved 

study approval requests with a detailed study protocol and a sample request (corresponding biobank 

project number: BB_2021_5009) and did not require a statement from the local ethics committee. 

Table 1 represents the available inclusion and exclusion criteria for the participants of this study.  

Table 1. The inclusion and exclusion criteria of the participants. 

Group Inclusion Exclusion 

Control 

- When none of the 

exclusion criteria is 

satisfied - Tumors 

- Dyscrasias and 

immunomechanical 

disorders, 

- Metabolic and 

endocrine diseases 

- Psoriatic arthritis, 

- Systemic lupus 

erythematosus, 

- Sjögren’s syndrome 

- Crohn's disease, 

- Ulcerative colitis 

OA 

- Clinically diagnosed 

knee OA 

- When none of the 

exclusion criteria is 

satisfied 

RA 

- Clinically diagnosed 

seropositive RA 

- Clinically diagnosed 

seronegative RA 

- When none of the 

exclusion criteria is 

satisfied 

 

2.2 Sample set 

The sample set consisted of 334 serum samples from healthy (control group), OA patients, and RA 

patients. The samples were collected into serum gel sample tubes, following a 30-minute stand time 

before centrifugation. The centrifugation was performed at room temperature according to the 

instructions by Nord Lab (https://www.nordlab.fi/) (2500g, 10 min) and stored at -80°C until 

pipetting. Subsequently, 20µl of serum was sectioned into Eppendorf tubes and then frozen at -80°C 
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until the ATR-FTIR measurements. Table 2 represents the available demographics of the study 

participants obtained from Biobank Borealis.  

 

Table 2. The available demographics of the study participants. The age at the diagnosis is determined 

based on the time when the first entry of the given diagnosis in the patient information system is 

found as the principal diagnosis. 

 RA OA Control 

 Male 

(n=37) 

Female 

(n=97) 

All 

(n=134) 

Male 

(n=48) 

Female 

(n=52) 

All 

(n=100) 

Male 

(n=48) 

Female 

(n=52) 

All 

(n=100) 

 

The Mean 

Age at 

sampling 

  ± SD 

52.3 
±11.6 

54.8 
±10.3 

54.2 
±10.7 

60.0 

±9.4 

58.3 

±7.0 

58.2 

±8.2 

 

52.8 

± 10.4 
 

54.3 

± 10.8 

53.8 

±10.6 

Seropositive Seronegative 

Male 

(n=33) 

Female 

(n=67) 

All 

(n=100) 

Male 

(n=4) 

Female 

(n=30 

All 

(n=34) 

53.6 
±11.2 

55.7 
±10.0 

55.1 
±10.4 

41.0 
±9.2 

53.0 
±10.7 

51.2 
±11.1 

The Mean 

Age at 

diagnosis 

 ± SD 

46.2 

±10.2 

48.7 

±9.5 

48.0 

±9.7 

51.8 
±8.1 

52.2 
±5.5 

52.0 
±6.8 

- - - 

Seropositive Seronegative 

Male Female All Male Female All 

47.6 

±9.6 

48.4 

±9.3 

48.2 

±9.4 

34.5 

±6.4 

49.4 

±10.1 

47.6 

±10.8 

 

 

2.3  ATR-FTIR measurements 

The measurements were performed with an ATR-FTIR spectrometer (Thermo Scientific Nicolet iS5, 

Thermo Nicolet Corporation, Madison, WI, USA) with an id7-ATR-diamond accessory. For spectral 

acquisition, the vendor-provided OMNIC™ software was used. Before each measurement, a 

background spectrum was collected. One microliter of serum was pipetted onto the ATR crystal, and 

the spectral acquisition was performed within the MID-IR region (400 - 4000 cm-1), averaging 64 

repeated scans with a spectral resolution of 4 cm-1. During each measurement, 10 IR spectra were 

collected while the serum sample was drying (approx. 20 min) to monitor water evaporation. Only 

the final (tenth) spectrum without the interfering water band (900 – 1800 cm-1 & 3000 – 3700 cm-1) 
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[32] was used for further preprocessing and analysis. To guarantee the reliability of the measurements 

and to prevent any potential distortions resulting from the device or the surrounding environment, the 

measurement protocol described above was repeated three times and averaged for each sample. 

Between repetitions, the ATR crystal was cleaned from serum by erasing it with 70% ethanol, then 

with Virkon, and finally with 70% ethanol.  

 

2.4 Spectral pre-processing 

All spectral analyses were performed using MATLAB® (MathWorks R2023b, 9.13.0.2105380, 

Natick, Massachusetts). While the fingerprint region (800 – 1800 cm-1) is commonly chosen for its 

distinct peak characteristics, we also aim to assess if the entire spectral range contributes to the model 

development, given the intricate nature of rheumatic diseases. Thus, the spectral data was truncated 

into two separate regions: 800 – 1800 cm-1 and 800 – 3700 cm-1, which were further processed 

similarly. [33] After the data truncation, the offset was corrected for the spectra, followed by vector 

normalization to minimize the non-biochemical effects on the data. In addition, the first and second 

derivatives of the spectra were calculated to examine whether the derivative spectral data affects the 

classification performance and enhances the differences between groups. The derivatives were then 

truncated and normalized. The derivatives were calculated using the Savitzky-Golay filter, a built-in 

function provided by MATLAB®, with a polynomial order of 2 and a window length of 9.  

 

2.5  Binary classifier model 

First, a Principal Component Analysis (PCA) was applied to the preprocessed data, as it is a common 

unsupervised method for dimension reduction before classification analysis. However, PCA could 

not find discriminative patterns between groups, as shown in Supplementary Figure S2. Furthermore, 

statistical tests were assessed to find relevant wavenumbers (t-test with permutation); however, no 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.11.24315302doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.11.24315302
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

significant wavenumbers were identified. Therefore, a supervised method for dimension reduction 

for further classification was seen as the most robust approach.  

 

Three separate binary classification models were trained between the groups: 1) control and OA, 2) 

control and RA, and 3) OA and RA. The well-established chemometric method, PLS-DA, was 

combined with SVM for classification. PLS-DA is a powerful classification technique for high-

dimensional datasets by projecting them into latent variables (LVs) in which Linear Discriminant 

Analysis (LDA) is then applied [33]. However, in cases where the differences between groups are 

minimal, the groups may not be linearly separable in latent variable space, making LDA inadequate. 

Therefore, combining PLS-DA and SVM may provide superior performance compared to PLS-DA 

alone. The power of SVMs is that they perform better on data with nonlinear characteristics when 

kernel functions are used. These functions map the data into higher-dimensional space, where a linear 

separation plane can be found. Here, we used the Gaussian Radial Basis Function: 𝐺(𝑥𝑖 , 𝑥𝑗) = exp(−
||𝒙𝑖−𝒙𝑗||

2

2𝜎2
) 

as a kernel.  

 

The training protocol of the PLS-DA-SVM model is summarized in Figure 1. To prevent data leakage 

and overfitting, the preprocessed data was split into a train set 𝑿𝑡𝑟𝑎𝑖𝑛 constituting 70% of the data 

and the rest 30% to test set, 𝑿𝑡𝑒𝑠𝑡. Following the division, a MATLAB build-in PLS algorithm was 

implemented on the training set to construct the PLS-score matrix 𝒕𝑡𝑟𝑎𝑖𝑛 and weight vector 𝒘𝑡𝑟𝑎𝑖𝑛. 

The PLS-score matrix 𝒕𝑡𝑟𝑎𝑖𝑛, was used as an input in the SVM classifier to train the model. 

 

Three hyperparameters needed to be optimized before the final SVM model training: the number of 

PLS components for PLS-DA, the Kernel scale σ, and the Penalty coefficient C for SVM. Prior to 

actual SVM model training, we tried to optimize the number of PLS components by assessing the 

change in the 10-fold cross-validation (CV) loss of the SVM model as a function of the maximum 
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number of 30 PLS components. However, as illustrated in Supplementary Figure S5, the CV error 

does not reach a saturation point or reaches zero (indicating overfitting). This makes the PLS 

component selection based on a cut-off (saturation) point inadequate. Therefore, we trained SVM 

models with five, ten, fifteen, and twenty PLS components and selected the best one based on the 

AUC-ROC value of the model. Following the dimension reduction, Bayesian optimization was 

employed to optimize the kernel scale C and penalty coefficient σ by minimizing (resampled) the 10-

fold CV loop.  

 

After the hyperparameter optimization, the SVM model was trained in a new (resampled)10-fold CV 

loop. After training, the performance of the SVM model was evaluated with 𝒕𝑡𝑒𝑠𝑡 determined based 

on the weight matrix calculated from 𝑿𝑡𝑟𝑎𝑖𝑛 according to the following formula: 𝒕𝑡𝑒𝑠𝑡 =
𝑿𝑡𝑒𝑠𝑡𝒘𝑡𝑟𝑎𝑖𝑛

√∑𝒘𝑡𝑟𝑎𝑖𝑛
2

. 

 

The training protocol described above was iterated 100 times. In each iteration, a new random 

splitting (resampling) in training and testing sets 𝑿𝑡𝑟𝑎𝑖𝑛, and 𝑿𝑡𝑒𝑠𝑡 ,  was performed, and the results 

across iterations were aggregated and averaged. This nested CV is recommended for limited data sets, 

ensuring an unbiased model development and an honest generalization estimate. [34]  
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Figure 1. The training protocol for the PLS-DA-SVM model in a nested cross-validation loop. After 

preprocessing, the spectral data is divided into a train set, 𝑿𝑡𝑟𝑎𝑖𝑛, and a test set, 𝑿𝑡𝑒𝑠𝑡. Following the 

data division, the PLS-DA algorithm reduces the dimension of 𝑿𝑡𝑟𝑎𝑖𝑛, and determines the PLS-score 

matrix 𝒕𝑡𝑟𝑎𝑖𝑛, and weight vector 𝒘𝑡𝑟𝑎𝑖𝑛. Subsequently, the 𝒕𝑡𝑟𝑎𝑖𝑛 is fed to an SVM model training 

loop. Hyperparameters are optimized in a resampled cross 10-fld cross-validation loop with Bayesian 

optimization. Then, actual SVM model training with optimized hyperparameters is performed in a 

new resampled 10-fold CV loop. Finally, the trained SVM model is assessed with 𝒕𝑡𝑒𝑠𝑡 determined 

based on the weight matrix calculated from 𝑿𝑡𝑟𝑎𝑖𝑛.  
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3. Results 

3.1 Spectral differences between OA, RA, and healthy patients 

Visual examination of the mean spectra reveals minimal biochemical differences between groups, as 

shown in Figure 2 (all preprocessed spectra are plotted in Figure S1), with assignments of the standard 

vibrational modes of blood serum. [35] The difference spectrum also reveals minor differences 

between groups, mainly in locations assigned to Amide I and II peaks and PO2- -stretching (Figure 

3).  Moreover, the first and second mean derivative spectra (supplementary Figure S3-S4) showed no 

significant differences. Figure 4 represents the data in LV space. The first three LVs do not show 

linear group separation, thus necessitating a non-linear discrimination method (SVM).  

 

 

Figure 2. The mean spectra of the three groups in the spectral region of 800 – 3700 cm-1, with the 

fingerprint region (800 – 1800 cm-1) highlighted. The blue spectrum represents the mean spectrum of 

the control group, the red spectrum represents the mean spectrum of the OA group, and the yellow 

spectrum represents the mean spectrum of the RA group. 
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Figure 3. The difference spectra between groups are calculated from the mean spectra represented in 

Figure 2. The wavenumbers of the most prominent differences are highlighted with a black arrow.  

 

 

 

3.2 Classification performance 

Overall, the PLS-DA-SVM classifier performed best with normalized spectral data at the 

wavenumber region of 800 – 3700 cm-1, the results of which are presented here and summarized in 

Table 3. The supplementary material (Table S1-S10 ) presents the classifier's performance from the 

fingerprint region of the normalized and derivative data (800 – 1800 cm-1).  

 

The PLS-DA-SVM model achieved its best performance when differentiating OA and RA spectra. 

The best observed AUC-ROC value in the validation set was 0.94, with corresponding accuracy, 

sensitivity, and specificity of 94%, 89%, and 85%, respectively. The OA vs. RA classification 

performed best in the validation set with AUC-ROC value, accuracy, sensitivity, and specificity, 0.94, 
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89%, 90%, and 85%, respectively. The second-best performance was control vs. RA classification 

(AUC-ROC of 0.92), with accuracy, sensitivity, and specificity of 84%, 96%, and 69%, respectively. 

However, the classification of OA and control spectra demonstrated a lower AUC-ROC of 0.79, with 

73% accuracy, 70% sensitivity, and 79% specificity in the validation set, and 0.72, 67%, 70%, and 

63% in the test set. In the test set, OA vs. RA classification maintained the best performance, with an 

AUC-ROC of 0.84, accuracy of 83%, sensitivity of 78%, and specificity of 75%. The classification 

between RA and control spectra showed similarly high performance, achieving an AUC-ROC of 0.76, 

with 71% accuracy, 72% sensitivity, and 71% specificity. However, the OA and control spectra 

classification demonstrated a lower AUC-ROC of 0.72, with 67% accuracy, 70% sensitivity, and 63% 

specificity.  

 

In the validation set, the averaged performance across 100 iterations, OA vs. RA classification 

remained the highest, with an AUC-ROC of 0.91, accuracy of 85%, sensitivity of 87%, and specificity 

of 83%. The second-best performance occurred in the control vs. RA classification, with an AUC-

ROC of 0.87, 81% accuracy, 84% sensitivity, and 77% specificity. The classification of OA and 

control spectra was the lowest, with an AUC-ROC of 0.70, accuracy of 66%, sensitivity of 67%, and 

specificity of 68%. In the test set, OA vs. RA classification maintained the best performance, with an 

AUC-ROC of 0.70, accuracy of 83%, sensitivity of 78%, and specificity of 75%. The second-best 

performance was control vs. RA classification (AUC-ROC of 0.60), with accuracy, sensitivity, and 

specificity of 69%, 76%, and 55%, respectively. The OA vs. control classification yielded an AUC-

ROC of 0.61, 58% accuracy, 62% sensitivity, and 56% specificity.  
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Table 3. The highest-observed performance of the PLS-SVM classifier on validation and test set 

when normalized spectral data, truncated into the 800 – 3700 cm-1 wavenumber region, was used. 

The averaged performance of PLS-DA-SVM across 100 iterations is represented in the brackets 

below. 

 
 

 

 

 

Figure 4. An illustration of normalized spectral training data (800 – 3700 cm-1) transformed into 

latent variable (LV) space. It is evident from the first three LV variables that the linear discrimination 

method is inadequate and necessitates a non-linear method.  

 

 

 

 

 

 

Performance metrics 
Number of 

PLS-

components 

AUC- 

ROC 

Maximum 

(Average) 

Accuracy 

 (%) 

Maximum 

(Average) 

Sensitivity 

 (%) 

Maximum 

(Average) 

Specificity 

 (%) 

Maximum 

(Average) 

Validation 

set 

Control 

vs. OA 
10 

0.79 

(0.70) 

73 

(66) 

70 

(67) 

79 

(68) 

Control 

vs. RA 
20 

0.92 

(0.87) 

84 

(81) 

96 

(84) 

69 

(77) 

OA vs. RA 20 
0.94 

(0.91) 

89 

(85) 

90 

(87) 

85 

(83) 

Test set 

Control 

vs. OA 
10 

0.72 

(0.61) 

67 

(58) 

70 

(62) 

63 

(55) 

Control 

vs. RA 
20 

0.76 

(0.67) 

71 

(69) 

72 

(76) 

71 

(55) 

OA vs. RA 20 
0.84 

(0.70) 

83 

(70) 

78 

(76) 

75 

(60) 
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4. Discussion 

In this study, we evaluated the potential of ATR-FTIR spectroscopy to distinguish well-characterized 

cohorts of OA, RA patients, and a healthy control group based on their blood serum. We trained PLS-

DA-SVM hybrid classifier models with ATR-FTIR spectral data and tested the classification 

performance of different spectral preprocessing approaches and spectral regions of interest. The PLS-

DA-SVM models were trained with a nested cross-validation (CV) approach and achieved over 80% 

AUC-ROC in distinguishing spectra of the RA group from the OA group. 

 

The difference spectrum between the RA and control groups (control mean spectrum subtracted from 

RA mean spectrum) reveals a positive peak at 1626 cm-1, consistent with findings from a previous 

study that identified the same peak, along with two additional peaks at 1628 cm-1 and 1627 cm-1, all 

of which were strongly negatively correlated with RF [22]. We also observed a prominent positive 

peak in the difference spectrum at 1629 cm-1 (OA mean spectrum subtracted from RA mean 

spectrum), which corresponds well to the two other identified peaks. This wavenumber is associated 

with the β-sheet of IgG3 and IgG2. [36]. Considering the ATR-FTIR’s sensitivity to conformational 

changes in proteins and the dominant structure of β-sheet in FC-tail for RF binding, this finding may 

reflect the conformational differences in the antibody binding sites between individuals. It has 

recently been reported that these individual conformation patterns can explain the presence of natural 

RF and pathophysiological RFs in autoimmunity [37] and, therefore, play a role in the difference 

peaks observed. Moreover, the glycosylation of IgG is linked to both OA and RA, which could have 

contributed to the subtle differences observed between bands in the carbohydrate region (1180-1000 

cm⁻¹), as it is reported to be sensitive to protein glycosylation in human plasma [38,39]. 

 

Prior studies have performed classification using the whole spectral range (700 – 4000 cm-1) [17] or 

selecting significant wavenumbers from various ranges (650 – 4000 cm-1 and combinations of 450 –
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1700 cm-1 and 1701 – 4000 cm-1) [18,22]. Furthermore, two of these studies utilized the first 

derivative of IR spectra [17,22]. In our study, the IR spectra among control, OA, and RA groups were 

similar, with only minor fluctuations in absorbance values. However, our mean spectra (both 

normalized and first derivative) across groups were similar to the previously reported data [17,18,22]. 

Moreover, unlike previous ATR-FTIR studies, we did not find statistically significant wavenumbers 

that could serve as spectral markers or aid in feature reduction [18,22]. Our results suggest that using 

normalized data from the entire spectral region results in the most generalizable model. Furthermore, 

derivative spectra did not add value to our model compared to studies by Durlik-Popińska et al. [22] 

and Lechowicz et al. [17], in which the first derivative had the most value for classification.  

 

The highest model performance between OA and RA groups suggests that the serum biochemical 

responses differ most between rheumatic diseases.  This can also be because OA phenotypes include 

more biomechanical and structural changes, while RA has metabolic primarily and inflammatory 

phenotypes. This hypothesis is supported by a previous FTIR study by Wu X et al., which shows the 

most prominent differences between mean FTIR spectra of ankylosing spondylitis (AS), RA, and OA 

patients [21]. Moreover, a similar study used deep learning to classify FTIR spectra obtained from 

AS and RA patients with encouraging results. This also could explain the classification performance 

between the control RA group since RA is a well-established inflammatory disease with several 

serological effects. We found the lowest performance between the control and OA groups. This 

finding may reflect that knee OA's pathophysiology is mainly due to biomechanical forces [40], and 

thus, biochemical processes behind knee OA are better reflected in the synovial fluid than in the 

serum, as systematic effects may play a minor role and are undetectable [41]. 

 

We used a nested CV to train the classifier models, which is shown to be the most relatable of true 

error [34,42,43]. This may yield lower overall performance for the models. A previous study used 
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discriminant analysis as a feature selection technique for all the data before the actual modeling 

process [18]. This process causes potential data leakage and may lead to overfitting. They also used 

more than one spectrum from the same individual in modeling. This may lead to an over-optimistic 

model, primarily when leave-one-patient-out cross-validation (LOPOCV) was not used [18]. 

Correspondingly, the study by Lechowicz et al.[17] used three spectra replicates from each individual 

in the KNN model without LOPOCV, uncertainly estimating the model’s generalization ability.  

 

The PLS-DA-SVM method combines aspects of principal component analysis (PCA), linear 

discriminant analysis (LDA), and canonical correlation analysis (CCA) to reduce the dimensionality 

of the data [44]. In PLS-DA (or PLS regression), the covariance between predictive and responsible 

variables is maximized to maximize the difference between sample groups in LV space (PLS-score 

matrix) [44], in which the response variable information is needed. Therefore, it is essential not to 

imply this latent LV construction straightaway to the whole data set before training the model due to 

the evident data leakage and to produce a non-biased, reliable generalization ability estimation of the 

model. In this study, we acknowledged the challenge of potential over-optimism in model evaluation 

by applying PLS as a dimension-reduction technique. This approach is the first to handle 

generalization issues in spectroscopy-based cancer diagnostics effectively [28–31,45,46], alprazolam 

qualification [27], and the classification of ionic liquids, coffee variants, and olive oils [47]. The latent 

variable spaces, derived from the equation presented in Section 2.5, demonstrate a more realistic but 

limited generalization, highlighting a significant step forward for future research. 

 

One limitation of this study is the relatively small sample size and lack of diversity. Additionally, not 

filtering out abundant serum proteins may have affected the spectra. For instance, Hackshaw et al. 

utilized a centrifugal membrane filter to eliminate nominal molecular mass blood components in 

metabolic fingerprinting of Raman spectra of rheumatic disorders [19]. Detecting crucial protein 
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markers can be difficult due to the high levels of proteins in the serum, which might interfere with 

the spectral signal. Nevertheless, we maintained a consistent measurement setup for all serum samples 

for comparison and classification. Furthermore, it is crucial to avoid algorithmic bias and acquire 

sufficient data. However, achieving adequate laboratory data collection requires substantial 

resources, rendering it a challenging task in the future. The differences in results compared to previous 

ATR-FTIR studies may also indicate the challenges of ATR-FTIR's ability to apply to various 

populations and spectrometers when identifying OA and RA from serum. Our sample set displayed 

a significant degree of similarity in their biochemical composition, which may have contributed to 

the consistency of the results. Despite these challenges, the primary strength of our study lies in the 

use of robust and generalized PLS-DA-SVM classification models. 

 

5. Conclusions 

In conclusion, our PLS-DA-SVM classifier models performed best while separating OA from RA 

serum samples. These results indicate that ATR-FTIR has the potential to detect systematic 

inflammation-induced differences within the human serum. It may be a rapid and economic aid in 

classifying rheumatic diseases.  
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