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Abstract  24 
Analysis of real-world data (RWD) is attractive for its applicability to real-world scenarios but 25 

RWD is typically used for drug repurposing and not therapeutic target discovery. Repurposing studies 26 

have identified few effective options in neuroinflammatory diseases with relatively few patients such as 27 

amyotrophic lateral sclerosis (ALS), which is characterized by progressive muscle weakness and death 28 

with no disease-modifying treatments available. We previously reclassified drugs by their simulated 29 

effects on proteins downstream of drug targets and observed class-level effects in the EHR, implicating 30 

the downstream protein as the source of the effect. Here, we developed a novel ALS-focused pathways 31 

model using data from patient samples, the public domain, and consortia. With this model, we simulated 32 

drug effects on ALS and measured class effects on overall survival in retrospective EHR studies. We 33 

observed an increased but non-significant risk of death for patients taking drugs associated with the 34 

complement system downstream of their targets and experimentally validated drug effects on 35 

complement activation. We repeated this for six protein classes, three of which, including multiple 36 

chemokine receptors, were associated with a significant increased risk for death, suggesting that 37 

targeting proteins such as chemokine receptors could be advantageous for these patients. We recovered 38 

effects for drugs associated with complement activation and chemokine receptors in Parkinson’s and 39 

Myasthenia Gravis patients. We demonstrated the utility of network medicine for testing novel therapeutic 40 

effects using RWD and believe this approach may accelerate target discovery in neuroinflammatory 41 

diseases, addressing the critical need for new therapeutic options. 42 

 43 
 44 
Introduction 45 
 We need novel treatment identification methods for rare, difficult-to-treat diseases, especially 46 

those with insufficient experimental systems. Big data approaches and advanced algorithms have the 47 

power to capture patient data and infer new disease drivers in ways previously not possible. Many 48 

approaches suffer from limitations that were well-established a decade ago: animal models are valuable 49 

for understanding mechanism but have limited relevance to human conditions, human epidemiology is 50 

highly relevant to human disease but is insufficient for explaining causality, and natural conditions are the 51 

most relevant and may explain causality but are rare1. We hypothesized that a model-informed analysis of 52 
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patient data may overcome these hurdles, by predicting causality first, and later testing causal predictions 53 

in relevant human disease contexts, thereby overcoming the limitations of traditional approaches. 54 

Retrospective analyses of electronic health records (EHRs) are attractive for difficult-to-treat 55 

conditions, including many neuroinflammatory conditions, where animal and model systems have failed to 56 

deliver treatments with substantial impacts on survival. However, when inferring treatment impact from 57 

real-world evidence, most studies are restricted to repurposing of known druggable targets. For instance, 58 

the discovery of phosphodiesterase inhibitors as protective for Parkinson’s2 and amyotrophic lateral 59 

sclerosis (ALS)3, peroxisome proliferator-activated receptor (PPAR) agonists as protective in Alzheimer’s 60 

Disease4, and the potential of multiple drugs, diazoxide, gefitinib, paliperidone, and dimethyltryptamine as 61 

high-quality candidates for repurposing in ALS5 all leverage ‘omics data, network medicine, and EHRs, 62 

but they uncovered evidence for known, druggable targets. Indeed, reviews of the field emphasized that 63 

real world data can support clinical trial emulation, sub phenotyping, or image analysis6, but the authors 64 

failed to consider the historical record as sufficient for supporting novel, untested drug targets. Despite 65 

the status quo, we had compelling prior evidence that it might be possible to more directly vet novel 66 

targets in EHRs and sought to test that idea in difficult-to-treat neuroinflammatory populations. 67 

Specifically, we learned that disease-specific network models improved prediction of drug effects7 and 68 

that drug-effect predictions based on shared protein networks were detectable in EHRs8.  69 

 Debilitating neuroinflammatory conditions without substantially effective treatments have 70 

motivated creative and compelling approaches to advance treatment options. Of the seven approved 71 

treatments for ALS by the Federal Drug Administration (FDA), none are disease-modifying9 and none 72 

prevent death. Multiple studies have identified distinct molecular mechanisms including the role of the 73 

innate immune system (Table S4), among other genetic drivers 9,10. Targeting these disrupted pathways 74 

or causal genetic drivers in the clinic has had limited efficacy and coverage due to the time to develop 75 

new medicines and initiate new trials. Since ALS is a rare disease, clinical trial cohorts often struggle to 76 

meet statistically significant thresholds, leading to increased interest in leveraging new insights from real-77 

world-data. Thus, we pursued our approach in neuroinflammatory conditions because of the potential for 78 

accelerating discovery for these devastating conditions. 79 
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 In this study, we tested our network inference platform on neuroinflammatory conditions and 80 

corroborated our model predictions EHR investigation with experimental analysis. Intriguingly, our results 81 

synergize with other investigations of dysregulated pathways in ALS, specifically, we recovered increased 82 

risks for death associated with complement system activation. And despite the fact that ALS patients 83 

were not prescribed any complement-targeted drugs, our retrospective analysis provided rationale for 84 

directly inhibiting this pathway. We also asked whether these insights were generalizable across 85 

additional neuromuscular and neurodegenerative diseases with larger patient populations, such as 86 

Myasthenia gravis and Parkinson’s disease. In total, we built and tested six network classes with different 87 

observed significant impacts on overall patient survival in several modules. Encouragingly, our pipeline 88 

independently identified therapeutic targets currently in clinical development and suggested additional 89 

targets with stronger effects. By classifying approved therapies by their effects on downstream proteins, 90 

rather than labeled primary targets, we can leverage large-scale cohort studies to identify novel targets 91 

for ALS and other neurodegenerative diseases.  92 

 93 

Materials and Methods 94 

Curating ALS-associated neurogenerative disease pathways 95 

To customize our network analysis, we curated novel disease pathways from multiple sources. All 96 

together, we included 195,252 gene-phenotype relationships across 1,096 unique disease pathways and 97 

24,441 unique genes/transcripts. We curated this data from six sources listed below. Further, a list of all 98 

derived pathway names, their sources, and the total number of genes is included in Supplemental File 2. 99 

For a detailed list of pathway sources and processing for each source, and integration into our network 100 

modeling platform please see Supplemental Methods. 101 

 102 

Running ALS-PathFX on all approved drugs 103 

Like previous versions of PathFX, the ALS version required drug binding proteins as inputs. We 104 

used drug target information from DrugBank version 5.1.6. as inputs for ALS-PathFX analysis. We 105 

generated networks and association tables for all drugs and then searched the PathFX-generated 106 

association tables for phenotypes of interest. The association tables are standard outputs from PathFX 107 
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and included all network-associated phenotypes, the multiple-hypothesis-corrected p-values for the 108 

associations, and which disease pathway proteins were discovered in the networks. All ALS-PathFX 109 

predictions, created by merging all associations tables for drugs analyzed, are included in Supplemental 110 

File 2. 111 

 112 

Generating network classes  113 

 Using the merged table of all ALS-PathFX drug-phenotype associations, we counted how often a 114 

network protein was used to make a drug-phenotype prediction (e.g., CXCL13 was used to predict a 115 

network association from gabapentin to the “MS CSF” and “Bulk RNAseq ALS vs Control” pathways, and 116 

C3 was used to predict a network association from gabapentin to the “Bulk RNAseq ALS vs Control” 117 

pathway). After identifying network proteins occurring in the most drug-ALS PathFX associations, we 118 

developed new drug classes by grouping drugs that shared network proteins (e.g., CXCL13 or C3). We 119 

completed this analysis using the pandas module in python. Because we wanted to study patient data, we 120 

also filtered out experimental or unapproved drugs and counted the number of approved active 121 

ingredients with each network protein. 122 

In a few instances, we observed several related network proteins and made multi-protein classes 123 

based on qualitative and quantitative assessment of the ranked proteins, such as in the case for the 124 

complement system proteins and chemokine proteins. Grouping drugs based on network proteins yielded 125 

groups for the “target” cohorts (“network” class). To generate comparable “comparator” cohorts, we 126 

assessed all remaining approved drugs that had network associations to the same ALS phenotypes, but 127 

lacked a network protein in the association (“non-network” class). For instance, all drugs with an 128 

association to the “MS CSF” or “Bulk RNAseq ALS vs Control” pathways would be considered in the non-129 

CXCL13 comparator class. All network proteins and their presence in drug networks are contained in 130 

Supplemental File 3). Code for this analysis is included in our GitHub. 131 

 132 

Clinical data – Optum Market Clarity 133 

We used the Optum’s Market Clarity data: Optum® Market Clarity Data is an innovative dataset 134 

of integrated multi-source medical and pharmacy claims and electronic health record (EHR) data that 135 
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enables detailed evaluation and assessment of the patient journey. The Market Clarity Data Asset 136 

combines robust transactional pharmacy and medical claims data with best-of-breed EHR data. It is a 137 

fully HIPAA-compliant, statistician-certified, de-identified precision data set that uncovers hidden 138 

intelligence to turn insights into quick action. The Market Clarity Dataset links EHR data with historical, 139 

linked administrative claim data, pharmacy claims, physician claims, facility claims (with clinical 140 

information) and is inclusive of medications prescribed and administered. Clinically rich and specific data 141 

elements sourced from the EHR include lab results, vital signs and measurements, diagnoses, 142 

procedures and information derived from unstructured clinical notes using natural language processing.  143 

We specifically assessed patient records available through February 2023 and accessed the 144 

following data tables – the membership info for collecting date of birth, sex, race, ethnicity, and gender, 145 

when available; the RX claims table to assessing filled prescriptions as a proxy for drug exposures; the 146 

diagnosis table for identifying ALS patients and other comorbid conditions; and the date of death table for 147 

collecting the month/year of death, when available. 148 

 149 

Observational studies in the electronic health record  150 

 To measure effects for our network-derived drug classes, we used a standard target-comparator 151 

approach using best practices in propensity score estimation and weighted treatment effects. We’ve used 152 

a similar approach in our own work8 and describe the approach in greater detail in Supplemental 153 

Methods. 154 

 155 

Stem Cell Culture 156 

Human iPSC astrocytes (iCell astrocytes, Fujifilm, Cat# C1037) were cultured in Matrigel-coated 157 

(Corning 354277) 96-well plates with DMEM/F12 (Life Technologies 11330057) media supplemented with 158 

heat-inactivated FBS (Gibco A38400-01) and N-2 supplement (Gibco 17502-048).  159 

Stimulation and drug treatment 160 

Three days post-plating, iCell astrocytes were treated with selective compounds (Table S2) at 161 

100 nM, 1µM, and 10 µM concentrations. For astrocyte stimulation (A1 subtype) we used the A1 cocktail: 162 

IL-1a (R&D Systems, Cat# 200-LA, 0.3 ng/mL), TNF alpha (R&D Systems, Cat# 210-TA, 3 ng/mL) and 163 
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C1q (MyBiosource, Cat# MBS147305, 40 ng/mL) factors. Both the compounds, at multiple doses (100 164 

nm, 1 uM, and 10 uM), and the A1 cocktail factors were added simultaneously on the cultures for 165 

overnight treatment (24h).  166 

 167 
ELISA for complement system activation 168 

Media were collected 24h post-treatment and complement levels were assessed with the Milliplex 169 

Human Complement Panel 1 (Millipore, HCMP1MAG-19K / Factors: C1q, C3, C3b/iC3b, C4, Factor B, 170 

Factor H) and 2 (Millipore, HCMP2MAG-19K / Factors: C2, C4b, C5, C5a, Factor D, Mannose-binding 171 

lectin (MBL), Factor I) according to the kit’s instructions. The assay was run in a Bio-Plex 2000 instrument 172 

(Biorad).   173 

Data availability 174 

The Market Clarity data used were licensed from Optum and are not publicly available. 175 

To increase the rigor and reproducibility of our work, we have released code and data for the network 176 

analysis, and anonymized code for accessing clinical data through a GitHub repository: 177 

https://github.com/jenwilson521/network_drug_classes_als/ All supplemental Excel files are included in 178 

their original format in the GitHub repository to increase readability and reusability of the data. 179 

 180 
Results 181 
ALS-PathFX predicted drug network associations to ALS through distinct proteins 182 

Our overall approach used pathway modeling to identify novel drug classes and observational 183 

studies in the health record to test the utility of these drug classes (Figure 1). To build a custom network 184 

medicine platform, we curated several high-quality datasets from the TargetALS data portal and several 185 

patient-derived datasets11. The TargetALS datasets included differential genes measured by RNAseq 186 

from multiple tissue types including cerebellum, motor cortex, and spine. We derived multiple gene sets 187 

from this data using different fold-change thresholds (see methods). We also leveraged multiple novel 188 

sequencing and proteomics data derived from patient samples, including snRNAseq in multiple tissue 189 

types, proteomics from patient cerebral spinal fluid (CSF), and RNAseq data from reactive astrocytes and 190 

microglia (for a full list see methods and11). We specifically modified our highly-flexible PathFX platform 191 

(released with 12) to emphasize these gene lists (referred to as “pathway phenotypes”) into PathFX12–14 192 
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using the original bias reduction methods published in 13 and described in methods. We then used our 193 

custom network algorithm, ALS-PathFX, to model drug effects and derive new drug classes based on 194 

predicted effects on nearby, but untargeted (not bound by drug) proteins (Figure 1B). Taken together, our 195 

ALS-PathFX network model leverages several high-quality disease-relevant datasets to make predictions 196 

about drug effects. 197 

 We generated ALS-PathFX networks for 7,013 approved and experimental drugs using targets 198 

from DrugBank15,16. Briefly, ALS-PathFX first identified high-confidence proteins downstream of druggable 199 

targets, using interaction specificity analysis, a process that prioritizes protein interactions while reducing 200 

connections through hub proteins. After generating a protein network for each drug, ALS-PathFX 201 

identified network-associated phenotypes, by assessing which disease pathway proteins were enriched in 202 

the drug network relative to the entire interactome, and using multiple hypothesis correction and 203 

controlling for biases in the number of pathway-associated genes/proteins (as described in 13 and in 204 

methods).  In total, we discovered 13,967 drug-phenotype associations containing 2,984 unique drugs 205 

and 90 unique disease pathways. For example, PathFX generated a network of 235 proteins and 238 206 

edges for the antipsychotic, acetophenazine, and connected the network to 138 phenotypes, including 4 207 

neurodegenerative phenotypes (subnetwork associated with four phenotypes shown in Figure 2). 208 

Acetophenazine’s network contained the complement system proteins Complement C3 (C3), 209 

Complement C5 (C5), Complement C5a Receptor 1 (C5AR1), and Complement C3a Receptor 1 210 

(C3AR1). Network proteins may be associated with more than one phenotype, and for instance, C3 and 211 

C3AR1 were associated with “Multiple sclerosis” and “sequencing data 1”. We assigned acetophenazine 212 

to the “complement-associated drug class” or “CS-class” for brevity. We considered any drugs predicted 213 

to affect the same phenotypes (e.g., “Multiple sclerosis” or “sequencing data 1”) but without complement 214 

proteins in their networks, as sufficient comparator drugs and considered them in the “non-CS-class” of 215 

drugs. We provide more detail about ALS-PathFX results and assessment of network-protein drug 216 

classes in the Supplemental Results. 217 

 218 

Complement-system-associated drugs are associated with changes in survival 219 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.11.24315263doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.11.24315263


 

 9 

Internal 

We hypothesized that drugs with complement system proteins in their networks would have 220 

distinct clinical effects. This hypothesis is further supported by multiple recent developments of 221 

complement system inhibitors for neurodegenerative disease, specifically myasthenia gravis (Table S4). 222 

Aside from recent discoveries, complement system inhibitors have been approved since 2007 for several 223 

other non-neurodegenerative diseases including autoimmune and blood disorders (Table S4). Despite 224 

several approved compounds, none were prescribed in our ALS study patient population (described 225 

below and depicted in Figure S6A, all compounds listed in Supplemental File 4), further emphasizing 226 

the need for a way to anticipate their effects on overall survival. 227 

To test whether ALS-PathFX-predicted drugs affected overall survival, we conducted a novel 228 

observational study a using standard treatment-comparator study design and large-scale propensity 229 

scoring to adjust for possible confounding variables. More specifically, we accessed the de-identified 230 

Optum Market Clarity data. Optum Market Clarity deterministically links medical and pharmacy claims 231 

with EHR data from providers across the continuum of care. This data is available for researchers without 232 

IRB approval (longer description in Methods). The novelty in our approach was deriving network-protein-233 

based drug classes instead of using traditional drug classifications such as anatomical therapeutic 234 

category (ATC) classification systems. We provide a more intuitive description of this process in the 235 

Supplemental Results. 236 

After controlling for possible confounding (Figure S6), we estimated the differences in overall 237 

survival and observed a marginal, decreased, but not significant survival time for patients with an 238 

exposure to CS-class drugs (HR = 1.031 95% confidence interval (0.937, 1.134), p = 0.534) (Figure 3A, 239 

Table 1). The study discovered a detrimental effect early, where CS-class drugs are separated from non-240 

CS-class drugs before ~2,000 days (~5.5 years). At later timepoints, ~10,000 days (~27.4 years), overall 241 

survival was minimally distinguishable.  While the result is modest and insufficient to directly change 242 

clinical practice, this result affirmed that network-derived drug classes could predict differential effects on 243 

ALS survival in historical patient cohorts and suggested the possibility of testing other network drug 244 

classes. Yet, as mentioned previously, the results do not confirm whether drugs activate or inhibit the 245 

complement system. 246 

 247 
Network derived drug classes activate complement system proteins 248 
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We next sought additional data sources and experiments to better understand possible drug-249 

induced effects on the complement system. We first sought drug-induced gene expression changes from 250 

two public data sources, PharmOmics21 and LINCS22 (Supplemental methods) and saw little or 251 

ambiguous effects in these data sources (supplemental results). We next hypothesized that protein-level 252 

changes may better inform the observed effect on overall survival. We investigated complement levels 253 

using ELISA, specifically measuring C3, Complement 4 (C4), and factor B levels released from healthy 254 

stem cells following exposure to drugs from our network and non-network classes (Figure 4). Healthy 255 

stem cells were a sufficient system because we started following patients before their ALS diagnosis and 256 

this could indicate whether study drugs induced or suppressed complement system proteins. We 257 

prioritized compounds for experimental testing based on those that had the highest number of unique 258 

patients and total exposure days per patient (reflecting repeat prescription claims). The CS-class drugs, 259 

mirtazapine and methylprednisolone increased activation of both C3 and C4, and the CS-class drug, 260 

gabapentin, appeared to have no effect on either C3 and C4. Of the non-CS-class drugs tested, 261 

cephalexin, amoxicillin, cefuroxime, nitroglycerin, and solatol had no effect on C3 or C4 levels, however, 262 

the non-CS-class drugs, famotidine and erythromycin, increased C3 and C4 levels (Figure 4). Drugs from 263 

both classes seemed to induce Factor B, but to a lesser effect. Some of these effects are supported by 264 

additional literature such as different methylprednisolone regiments in myasthenia gravis patients led to 265 

an increase in C3 and C4 levels23. This increase in C3, C4 and Factor B for the above compounds 266 

indicate that these compounds induce further complement activation once complement activation is 267 

initiated, since treatment of human iPSC astrocytes alone w/o the A1 cocktail factors did not elicit any 268 

complement response (undetectable levels).  269 

In our network model, methylprednisolone, gabapentin and mirtazapine have distinct network 270 

connections to the complement system proteins, C3, C5, complement C3a receptor (C3AR1), and 271 

complement C5a receptor (C5AR1). Specifically, methylprednisolone, gabapentin, and mirtazapine 272 

connected through annexin A1 (ANXA1), the adenosine A1 (ADORA1) receptor, and the opioid receptor 273 

kappa 1 (OPRK1), respectively (all pathway connections in Supplemental File 2). This suggests that 274 

alternative pathways could have differential effects on the complement system, but that the observed 275 

trends in overall survival might be associated with increased activation of the complement system. 276 
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 277 

Several network classes alter overall survival in ALS-patients 278 

We repeated our observational study analysis pipeline for an additional 5 drug classes and 279 

ranked their overall effects on survival (Figure 3B-H, Table 1). We observed a large number of 280 

prescription-days per study drug as observed with the complement system study, though, the exact brand 281 

names changed per study (Table S6, Figures S9, S11, S13, S15, S17). Again, we saw low predictive 282 

performance of the logistic regression, suggesting good covariate balance (Table S7), and similar 283 

propensity score plots, suggesting sufficient class balance (Figures S10, S12, S14, S16, S18). Across all 284 

drug classes, we saw an increased risk for death in the network drug class compared to the non-network 285 

classes (Figure 3G,H, Table 1). The CXCR5 class had the greatest increased risk of death (HR = 1.151, 286 

95% confidence interval (1.021-1.298), p = 0.0214) (Figure 3B), and the chemokine class had the next 287 

highest risk (HR = 1.123, 95% confidence interval (1.018-1.239), p =0.0202) (Figure 3C). The CNR2 288 

class had a marginally decreased, but not significant risk (HR = 0.994, 95% confidence interval (0.890-289 

1.097), p = 0.897), most similar to the value observed for the complement system drug class. All other 290 

survival curves provided in Figures S19-S21. All of the retained brand names, the number of unique 291 

patients with an RX claim, the prescription-days per drug, and patient demographics are included in the 292 

extended supplement for each network class comparison: chemokine (Supplemental File 6), CXCR3 293 

(Supplemental File 7), CXCR5 (Supplemental File 8), CNR2 (Supplemental File 9), and NPY 294 

(Supplemental File 10). All hazard ratios also reported in Supplemental File 16. We also investigated 295 

the extent to which network drug classes shared brand names and observed shared, but distinct brand 296 

names in each drug class comparison as measured by Jaccard similarity (Figure S22C, D, Supplemental 297 

methods and results).  298 

 299 

Network-drug classes affect overall survival in multiple neurodegenerative diseases 300 

An intriguing utility for our analysis could be in identification of key nodes of pathophysiology 301 

across multiple diseases on the nervous system. We first demonstrated that neurodegenerative diseases 302 

shared pathways information using network models (Figure S23, Supplemental methods and results). 303 

Intriguingly, neurodegenerative diseases share more genes near druggable targets than if comparing all 304 
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disease genes. We thus repeated measurements for some network classes in multiple disease 305 

indications. We specifically considered effects of the complement system in myasthenia gravis and 306 

Parkinson’s disease and the CXCR3, and CXCR5 classes in myasthenia gravis. We again assessed 307 

prescription days per drug for all studies (Table S6, Figures S24, S26, S28, S30), measured low 308 

predictive performance of a logistic regression analysis (Table S7, and saw similar propensity score plots 309 

between target and comparator cohorts (Figures S25, S27, S29, S31). Interestingly, we observed a 310 

similar trend for myasthenia gravis patients taking the complement system drugs where early survival 311 

(before ~2,000 days) showed separation between the CS-class and non-CS-class drugs, however, the 312 

curves crossed-over at later timepoints (~10,000 days), suggesting a protective effect of complement-313 

associated drugs at early time points. Unlike our analysis in ALS patients, this analysis yielded a slight, 314 

but significant increased risk for death (HR 1.098, 95% confidence interval (1.018-1.183), p = 0.015) 315 

(Figure 3D). This finding combined with our experimental results and the recent approvals of complement 316 

inhibitors for myasthenia gravis further suggest that activated complement is detrimental for overall 317 

survival in neurodegeneration, but only at early timepoints. The effect of CXCR5 drugs was similar in 318 

myasthenia gravis patients relative to ALS patients (HR 1.143, 95% confidence interval (1.052-1.241), p = 319 

0.00155) (Figure 3E) and the effect of CXCR3 drugs was greater than in ALS patients (HR 1.321, 95% 320 

confidence interval (1.223-1.427), p = 1.47 x 10-12) (Figure 3F). The effect of complement-system drugs 321 

in Parkinson’s patients showed, similar, but starker cross-over effects like we observed in ALS and 322 

myasthenia gravis patients. We observed no overall survival benefit or risk (HR 0.992, 95% confidence 323 

interval (0.965-1.020), p = 0.579) (Figure S32). Like before, all of the retained brand names, the number 324 

of unique patients with an RX claim, the prescription-days per drug, and patient demographics are 325 

included in the extended supplement for each network class comparison: CXCR5 in myasthenia gravis 326 

(Supplemental File 12), CXCR3 in myasthenia gravis (Supplemental File 13), complement system in 327 

myasthenia gravis (Supplemental File 14), and complement system in Parkinson’s (Supplemental File 328 

15).  329 

 330 

Discussion  331 
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We presented an approach for using proteins downstream of druggable targets to define new 332 

drug classes and tested the effects of these drug classes on overall survival in ALS and two additional 333 

neurodegenerative diseases. We used observational studies as exploratory analyses, and while they 334 

would require further, dedicated clinical investigations to confirm their effects, they are compelling for their 335 

ability to recover known effects – specifically the effect of complement activation as detrimental to survival 336 

in ALS, myasthenia gravis, and Parkinson’s disease. Our preliminary experimental data combined with 337 

recent approvals of complement inhibitors for myasthenia gravis patients (Table S4) further supports the 338 

potential of complement inhibitors in ALS. Overall, this suggests a novel and impactful approach for 339 

identifying disease-drivers in rare and difficult-to-treat diseases and may provide valuable insights to 340 

therapeutic target selection. 341 

Our results are further compelling for their utility in difficult-to-treat populations. ALS is 342 

insufficiently explained by genetics, with less than 10% of familial and sporadic ALS cases explained by 343 

genetic drivers9,10. Without sufficient molecular targets, novel approaches are desperately needed to 344 

identify treatment strategies for the disease. Further, the ALS population is relatively small and is typically 345 

insufficient for observational studies. Indeed, through a related project, the Veterans Affairs dataset, 346 

which contained nearly 20,000 ALS patients, is the largest repository of historical ALS patient data and is 347 

nearly double the size of the cohort in this study24. Yet, we still resolved statistically-significant clinical 348 

effects by emphasizing proteins downstream of druggable targets, which allowed the inclusion of more 349 

patients.  350 

While we believe our paradigm can greatly enhance model-informed drug development efforts, 351 

further work could overcome limitations in our current study. For instance, we had insufficient network 352 

connections to all possible druggable targets and were limited to deriving network classes for proteins 353 

that were “close” to approved targets. Our network drug classes also shared many approved drugs 354 

indicating that our current interaction network was only sufficiently connected to some pathways. 355 

However, the differences in network phenotypes effectively separated drugs to discern relatively stronger 356 

effects, such as the increased risks associated with CXCR5 networks. This emphasizes the importance of 357 

deriving high-quality, disease pathway phenotypes. We also tested these network classes in a single 358 

patient population and further testing using data from additional health systems could elevate the impact 359 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.11.24315263doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.11.24315263


 

 14 

Internal 

of these findings. Indeed, previous meta-analyses across healthcare systems have successfully 360 

discovered drug-class effects on cardiovascular disease outcomes25. Further, an intriguing opportunity, or 361 

possible challenge, of historical data analysis is how to interpret the outcomes in the context of EHR 362 

timescales and understand their relevance to dedicated clinical investigations. We followed patients for 363 

nearly two decades, when most clinical trials are months to years in duration. Of the four FDA-approved 364 

therapies for ALS, the riluzole trials measured outcomes at 12 months26 or 18 months follow-up27 and the 365 

trials for edavarone, phenylbutyrate-taurursodiol (PB-TUDCA), and torfersen measured changes in the 366 

revised ALS functional rating scale28 at shorter durations – ranging from 24-28 weeks9,29–32. Our 367 

measured differences in proportions of surviving patients at short durations (~2 years) are similar to effect 368 

sizes in the riluzole trials, suggesting that future observational studies, which leverage drug network 369 

classes, could shorten observation times to better anticipate effect sizes measurable in the duration of a 370 

clinical study.  371 

Our discovery of disease drivers complements an evolving landscape of shared molecular 372 

underpinnings of clinically-distinct diseases. Specifically, we predicted that activated complement would 373 

increase risk for death across multiple disease indications. Our pathways analysis of shared 374 

dysregulation is supported by other findings, specifically, Arneson et al33 noted that when disease genes 375 

and proteins weren’t shared across neurodegenerative diseases, gene and protein functional information 376 

was shared, further emphasizing shared dysregulation across neurodegenerative diseases. Separate 377 

investigations of post-mortem brain samples further corroborated shared gene-level changes across 378 

patients with four neurodegenerative diseases (Alzheimer’s Disease, Parkinson’s disease, Huntington’s 379 

disease, and ALS) and discovered that shared genes were involved in functional processes such as 380 

inflammation, mitochondrial dysfunction, and oxidative stress33,34. Additionally, multiple canonical 381 

inflammatory reactivity inducers, including complement subcomponent C1q, interleukin 1 alpha (IL-1⍺), 382 

and tumor necrosis factor (TNF), convert astrocytes into A1 reactive astrocytes35, and these 383 

proinflammatory, reactive astrocytes secrete multiple complement factors, reduce synaptic and neuronal 384 

connectivity, and are linked extensively to neurodegenerative disease36. Taken together, this further 385 

supports the possibility of shared molecular changes in these diseases, though, further experimental 386 

validation would be required to confirm this general finding. 387 
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Our approach motivates extending the integration of clinical health data into Model Informed Drug 388 

Development (MIDD). Already, the FDA has provided guidance about the use of real-world data (RWD) 389 

for generating real world evidence (RWE) from sources other than randomization, controlled trials 390 

(RCTs)(Table S9). Indeed, many have generated RWE to support regulatory decision making including 391 

accelerated approvals, learning intrinsic factors, and optimizing dosing (Table S9). Yet these studies did 392 

not leverage RWD for novel target support.  393 

Other sources have identified novel targets from RWD, although, they have focused directly on 394 

target-driven effects instead of downstream effects. Genetic data repositories have helped identify lead 395 

candidates from patient data, such as in the case of Proprotein convertase subtilisin/kexin type 9 396 

(PCSK9) inhibitors where inactivating and gain-of-function mutants were associated with elevated or 397 

reduced cholesterol, respectively37,38. Mendelian randomization is another method of inferring drug-target 398 

effects in new populations39, but not every suitable target has sufficient genetic connections to support 399 

later therapeutic development. Additionally, analysis of PheWAS and expression quantitative trait loci 400 

(eQTLs) have also coupled gene variation with observable clinical effects, especially side-effects40,41. In 401 

contrast to our approach, these approaches overlook downstream effects and require sufficient genetic 402 

variation in patient populations to advance therapeutic discovery. 403 

For the most part, prior work combining molecular models of drug effects with patient data have 404 

been limited to drug repurposing studies, and we believe our approach greatly expands the possibilities 405 

for learning promising therapeutic targets from real-world patient data. Knowing that electronic health 406 

records will be increasingly useful to support new target identification, we anticipate that network 407 

medicine will extend capabilities beyond target-centric approaches.  408 

 409 

Study Highlights 410 

Currently, the impact of real-world data (RWD) on druggable targets with translational impact is limited to 411 

drug-repurposing. However, we hypothesized that network models of drug-induced signaling could 412 

elevate the impact of RWD for identifying novel drug targets. This study addressed the feasibility of that 413 

approach by simulating the effects of novel targets and testing these effects in neuroinflammatory 414 

conditions. We demonstrated that drugs that alter complement activation have deleterious effects on 415 
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overall survival and these results are consistent with effects of recently FDA-approved drugs, although 416 

none of our patients were taking them. We believe this paradigm will change translational science in how 417 

RWD may be used to identify novel, druggable targets. 418 
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Tables 522 

Pathway Name 

ALS -
HR 

ALS -
CI low 

ALS-
CI 

high 
MG - HR MG - 

CI low 

MG - 
CI 

high 
PD - HR PD - 

CI low 

PD - 
CI 

high 

CXCR5 1·151 1·021 1·298 1·143 1·052 1·241    

CXCR3 1·124 0·995 1·269 1·321 1·223 1·427    

Chemokine 
Pathways 1·123 1·018 1·239       

Neuropeptide Y 1·088 0·985 1·203       

CNR2 1·0.99 1·890 1·097       

Complement System 1·031 0·937 1·134 1·098 1·018 1·183 0·992 0·965 1·020 
 523 
Table 1. Hazard ratios and confidence intervals for 6 drug classes across 3 524 
neurodegenerative indications. ALS = Amyotrophic lateral sclerosis, MG = myasthenia gravis, 525 
and PD = Parkinson’s disease. CI = 95% confidence interval. 526 
 527 

  528 
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Figure Legends 529 

Figure 1. A combined pathways and observational study approach for identifying pathways with 530 

protective or harmful effects on overall survival in ALS. (A) Our overall workflow consisted of ‘omics 531 

data integration using several high-quality data sets, network modeling, identification of downstream 532 

proteins, identifying patient cohorts, and effects estimation (B) For network inference, we modeled all 533 

approved, active ingredients using ALS-PathFX and then created novel drug classes based on 534 

downstream proteins included in drug networks. In this example, we assessed drugs with network 535 

associations to multiple ALS sequencing datasets and included them in the “complement system” (“CS”) 536 

drug class if they had any complement-system proteins in their networks. We highlighted five drugs that 537 

are associated with any one of two disease pathways (i.e., “ALS sequencing data 1”, or “ALS sequencing 538 

data 2”). In our schematic, we also highlighted that drugs “1”, “2”, and “3” contain downstream 539 

associations to complement-system proteins and drugs “4” and “5” are connected to the same pathway 540 

phenotypes, but through different proteins. Drugs, network proteins, and disease phenotypes are 541 

represented by triangles, circles, or yellow boxes, respectively. (C) Later, we measured overall survival for 542 

patients exposed to at least one of the “complement class” or “non-complement class” drugs using 543 

observational studies in the Optum Market Clarity dataset. In this example, we grouped drugs “1”, “2”, and 544 

“3” into the “target” class, and drugs “4” and “5” into the “comparator” class. We repeated this analysis for 545 

6 drug classes and ranked classes by their effects on overall survival. Three complement proteins are 546 

shown in the diagram, but a total of nine were considered when assigning drugs to the complement 547 

system class: “Complement component 1, R subcomponent (C1R)”; “Complement component 1, S 548 

subcomponent (C1S)”; “Complement component 1, Q subcomponent, alpha polypeptide (C1QA)”;  549 

“Complement component 1, Q subcomponent, beta polypeptide (C1QB)” “Complement component 1, Q 550 

subcomponent, alpha polypeptide (C1QA)”; “Complement component 1, Q subcomponent, gamma 551 

polypeptide (C1QC)”; “Complement C3 (C3)”; “Complement C5 (C5)”; “Complement C3a receptor 1 552 

(C3AR1)”; & “Complement C5a receptor 1 (C5AR1)”. 553 

 554 

Figure 2. ALS-PathFX connected acetophenazine to multiple neurodegenerative phenotypes. 555 

PathFX connected the drug, acetophenazine (orange triangle) to four relevant neurodegenerative 556 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.11.24315263doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.11.24315263


 

 22 

Internal 

phenotypes (green boxes): Alzheimer disease, Huntington’s chorea, seq_data_1, and Multiple Sclerosis. 557 

PathFX used three drug target proteins (red circles): androgen receptor (AR), and the dopamine 558 

receptors D1 and D2 (DRD1, DRD2), and 99 adjacent proteins (gray ellipses) when predicting 559 

associations to these phenotypes.  560 

 561 

Figure 3. Patient cohorts in network drug classes have sufficient covariate balance (A) We plotted 562 

the total exposure days (sum of all prescriptions) per brand name per patient. We repeated this process 563 

for the target, CS-class (left) and comparator, non-CS-class (right) drugs. Each dot is a single patient. (B) 564 

The number of patients is plotted against their propensity score for patients on non-CS-class drugs (left) 565 

or CS-class drugs (right). The propensity score is the predicted probability using LogisticRegression on 566 

patient demographic, diagnostics, and medical prescription claims features. Patient demographics 567 

information for race (C) and gender (D) concepts.  568 

 569 

Figure 3. Multiple network drug classes have effects on overall survival in ALS, myasthenia gravis 570 

We plotted Kaplan Meier survival curves for the complement system class (A), the chemokine receptor 5 571 

(CXCR5) class, a relatively high-risk class (B), and the chemokine pathway class, also a relatively-high-572 

risk class (C) in ALS patients. We also plotted Kaplan Meier plots for three network classes in myasthenia 573 

gravis patients: the complement system (D), chemokine receptor 5 (CXCR5) (E), and the chemokine 574 

receptor 3 (CXCR3) (F) classes.  In all plots, the proportion of the surviving population plotted against 575 

time in days. Patients exposed to a “network class” or “Non-network class” drug are represented with a 576 

dotted or solid line, respectively. Hazard ratio values with the 95% confidence interval for six network-577 

drug classes (G) and their -log-(p-values) (H) as measured with weighted Cox proportional hazards 578 

(coxph from the R survival package). 579 

 580 

Figure 4. Complement-associated drugs activate multiple components of the complement 581 

pathway in ELISA assays. Normalized values (to CTL: A1 cocktail factors) of fold change for the 582 

complement factors C3, C4, and Factor B following treatment of human iPSC astrocytes with the A1 583 

cocktail factors and selective classes of compounds (100 nM, 1 µM and 10 µM). Addition of 584 
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methylprednisolone, mirtazapine and albuterol showed the strongest effect in increasing the complement 585 

levels (especially C3).   586 

 587 

Supplementary Material  588 

Supplemental File 1 – extended methods, results, Tables S1-8, Figures S1-32. 589 

Supplemental File 2 – ALS-PathFX pathways, all modeling results. 590 

Supplemental File 3 – All network-protein derived drug classes. 591 

Supplemental File 4 – Drug brand names, prescription days, patient demographic data, and covariates for 592 

the study of ALS patients and the CS-class. 593 

Supplemental File 5 – All diagnosis codes used to select patients.  594 

Supplemental File 6 – Drug brand names, prescription days, patient demographic data, and covariates for 595 

the study of ALS patients and the CXC-class.  596 

Supplemental File 7 – Drug brand names, prescription days, patient demographic data, and covariates for 597 

the study of ALS patients and the CXCR3-class.  598 

Supplemental File 8 – Drug brand names, prescription days, patient demographic data, and covariates for 599 

the study of ALS patients and the CXCR5-class.  600 

Supplemental File 9 – Drug brand names, prescription days, patient demographic data, and covariates for 601 

the study of ALS patients and the CNR2-class.  602 
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for the study of ALS patients and the NPY-class.   604 

Supplemental File 11 – PathFX predictions for multiple neurodegenerative diseases.  605 

Supplemental File 12 – Drug brand names, prescription days, patient demographic data, and covariates 606 

for the study of MG patients and the CXCR5-class.  607 

Supplemental File 13 – Drug brand names, prescription days, patient demographic data, and covariates 608 

for the study of MG patients and the CXCR3-class.  609 

Supplemental File 14 – Drug brand names, prescription days, patient demographic data, and covariates 610 

for the study of MG patients and the CS-class.  611 
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Pathway Name 

ALS -
HR 

ALS -
CI low 

ALS-
CI 

high 
MG - HR MG - 

CI low 

MG - 
CI 

high 
PD - HR PD - 

CI low 

PD - 
CI 

high 

CXCR5 1·151 1·021 1·298 1·143 1·052 1·241    

CXCR3 1·124 0·995 1·269 1·321 1·223 1·427    

Chemokine 
Pathways 1·123 1·018 1·239       

Neuropeptide Y 1·088 0·985 1·203       

CNR2 1·0.99 1·890 1·097       

Complement System 1·031 0·937 1·134 1·098 1·018 1·183 0·992 0·965 1·020 
 
 
 
 

 

 
 
 
 
 
 

Gab
ap

en
tin

+A
1

Mirta
za

pin
e+

A1

Meth
ylp

red
nis

olo
ne

+A
1

Cep
ha

lex
in+

A1

Albu
ten

ol+
A1

Eryt
hro

myc
in+

A1

Carv
ed

ilo
l+A

1

Amox
icil

lin
+A

1

Cefu
rox

im
e+

A1

Fam
oti

din
e+

A1

Nitro
gly

ce
rin

+A
1

Sola
tol

+A
1

0

1

2

3

4

5

C
3 

fo
ld

 c
ha

ng
e 

(n
or

m
al

iz
ed

 to
 C

TL
) 100 nM

1 μM
10 μM

CS-Class Non-CS-Class

Gab
ap

en
tin

+A
1

Mirta
za

pin
e+

A1

Meth
ylp

red
nis

olo
ne

+A
1

Cep
ha

lex
in+

A1

Albu
ten

ol+
A1

Eryt
hro

myc
in+

A1

Carv
ed

ilo
l+A

1

Amox
icil

lin
+A

1

Cefu
rox

im
e+

A1

Fam
oti

din
e+

A1

Nitro
gly

ce
rin

+A
1

Sola
tol

+A
1

0.0

0.5

1.0

1.5

2.0

C
4 

fo
ld

 c
ha

ng
e 

(n
or

m
al

iz
ed

 to
 C

TL
) 100 nM

1 μM
10 μM

CS-Class Non-CS-Class

Gab
ap

en
tin

+A
1

Mirta
za

pin
e+

A1

Meth
ylp

red
nis

olo
ne

+A
1

Cep
ha

lex
in+

A1

Albu
ten

ol+
A1

Eryt
hro

myc
in+

A1

Carv
ed

ilo
l+A

1

Amox
icil

lin
+A

1

Cefu
rox

im
e+

A1

Fam
oti

din
e+

A1

Nitro
gly

ce
rin

+A
1

Sola
tol

+A
1

0.0

0.5

1.0

1.5

2.0

2.5

Fa
ct

or
 B

 fo
ld

 c
ha

ng
e 

(n
or

m
al

iz
ed

 to
 C

TL
)

100 nM
1 μM
10 μM

CS-Class Non-CS-Class

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 13, 2024. ; https://doi.org/10.1101/2024.10.11.24315263doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.11.24315263

