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Abstract 11 
Social contact data are essential for understanding the spread of respiratory infectious 12 
diseases and designing effective prevention strategies. However, many studies often 13 
overlook the heterogeneity in mixing patterns among older age groups and individual frailty 14 
levels, assuming homogeneity across these sub-populations. This oversight may undermine 15 
non-pharmaceutical interventions by not targeting specific contact behaviours, potentially 16 
reducing their effectiveness in controlling disease. To address this gap, we conducted a 17 
contact survey in Flanders, Belgium (June 2022 to June 2023). Using this dataset, we 18 
reconstructed frailty-dependent contact matrices and developed a contact-based 19 
mathematical model that integrates frailty levels to investigate their impact on disease 20 
transmission dynamics. We collected data from 5,723 participants who recorded 31,375 21 
contacts with distinct individuals. Contact patterns were observed to vary based on 22 
participants’ age and frailty levels, influenced by the locations of their interactions. 23 
Incorporating frailty levels into the mathematical model substantially alters the shape of 24 
epidemic curves and peak incidences. Such insights are crucial for designing tailored non-25 
pharmaceutical interventions, indicating the need for similar data collection in different 26 
countries. 27 
 28 
Keywords: Infectious Diseases, Disease transmission, Mathematical Modeling, Social 29 
contact, Frailty, Older adults. 30 

 31 

1. Introduction 32 
Individuals within a population exhibit varying characteristics that influence infectious 33 
disease transmission [1,2]. These individual-level heterogeneities can arise from various 34 
sources, such as varying individual infectiousness or the infectious period (physiological 35 
mechanisms) or varying contact rates with infection sources (behavioural mechanisms) [2]. 36 
In various environments, individuals’ behavioural heterogeneity can be seen in varying 37 
degrees of contact interactions, being dependent on biological ages, genders, health 38 
conditions, and social classes (with expected variations in e.g., seasons). These 39 
heterogeneities, particularly among older individuals, can significantly impact transmission 40 
dynamics. Given that this age group significantly contributes to the infectious disease burden 41 
(e.g., 92% of hospitalisations for Herpes Zoster Virus in Italy and 86% for SARS-CoV-2 Virus 42 
in England, Scotland, and Wales occur in individuals over 50 years of age [3,4]), 43 
understanding contact patterns within this subpopulation is crucial. This need is further 44 
amplified by demographic trends suggesting a growing elderly population, which is more 45 
susceptible to infections due to age-related immune decline [5,6].  46 
 47 
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Frail and older populations account for a significant proportion of the health burden, 48 
influenced by both biological age and individual health conditions [7]. Therefore, 49 
understanding transmission dynamics is crucial for adequately determining suitable public 50 
health interventions. However, while transmission models offer valuable insights in 51 
understanding disease dynamics, their accuracy is dependent on reliable data on social 52 
interactions. This reasoning motivates the collection of social contact data, primarily 53 
collected through diary-based social contact surveys, which has been instrumental as an 54 
essential tool in parameterising mathematical disease models to understand the dynamics of 55 
infectious disease transmission within the population [8-12]. An example is the 56 
groundbreaking POLYMOD study, which is a large-scale survey that gathered data from 57 
eight European countries with age groups focusing on mainly young adults and adults 12. 58 
Another example is the CoMix study, which aimed at collecting social contact behavior 59 
during the COVID-19 pandemic, highlighting the impact of non-pharmaceutical interventions 60 
following the outbreak [9-11,13-18]. However, there are significant knowledge gaps, as 61 
social contact surveys that specifically focus on older adults are scarce. This demographic, 62 
despite its substantial contribution to disease burden, have been underrepresented in 63 
existing studies, hindering comprehensive understanding and precise modeling of disease 64 
transmission dynamics within this population. 65 
 66 
Although limited, there have been studies on social contacts that specifically target older 67 
individuals [19], individuals with chronic illnesses [20], and frail individuals [21]. These 68 
studies show that these groups differ not only in the amount of their social interactions but 69 
also in the way they interact within the population. Nevertheless, little information is available 70 
on which survey and sampling methods are most effective in conducting such a study in this 71 
age group. As an illustration, older individuals might encounter challenges when it comes to 72 
completing a paper diary, necessitating the need for an in-person interview. It is commonly 73 
observed that older individuals tend to favour paper questionnaires as their preferred format, 74 
while the suitability of digital approaches for studying health conditions in the older 75 
population remains a matter of debate [22]. Since digital questionnaires are faster to 76 
distribute (or collect) and pose less burden on a competent participant, exploring the viability 77 
of a digital survey holds significance for expanding the survey to other countries, especially 78 
in years to come. 79 
 80 
This study presents the findings of the Epicurus contact survey study, conducted in 81 
Flanders, Belgium. The study explores social mixing patterns across age groups and frailty 82 
levels, focusing on older individuals, by including those with chronic conditions and/or 83 
residing in healthcare facilities. Furthermore, we analyze how mixing patterns and frailty 84 
levels of participants and their contacts might influence disease transmission. Moreover, the 85 
study can also serve as a basis for refining data collection protocols, identifying areas for 86 
improvement, and informing the design of similar large-scale, multi-country studies in the 87 
future across different European countries. 88 
 89 
 90 

2. Methods 91 

2.1. Study design 92 
Information on social contacts was obtained cross-sectionally, with the assistance of a 93 
market research company. The survey employed a randomized design within the general 94 
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population, conducted from June 2022 to June 2023. Participants were enlisted (sampling 95 
methods) through a database of the National Registry (n.040/2022), acquired from Statbel, 96 
and delivered to the market research company. To encompass individuals residing in care 97 
facilities, sampling was done through a list of government-recognised facilities. In this study, 98 
we refer to a facility which provides long-term housing and a range of services for individuals 99 
aged 65 years and older who can no longer live independently at home. These services 100 
include household assistance, daily task support, and health care, including nursing care. 101 
Different survey methods were used: physical paper forms (paper-based), face-to-face 102 
interviews (paper-based), online submissions (Computer-Assisted Web Interface (CAWI)), or 103 
through a dedicated app (app-based).  104 
 105 
Five target populations were recruited using a stratified sampling approach adjusted by age 106 
to ensure a representative sample of the Flanders population (Table S1). The invitation to 107 
participate in the survey was divided into three waves: the first wave was conducted during 108 
the Summer period (June 14, 2022 - August 18, 2022, and May 10-22, 2023; 20% send-109 
outs), the second wave was carried out in the Fall period (September 5 - December 16, 110 
2022; 40% send outs), and the third wave was conducted in the Winter period (January 23 - 111 
April 14, 2023; 40% send outs). This percentage resulted from the intention to include more 112 
participants who experience ILI (Influenza-Like Illness) or RSV symptoms during the fall and 113 
winter seasons. To achieve the targeted participation rate among individuals aged 22-99 114 
with chronic conditions or experiencing ILI symptoms, additional invitations were sent during 115 
fall and winter. These invitations were adjusted by age and mainly sent during winter months 116 
to increase the sample size of participants experiencing ILI symptoms. Respondents from 117 
these additional invitations who did not have chronic conditions, nor were experiencing ILI 118 
symptoms, were categorised into the general population. Sampling in care facilities and the 119 
app-based group was terminated upon reaching the desired sample sizes due to cost 120 
considerations.  121 
 122 
The survey collected demographic information (age, gender, etc.) and vaccination status 123 
against influenza and COVID-19. Additionally, participants were asked to complete a contact 124 
diary, recording all face-to-face interactions on a specific day (defined as in-person 125 
conversations consisting of three or more words, with or without skin-to-skin contact, 126 
between 5 am the previous day and 5 am on the survey day), with the number of potentially 127 
recorded contacts in a day was limited to 30 (versus 29 to 90 in other studies [12,23]). 128 
Details captured for each contact included gender, age range, location(s), intimacy level, 129 
frequency, and duration. Participants’ Frailty Index (FI) was measured based on their 130 
responses to EuroQol-5 Dimension (EQ-5D) and Short Form Survey-36 (SF-36) questions 131 
[24-25], evaluated with the accumulation of deficits approach [26-29]. This well-validated FI 132 
captures a broad spectrum of medical conditions (e.g., comorbidities, physical function, and 133 
mental well-being) and has been widely used in various international studies [30]. As done 134 
by Curran et al. (2021), we divided each participant into one of three subgroups based on 135 
their frailty score: non-frail (�� �  0.08), pre-frail (0.08 � �� � 0.25), or frail (�� � 0.25 ) [29]. If 136 
a participant had over 10 quality of life components that were not answered, their Frailty 137 
Index (FI) was considered as ‘missing’ unless their available data clearly showed that they 138 
already had a high enough score to be classified as frail. Notably, participants aged two 139 
years or younger are assumed to be categorized as non-frail as they were not yet able to 140 
complete the EQ-5D and SF-36 questions. 141 
 142 
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2.3. Statistical analysis for the number of reported contacts 143 
We developed right-censored negative binomial generalized linear mixed models to examine 144 
the factors influencing the average number of contacts reported inside and outside the 145 
participant's home. In this study, the term “home” refers to the domicile of the participant, 146 
encompassing houses, apartments, or healthcare facilities. The models incorporated frailty 147 
levels and adjusted for other participant characteristics. We performed variable selection 148 
using a random forest analysis and the likelihood ratio test (LRT). The reported contacts 149 
were right censored at 30 contacts due to a limited number of possible diary entries and 150 
were fitted using penalized maximum likelihood within the ‘gamlss’ package in R [31]. Social 151 
mixing patterns were further investigated by constructing age-stratified ([0, 50), [50, 60), [60, 152 
750), …, [90, 100)) contact matrices for different locations of contacts (inside or outside the 153 
home) [12]. The ‘socialmixr’ package in R was employed with post-stratification weights to 154 
account for the distinction between weekdays and weekends when generating the contact 155 
matrices [32]. 156 
 157 

2.4 Mathematical compartmental transmission model 158 
In this study, we utilize a discrete-time age-structured compartmental model which 159 
incorporates contact matrices for age-specific transmission rates, previously developed by 160 
Abrams et al. (2021) [9]. The model is extended to account for age and frailty mixing 161 
patterns, enabling the investigation of a COVID-19-like disease's spread and assessing the 162 
impact of frailty-dependent interactions within the Belgian population (Supplementary 163 
Material). This model assumes that individuals become infectious (symptomatic or 164 
asymptomatic) after a latent period. Symptomatic cases may progress to severe illness 165 
requiring hospitalisations or being admitted to the intensive care unit (ICU), where they are 166 
assumed to be isolated and can not transmit the disease. We initialized our disease 167 
transmission model on March 1st, 2020, to reflect the early stages of the COVID-19 168 
pandemic (Wuhan strain, without vaccination). Simulations were conducted for the Belgian 169 
population of 2020 (timestep: 1 day) over 100 days.  170 
 171 
The model uses parameter values from previous studies on COVID-19 vaccination 172 
strategies, which were calibrated in parallel with this study (Table S2) [9,33]. To tailor the 173 
model to the observed data, we set the initial population and distribution of infected 174 
individuals across age groups and frailty levels to be proportional to the survey data (Table 175 
S3). To compare the impact of different mixing assumptions on transmission dynamics, we 176 
conducted two analyses: one using a constant proportionality factor (�) capturing host- and 177 
disease-specific characteristics, and the other using a constant basic reproduction number 178 
(
� � 2.90) calculated with the next-generation matrix approach for COVID-19 [9,34]. The 179 
effects of various contact-level assortativity on transmission dynamics were analyzed using 180 
three different scenarios: proportional, uniform, and full assortativity. In the proportional 181 
scenario, contact-level assortativity reflects the proportion of frailty levels obtained from the 182 
survey. In the uniform scenario, the assortativity is identical across all frailty levels. Lastly, 183 
the full assortativity scenario simulates individuals who only come into contact with others 184 
who have the same level of frailty. To isolate the effect of altered contact patterns on disease 185 
spread, we assumed homogeneous parameters across frailty levels. This simplification 186 
enabled us to attribute any observed changes in transmission patterns primarily to variations 187 
within the contact matrices.  188 
 189 
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 190 
 191 

3. Results 192 

3.1 Study population 193 
Approximately 31,000 letters (55% main and 45% additional invitations) were dispatched to 194 
the participants within the random sample generated by the National Registry. The overall 195 
response rate was 19.34% (� = 5,995). The majority of subpopulations from the collected 196 
sample exceeded the desired target study population, except for the ILI subpopulation, 197 
which only reached 0.3% of the expected quota (Table S1). Notably, a preference for the 198 
paper-based survey (66.67%) was observed compared to the computer-based version 199 
(CAWI or app-based) (33.32%). Of the initial respondents, 272 individuals did not consent to 200 
participate, and one participant was excluded because they did not comply with the contact 201 
reporting guidelines (the reported contact was not from the day preceding the survey). The 202 
final analysis included 5,723 consenting participants (44.18% male, 53.45% female) who 203 
reported 31,375 contacts (Table S4).  204 
 205 
The mean participant age was 53.4 years, with a median of 59 years (IQR: 37-71). Around 206 
70% and 90% of participants who used the Computer-Assisted Web Interface (CAWI) and 207 
app-based approach, respectively, were below the age of 60 years. Conversely, the paper-208 
based survey skewed towards individuals over 60 (Figure S1). The data indicates that 209 
individuals over 70 years old generally tend to engage in volunteer work or remain 210 
unemployed (either retired or capable of working but not currently employed). Chronic health 211 
conditions were reported by 33.4% of participants, all exceeding 50 years old. Most of the 212 
participants resided in houses or apartments of size 2 (33.2%) or 3 (18.4%), while a small 213 
proportion (3.5%) resided in long-term care facilities (retirement or nursing homes (ROB: 214 
Rustoord voor Bejaarden; RVT: Rust-Verzorgingstehuis)), especially older individuals. 215 
Furthermore, frailty assessment revealed a significant association with biological age, with 216 
older participants tend to be in the more frail categories. Among the total sample, there were 217 
830 participants (14.50%) classified as frail, 1,749 (30.56%) as pre-frail, 2,681 (46.85%) as 218 
non-frail, and 463 (8.09%) were categorized as missing, as described in Section 2.1. 219 
 220 

3.2 Contact behavior and mixing patterns 221 
On average, participants report 5.48 contacts daily, with a median of 4 contacts (IQR: 2-7) 222 
(Table S5). When considering contacts reported outside the household (Figure 1), we 223 
observed a notable association between frailty and the number of reported contacts. Frailty 224 
status influences the average number of contacts, with frail individuals reporting fewer 225 
contacts compared to non-frail and pre-frail individuals. This decrease in contact varies with 226 
the degree of frailty and is more pronounced in older age groups. Note that the small number 227 
of non-frail individuals in the 80-89 and 90-100 age categories (0.8% and 0.2% of non-frail 228 
individuals, respectively) may lead to a noticeable discrepancy between the observed 229 
average number of contacts and the model-based number of contacts. 230 
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 231 

 232 
Figure 1: Number of contacts reported outside the household per participants’ age group by 233 
their frailty level. Plots show the distribution of contacts, the average number of contacts 234 
(dots) and model results (mean as solid lines and 95% confidence intervals as shaded area). 235 

 236 
A significant portion of contacts occurs with individuals of similar age, as indicated in the 237 
contact matrices for which higher values are reported on the diagonal (Figure S2). More 238 
precisely, older individuals (60-90 years) primarily interact with others in their age range, 239 
followed by interactions with younger adults (30-59 years). Intergenerational mixing occurred 240 
more inside participants’ homes, particularly between younger individuals (under 18) and 241 
adults (30-50 years). Higher contact rates are observed when comparing contacts outside 242 
participants’ homes with those reported inside. Pre-frail and non-frail individuals reported 243 
more contacts outside their homes compared to frail individuals (Figure 2). In contrast, frail 244 
individuals tended to report more contacts inside their homes. For individuals under 70 with 245 
frailty, these trends persisted with a higher number of outside contacts reported compared to 246 
those over 70 with frailty, who tended to have more contacts inside their homes. When 247 
considering participants with chronic conditions, we observe higher contact rates outside 248 
their homes, except for those over 70 years old, who reported more contacts within their 249 
homes (Figure S3 - Figure S5). 250 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2024. ; https://doi.org/10.1101/2024.10.10.24315233doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.10.24315233
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 251 

 252 
Figure 2: Contact matrices showing the mixing patterns of participants based on their frailty 253 
level for contacts reported inside and outside the household, together with 95% confidence 254 
intervals obtained from non-parametric bootstrap.  255 

 256 

3.2 Contact characteristics 257 
Variables expressing the number of contacts are selected based on the results of both 258 
random forest analysis (Figure S6) and the likelihood ratio test (Table S6). Table S7 259 
presents the relative incidence (RI) with its 95% confidence interval (CI) obtained from 260 
GAMLSS models inferring the number of indoor and outdoor contacts based on these 261 
selected covariates. While holding other variables constant, the sample drawn from the care 262 
facilities reported more contacts (RI = 2.141 [1.797 - 2.550]) inside the home (Table S7). 263 
The gender variable had a significant effect on the number of contacts reported, with women 264 
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reporting a higher number of contacts inside (RI = 1.077 [1.012 - 1.146]) and outside (RI = 265 
1.066 [1.020 - 1.113]) the home. People who completed the questionnaire on paper tend to 266 
report more contacts, with a relative incidence of 2.293 [2.136 - 2.463] and 1.160 [1.106 - 267 
1.215] for outside and inside home contacts, respectively. Household size had different 268 
effects on inside and outside contacts; participants who lived alone tended to report more 269 
outside contacts (RI = 1.171 [1.054 - 1.298]), but this pattern was reversed for inside 270 
contacts (RI = 0.811 [0.731 - 0.900]). Unemployed people reported more contacts inside the 271 
home (RI = 1.087 [1.001 - 1.180]) compared to outside the home (RI = 0.641 [0.573 - 272 
0.716]), and compared to people who worked full time. Lastly, education also has a 273 
significant effect on out-of-home contacts, with participants holding undergraduate degrees 274 
generally reporting more contacts. More out-of-home contacts were reported during 275 
weekdays and non-holidays. There was an interaction between age and holidays on 276 
contacts, with older participants (above 50 years old) reporting fewer contacts during non-277 
holidays, compared to children under nine years old. Non-frail individuals significantly report 278 
more contacts outside the home. Lastly, it was also found that there was an interaction 279 
between reported contacts and frailty level and whether or not participants completed the 280 
survey with assistance. 281 
 282 

3.3 Mathematical compartmental transmission model 283 
The results of the simulation study indicate varying disease dynamics with a constant value 284 
of � across all mixing patterns (Figure S7). Full assortativity results in significantly lower 285 
peak epidemics (2.36, 0.45, 0.05 per 100,000 for non-frail, pre-frail, and frail groups, 286 
respectively), while uniform mixing yields the highest peak epidemics (5.01, 1.95, 0.74 per 287 
100,000 for non-frail, pre-frail, and frail groups, respectively), compared to other scenarios. 288 
When simulating epidemic outbreaks and keeping a constant value of 
�, we observed 289 
mixing patterns among different frailty levels affect disease transmission dynamics (Figure 290 
3). While attack rates across the three scenarios - proportional (0.78), uniform (0.81), and 291 
fully assortative (0.82) - show only a slight difference, the underlying patterns of disease 292 
transmission vary considerably. Under the full assortativity scenario, non-frail and pre-frail 293 
individuals experience the fastest epidemic peak (day 28) and highest incidence rates (5.92 294 
and 1.92 per 100,000, respectively). Conversely, frail individuals show the slowest peak (day 295 
30) and lowest incidence rate (0.47 per 100,000). Uniform mixing results in the fastest and 296 
highest incidence rate for frail individuals (0.70 per 100,000 after 26 days), while 297 
proportionate mixing shows the lowest incidence rate and slowest peak for non-frail 298 
individuals (3.96 per 100,000 in 32 days).  299 
 300 
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 301 
 302 
Figure 3: Comparison of COVID-19-like  epidemic curves for the Belgian 303 
population with various frailty-based mixing patterns. 304 
 305 

4. Discussion 306 
In this manuscript, we presented the outcomes of the Epicurus study, which was conducted 307 
to investigate social mixing behaviors in the Flemish region, Belgium, from June 2022 to 308 
June 2023. In particular, we focused on older individuals, as existing literature highlights 309 
their significant role in disease transmission [5,20,21], yet there is still a knowledge gap 310 
concerning how their behaviors vary with frailty levels. We conducted simulations using a 311 
compartmental model to describe infectious disease spread, incorporating frailty-dependent 312 
mixing patterns obtained from the study as a proxy of age-specific transmission rates, and 313 
compared outbreak characteristics under various degrees of interactions. In particular, we 314 
have considered the spread dynamics of SARS-CoV-2, given its recent prominence and 315 
significant impact. 316 
 317 
The present work gives important insights for the design of future data collection. In 318 
particular, we observed a notably high response rate when participants were randomly 319 
selected from the national registry. Residents of healthcare facilities demonstrated a keen 320 
willingness to participate in the study, facilitating a smooth data collection process. We found 321 
that the paper version of the survey was preferred over the computer-assisted web interface 322 
(CAWI) or app versions. However, managing incomplete responses posed a challenge as 323 
there was no means to validate the provided answers. Recruiting individuals aged 50-75 324 
years from healthcare facilities presented difficulties, as this demographic typically does not 325 
reside in such facilities unless they have specific medical conditions. This challenge also 326 
extended to individuals with ILI symptoms, as they may not be inclined to participate in 327 
surveys when feeling unwell. In future studies, improving data on ILI symptoms could involve 328 
asking participants about their symptoms and contacts during their most recent ILI period. 329 
This approach may help address the issue, albeit susceptible to recall bias [16]. 330 
Alternatively, supplementing national registry data with additional information from general 331 
practitioners could be of added value. When doing so, potential bias towards specific 332 
subpopulations should be carefully considered. 333 
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 334 
Our findings indicate distinct contact patterns among different age and frailty groups, with a 335 
particular emphasis on the location where contacts took place. Older frail individuals 336 
predominantly interacted within their homes, potentially increasing the risk of intra-household 337 
outbreaks. This contrasts with younger frail individuals who exhibited more external contacts, 338 
suggesting interactions between age, frailty, and mixing patterns. These findings extend 339 
previous work by Backer et al. (2023), who reported overall reduced contact rates among 340 
frail individuals, by highlighting the disproportionate decrease in external contacts, potentially 341 
due to factors such as physical limitations or social isolation [21]. Understanding the long-342 
term implications of these distinct contact patterns for disease transmission is essential for 343 
designing effective non-pharmaceutical interventions. Tailoring strategies to limit disease 344 
spread to the specific contact behaviors of vulnerable groups, such as older frail individuals, 345 
can optimize public health efforts by mitigating healthcare burdens, leading to better health 346 
economic outcomes. Additionally, incorporating healthcare costs that depend on frailty into 347 
cost-effectiveness calculations within mathematical models can enhance their accuracy, 348 
leading to more realistic decision-making outcomes [35]. 349 
 350 
We further emphasize the impact of considering heterogeneity from varying frailty levels 351 
within populations on the spread of respiratory infectious diseases, using a contact-based 352 
deterministic mathematical model. While maintaining a constant transmission rate across 353 
frailty groups, we observed distinct transmission dynamics. This emphasizes the need for 354 
caution when extrapolating population-level parameters to specific subgroups. Furthermore, 355 
we investigated the impact of frailty levels on transmission dynamics by maintaining a 356 
constant reproductive number. Our results demonstrate significant variations in epidemic 357 
outcomes across different frailty groups, driven by distinct contact patterns [36]. The 358 
presented mathematical model successfully highlights that reliable disease transmission 359 
modeling necessitates a thorough understanding of heterogeneity in mixing patterns, as 360 
ignoring these factors can lead to inaccurate predictions, suboptimal intervention strategies, 361 
and misguided economic evaluations [37]. Future research can enhance the model's realism 362 
by incorporating variations in susceptibility and infectivity, which are key factors in 363 
transmission dynamics, especially when considering the different frailty levels within 364 
individuals. 365 
 366 
The collected data and analysis performed emphasize the importance of collecting detailed 367 
information on contact patterns and investigating their potential role in shaping disease 368 
dynamics, particularly within older individuals and those with varying degrees of frailty. In 369 
addition to obtaining preliminary insights into the social mixing behavior within this cohort, 370 
the study can also be utilized to test the questionnaires and assess the feasibility of 371 
conducting a large-scale contact study. However, it is important to note that our scope does 372 
not encompass comparisons across countries, including any analysis before, during, or after 373 
the COVID-19 pandemic, nor does it delve into future projections. Extrapolating these results 374 
to other countries may not be wise, as each country possesses unique characteristics (e.g., 375 
cultural and educational background, infrastructure, and social structure) that may 376 
considerably impact the validity of such extrapolations [38]. However, the insights and 377 
methodologies discussed herein can guide potential extensions of this study to a European 378 
context.  379 
 380 
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Our study considers frailty alongside chronic disease, as it offers a broader overview of 381 
individual health levels [39]. Nevertheless, we utilized a singular method to calculate frailty, 382 
potentially overlooking variation in contact patterns across different frailty measurements. 383 
Potentially, employing a broader frailty index calculation that encompasses multiple health 384 
indicators could provide deeper insights into the interplay between frailty and contact 385 
behavior. However, constructing such indices can be cumbersome and may induce 386 
participant fatigue if the questionnaire becomes overly lengthy [16]. Future investigations 387 
could employ multidimensional frailty scales to unveil a deeper understanding of how frailty 388 
influences social interactions. Additionally, while COVID-19 and flu vaccinations did not 389 
significantly impact the number of contacts in this study, exploring the effects of vaccines for 390 
other diseases, such as RSV and pneumococcal infections, may provide valuable insights, 391 
particularly for the elderly and high-risk groups [40]. Therefore, future research could delve 392 
deeper to explore these aspects. 393 
 394 

5.Conclusion 395 
The Epicurus study in Flanders, Belgium, aimed to characterize the social contact patterns 396 
of older individuals and those with varying levels of frailty in relation to disease transmission. 397 
Our findings revealed distinct contact patterns across different frailty levels. By integrating 398 
these patterns into contact-based mathematical modeling, we demonstrated the critical 399 
importance of accounting for frailty-dependent heterogeneity in disease transmission. These 400 
insights contribute to our understanding of how frailty affects contact patterns and disease 401 
spread, emphasizing the need for further data collection and analysis across a broader 402 
population. 403 
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