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Abstract  

Average response time is frequently used to reflect executive function. Less often studied is 

intra-individual variability in response times (IIVRT) which reflects within-person 

consistency. Higher IIVRT in Parkinson’s disease (PD) has been associated with poor 

executive function but almost exclusively studied using standard deviations. Such linear 

measures cannot capture rapid and spontaneous changes in biological systems such as 

dopaminergic bursting activity. Therefore, nonlinear measures may provide important 

complementary insights into dopamine-related neurocognition. Our primary aim was to 

investigate nonlinear IIVRT measures in PD using graph theory, constituting the first use of 

this approach on RT data. As hypothesized, PD was associated with a greater rate of trial-by-

trial IIVRT compared to healthy older adults. These novel results indicate that a similarity 

graph algorithm may be a useful tool to capture the more rapidly varying and spontaneous 

changes in RT behavior that result from the dysfunctional dopamine bursting dynamics 

present in PD.  
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Introduction  

It is increasingly acknowledged that Parkinson’s disease (PD) results from a 

complicated interplay of genetic and environmental factors affecting numerous fundamental 

cellular processes (Kalia & Lang, 2015). PD is therefore increasingly recognized as more than 

purely a motor-deficit condition and includes varying degrees of cognitive impairment. 

Measures of response time (RT) are frequently used to investigate cognitive impairment. 

Average RT following presentation of an external stimulus reflects levels of attention, 

processing speed and executive function (MacDonald et al., 2006). Less often studied is the 

within-person consistency in RT. Higher intra-individual variability in response times 

(IIVRT) is sensitive to poor brain health (Haynes et al., 2017; MacDonald et al., 2006), 

predicts all-cause mortality in longitudinal studies (Batterham et al., 2014; Der & Deary, 

2018), even when controlling for dementia and age-related cognitive decline (Kochan et al., 

2017), and is a promising biomarker for neurogenerative diseases (Costa et al., 2019; Haynes 

et al., 2017; Roalf et al., 2016). Higher IIVRT is found in various conditions associated with 

executive dysfunction such as Alzheimer’s disease (Burton et al., 2006), schizophrenia (Pappa 

et al., 2021) and Attention-Deficit/Hyperactivity Disorder (Kofler et al., 2013). Several causal 

explanations for higher IIVRT in these conditions have been suggested, such as poor motor 

inhibition (Mostofsky & Simmonds, 2008), worse attentional alertness (Kuntsi & Stevenson, 

2001), and deficiencies in temporal processing (Castellanos & Tannock, 2002; Toplak et al., 

2006) - all dysfunctions present in PD. Indeed, studies have found greater IIVRT in PD 

compared to healthy controls (Burton et al., 2006; de Frias et al., 2007; Dujardin et al., 2013; 

Morrison et al., 2021).  

IIVRT can be assessed through different measures. Higher IIVRT in PD has almost 

exclusively been shown using standard deviation (SD). SD provides a standardised measure 

of inconsistency in RTs but is necessarily calculated as an average measure across the entire 
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RT distribution, precluding any trial-level investigation. Furthermore, linear methods may not 

be suitable to capture rapid and spontaneous changes in biological systems. Most importantly 

for PD, dopamine is discharged in bursts (Grace & Bunney, 1984), which may manifest as 

these types of transient changes in behaviour. Dopamine bursting activity is increasingly 

becoming the focus of other modalities e.g. electroencephalography (Shin et al., 2017). The 

bursting dynamics of dopamine are also relevant when measuring the effect of dopamine 

depletion on RT patterns. Therefore nonlinear measures may provide important 

complementary insights into neurocognition (Iconaru et al., 2022). In other dopamin-related 

disorders such as ADHD, calculating the ex-gaussian distribution of RTs through the 

nonlinear measure of tau has increased the understanding of RT fluctations by capturing the 

exponential component of the distribution (Leth-Steensen et al., 2000). Tau specifically 

indicates the mean of slower RTs. One study has compared IIVRT-tau in PD versus healthy 

controls but found no difference (Pappa et al., 2021). Tau warrants further investigation, 

drawing from literature on other dopamine-related conditions to consider what underlying 

mechanisms could be reflected by this measure in the context of PD.  

The nonlinear method of graph theory is one viable approach to capture the 

complexity of the biological changes in PD and their effect on behaviour. There are other 

possible nonlinear measures such as those based on theories of chaos, fractality, and 

complexity (Fasmer et al., 2016). However, these measures are more challenging to interpret 

and therefore not widely used. The similarity graph algorithm has been used to complement 

average variability measures of inter-beat-intervals of the heart in ADHD (Kvadsheim et al., 

2022), to understand connectivity dynamics in neuroimaging (Yu et al., 2018), and applied in 

studies of motor activity in schizophrenia and depression (Fasmer et al., 2018). The algorithm 

can assess several indices familiar from graph theory in relatively short time windows, 

reflecting moment-to-moment consistency across trials. Graph theory analysis therefore 
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enables the measurement of RT consistency across smaller time windows, bringing us closer 

to elucidating the role of transient dopamine bursts in RT variability. Graph theory 

approaches have been used to study brain network connectivity in PD (Vecchio et al., 2021). 

However, to our knowledge, we are the first to apply this method to investigate RT data.  

The aim of the current study was to increase the understanding of RT fluctuations in  

PD beyond the use of IIVRT-SDs. Nonlinear measures of RT patterns were studied by 

calculating tau and graph theoretical measures. IIVRT in PD has previously been investigated 

using externally cued tasks e.g. simple reaction time (Morrison et al., 2021) or Eriksen flanker 

tasks (Pappa et al., 2021). We employed a version of the anticipatory response inhibition task 

(ARIT) (He et al., 2022) which requires the anticipation and correct timing of an internally-

generated response. This enabled us to additionally investigate the influence of predictive 

timing processes on IIVRT. People with PD find internally-generated responses more difficult 

than externally cued ones (Jahanshahi et al., 1995), likely reflecting that these internal timing 

processes are more sensitive to dysfunctional dopamine fluctuations and by extension RT 

variability. We hypothesised that the ARIT would reveal reduced similarity of RTs in PD 

versus healthy controls across the time windows investigated with the graph theory analysis. 

We further hypothesised that this would extend to higher IIVRT for people with PD in the 

average distribution measures of SD and tau.  

   

Methods  

Participants 

Data used in the current study were collected as part of previous studies using the same 

behavioural task with 30 healthy older adults (MacDonald et al., 2016) (average age 60 years, 

17 female) and 85 individuals with Parkinson’s disease (Hall et al., 2023) (average age 64 

years, 36 female). This combined sample size was above the 98 participants required 
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(G*Power 3.1) to detect a medium effect size between groups with 0.8 power for the primary 

dependent measures from graph theory analysis (post-hoc power values achieved for the two 

primary dependent measures were 0.98 and 0.99, see Results). Participants with Parkinson’s 

disease (PwPD) completed data collection while on their routine dopamine medication. Data 

were collected and ethical approval was obtained at the University of Auckland (New 

Zealand) and University of Birmingham (United Kingdom), and written informed consent 

was obtained from each participant. Inclusion criteria in both studies included being aged 40 – 

80 years, no history of neurological illness (apart from Parkinson’s disease), and normal or 

corrected-to-normal vision. The study was not preregistered. 

 

Behavioural Data – Anticipatory Response Inhibition Task (ARIT) 

All participants completed the computerized ARIT written in Matlab (The MathWorks, 

Natick, MA; MacDonald et al., 2016) or Inquisit 6 Lab (Version 6.5.1, Millisecond Software; 

Hall et al., 2023). At the start of each trial, participants were presented with a grey screen 

containing two while vertical bars and a horizontal black target line 4/5 towards the top of the 

bars (Figure 1). The trial began after a variable delay (400 – 900 ms) once participants held 

down both response keys using their left and right index fingers. Black indicators then started 

rising at equal rates within the two white bars; the left/right indicator controlled via the 

left/right index finger. The indicators reached the target line in 800 ms and terminated their 

rise in 1000 ms, unless halted prior by lifting either or both index fingers.   

The default response on Go trials required participants to intercept the rising indicators 

with the horizontal target line by correctly timing the lift of both fingers. On trial completion, 

visual feedback and a green target line indicated “success” (both releases within 30 ms of the 

target, Figure 1 left) or “miss” and a red target line to emphasize Go trials were to be 

performed as accurately as possible. The remaining trials were Stop trials, consisting of Stop 
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Bimanual and Stop Unimanual trials. On Stop Bimanual trials participants had to cancel the 

bimanual lift response when both indicators stopped rising before reaching the target (Figure 

1 middle). On Stop Unimanual trials either the left or right indicator stopped rising before 

reaching the target, requiring participants to cancel the lift response on the corresponding 

side, while still trying to intercept the remaining indicator at the target line (Figure 1 right). A 

staircase algorithm was used to converge on a 50% success rate for each Stop trial type by 

adjusting difficulty based on individual Stop trial performance (i.e. increasing/decreasing the 

indicator stop time by 25 ms on the next Stop trial if the previous trial was 

successful/unsuccessful).  

Fig. 1. Experimental setup for behavioural task (MacDonald et al., 2021). The anticipatory 

response inhibition task display (top) and participant response (bottom) for a Go (left), Stop 

Bimanual (middle), and Stop Unimanual trial (right). The participant has successfully lifted 

from both switches (GG: Go, Go), kept both switches depressed (SS: Stop, Stop) and lifted 
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from only the left-hand switch (GS: Go, Stop), respectively. Other type of Stop Unimanual 

trial (SG: Stop, Go) not shown. 

Both task versions ensured a 2:1 Go:Stop trial ratio. Go trials were the primary trials 

of interest for the current study. Healthy controls (HC) performed 248 trials in total, 

consisting of 170 Go trials. PwPD completed 400 trials in total, consisting of 295 Go trials. 

For comparison between groups, the first 170 Go trials were analysed for PwPD.  

 

Dependent Measures 

Response times (RTs) were calculated for Go trials (reported in milliseconds relative to trial 

onset) and averaged. To retain maximal variability data for each participant, RTs outside ± 3 

standard deviations (SD) of their mean were replaced with the appropriate mean ± 3SD RT 

value (Kvadsheim et al., 2022) and any Go omissions (i.e. finger not lifted within 200 ms of 

the target) were replaced with the maximum RT of 1000 ms possible on Go trials 

(Verbruggen et al., 2019). To measure IIV across the entire Go RT distribution, SD (gaussian) 

and tau (ex-gaussian) were calculated for each participant (Figure 2A&B). Tau was calculated 

as [τ = SD * (skewness / 2) ^ (1/3)] and reflects the positive skew of the RT distribution.  

The graph theory principles and similarity graph algorithm used in the current study 

were based on the original publication of this method (Fasmer et al., 2018). We applied a 

nonlinear heuristic algorithm (Fasmer et al., 2018; Kvadsheim et al., 2022) to transform the 

time series of Go RT data (extracted from the dataset in the order they were completed) into a 

similarity graph. Every Go RT in the time series was represented by a node in the graph. 

Using a sliding time window, every RT (index node) was analyzed in relation to a number of 

neighbour nodes of RTs (Figure 2C); ranges of ± 2 and ± 10 neighbours/trials were applied in 

the current study. An edge between two nodes indicated that the nodes fulfilled the criterion 

of similarity (i.e. the difference between RTs was below a predefined threshold). A threshold 
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for similarity of 5% was used in the current study. Greater similarity is reflected by a larger 

number of edges. Overall, graphs with a higher number of similar Go RTs are described as 

having higher inter-relatedness on a trial-by-trial basis. 

 

 

Fig. 2. Illustrations of the three intra-individual variability in response time (IIVRT) measures 

showing (top left) the assumed gaussian RT distribution for standard deviation, (top right) 

which ex-gaussian RT distribution component is captured by tau, and (bottom) nodes and 

edges in the graph theory analysis. An edge is created (black line) between two nodes (black 

circles 1-5) if they are sufficiently similar to each other within a set threshold and within the 

same time window (e.g. five nodes in the figure). Each node corresponds to a Go RT.  

 

Statistical Analysis 

A mixed-effects, repeated measures analysis of variance (ANOVA) was run on all dependent 

measures from Go trials. Average RT, SD, tau and number of edges for 2 and 10 neighbours 

were analysed with a 2 Group (HC, PD) X 2 Side (Left, Right) design. Effect sizes are 
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reported for all significant ANOVA results and statistical significance is set at α = 0.05. Post 

hoc t tests were used to investigate significant ANOVA results. Values are reported as mean ± 

standard error (SE). 

 

Results 

Average Response Time 

On average, HC and PwPD had comparable Go trial performance. For average RT, there was 

no effect of Group (F1,113 = 0.062, p = 0.804) but a main effect of Side (F1,113  = 27.235, p < 

0.001, ƞp
2 = 0.194) with the right index finger RT (821 ± 3 ms) being faster than the left (835 

± 3 ms). Given the predominantly right-handed sample of participants, such speeding of the 

dominant side is not surprising and has been shown previously in young healthy adults 

(Coxon et al., 2007). The Group X Side interaction approached significance (F1,113 = 3.845, p 

= 0.052, ƞp
2 = 0.033) but did not show a trend towards decomposing meaningfully according 

to group effects, as the difference between groups in left (p = 0.357) and right RT (p = 0.104) 

did not reach significance.  

 

Intraindividual Variability – Average Measures  

Despite a comparable mean, PwPD showed greater overall variability in their average RT 

distribution. For standard deviation, there was a main effect of Group (F1,113 = 14.337, p < 

0.001, ƞp
2 = 0.113, Figure 3 left) as PwPD exhibited larger SD (64 ± 3 ms) compared to HC 

(45 ± 4 ms). There was no Group X Side interaction (F1,113 = 0.043, p = 0.836) but a trend 

towards a main effect of Side (F1,113 = 3.533, p = 0.063, ƞp
2 = 0.030) as the left RT showed 

slightly higher SD (55 ± 3 ms) than the right (53 ± 3 ms).  

In addition to greater overall variability, PwPD also exhibited a greater positive skew 

of their RT distributions compared to controls. Tau also showed a main effect of Group (F1,113 
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= 8.640, p = 0.004, ƞp
2 = 0.071, Figure 3 right) as PwPD had larger tau (38 ± 2 ms) than HC 

(24 ± 4 ms). The main effect of Side reached significance (F1,113 = 3.987, p = 0.048, ƞp
2 = 

0.034) with the left RT distribution across groups showing a larger tau (33 ± 3 ms) compared 

to right (29 ± 2 ms). There was no Group X Side interaction (F1,113 = 052, p = 0.819).  

 

 

Fig. 3. Group effects on intraindividual variability shown via average measures of standard 

deviation (left) and tau (right). Parkinson’s disease (PD) participants showed greater 

variability than healthy controls (HC) on average across the entire experimental response time 

distribution and across slower response times. 

 

Intraindividual Variability – Trial-by-trial Measures 

Across shorter time windows, PwPD showed a reduced degree of trial-by-trial inter-

relatedness between RTs. The average number of edges for ± 2 neighbour nodes produced a 

main effect of Group (F1,113 = 11.479, p = 0.001, ƞp
2 = 0.092, power = 0.98; Figure 4 left) due 

to PwPD data producing a smaller number of edges (0.59 ± 0.02) compared to HC (0.72 ± 

0.03). There was no effect of Side (F1,113 = 1.497, p = 0.224) or Group X Side interaction 

(F1,113 = 0.132, p = 0.717). 

PwPD also showed a reduced degree of inter-relatedness between RTs across longer 

time windows. Similar to the ± 2 neighbour analysis, analysing time windows of ± 10 
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neighbour nodes also produced a main effect of Group (F1,113 = 18.794, p < 0.001, ƞp
2 = 0.143, 

power = 0.99; Figure 4 right). Data from PwPD showed a reduced number of average edges 

(2.90 ± 0.09) compared to HC (3.65 ± 0.15). There was no effect of Side (F1,113 = 1.034, p = 

0.311) or Group X Side interaction (F1,113 = 0.099, p = 0.754). 

 

 

 

Fig. 4.  

Group effects on intraindividual variability shown via trial-by-trial measures from graph 

theory analysis. Parkinson’s disease (PD) participants showed reduced response time 

similarity (smaller number of edges) compared to healthy controls (HC) across time windows 

of ± 2 trials (left) and ± 10 trials (right).  

 

Discussion 

The current study constitutes the first use of the graph theory approach on RT data. As 

hypothesized, PwPD showed higher trial-by-trial IIVRT on Go trials of the ARIT compared 

to healthy older adults, indexed via reduced similarity of RTs. These novel results indicate 

that graph theory may be a useful tool to capture the more rapidly varying changes in RT 

behaviour that result from the dysfunctional dopamine bursting dynamics present in PD. As 

predicted, PwPD also exhibited larger IIVRT-tau values compared to controls. This indicates 
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PwPD had more disproportionally longer Go RTs. Consistent with previous findings, we also 

found PwPD showed greater overall IIVRT-SD compared to controls. These differences in 

IIVRT between groups cannot be explained simply by worse overall Go trial performance, as 

average Go RT was comparable between groups. Instead, the IIV findings specifically reflect 

impaired consistency in performance for PwPD. The reduced trial-by-trial and average RT 

consistency for PwPD on our behavioural task is therefore likely due to candidate underlying 

mechanisms such as impaired time perception, motor deficits and/or cognitive impairments. 

Overall, the current study provides strong evidence for the inclusion of graph theory and ex-

gaussian measures of tau, along with the ARIT, in future studies investigating RTs in 

dopamine-related conditions like PD.  

PD was associated with rapidly varying RT behaviour. PwPD had reduced moment-

to-moment consistency in their responses compared to healthy controls as captured via the 

graph theory analysis. Graph theory is therefore a plausible method for addressing the need to 

isolate particular components of RT variability for more in-depth characterization of IIV 

(Tamm et al., 2012). Rapid fluctuations in behaviour are likely linked to rapidly changing 

activity in underlying neural circuitry. As such, the current results suggest that graph theory is 

a viable tool to capture the high frequency variability in behaviour resulting from 

dysfunctional dopamine bursting activity in PD. However, it is possible that cerebellar 

dysfunction (Li et al., 2023) could also be contributing to the inconsistent cognitive-motor 

performance in the PD group. Cerebellar dysfunction could be interacting with nigrostriatal 

bursting activity through cortico-cerebellar-thalamo-cortical pathways, specifically via 

dentate nucleus output to the striatum (Hoshi et al., 2005). The two mechanistic possibilities 

are not mutually exclusive and warrant further investigation. 

People with PD exhibited a greater number of slower responses compared to 

controls. We are the first study to report higher IIVRT-tau for PwPD relative to controls. 
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Within ADHD literature, increased tau is speculated to reflect failures of sustained attention 

(Epstein et al., 2011; Leth-Steensen et al., 2000) possibly caused by intrusion of task-negative 

brain network activity (e.g. default mode network) during task performance (Tamm et al., 

2012). Others suggest tau is indicative of intentional cognitive processes (Kieffaber et al., 

2006) or should not be interpreted in terms of specific cognitive processes at all (Rieger & 

Miller, 2020). The interpretation of increased tau for PD is even more uncertain. Our current 

results are unable to tease apart cognitive deficits from those resulting from difficulties 

overcoming increased motor inhibition from basal ganglia pathway imbalance in PD 

(Calabresi et al., 2014). In theory, difficulties with purely motor control could lead to 

occasionally later RTs and increased tau, although slower motor speed has been unable to 

explain increased IIVRT in PD previously (de Frias et al., 2007). Overall, despite a currently 

unknown mechanism, our results show a lack of consistency in responses for PwPD.  

 People with PD did not experience cognitive-motor problems which disrupted basic 

performance on our task. This was evident from average Go RT not being significantly 

different between groups. The comparable performance of the default behavioural response 

shows patients were performing the task with equivalent processing speed and basic executive 

function. However, the presence/absence of a difference in average RT between groups is task 

dependent. Simple reaction time tasks have produced slower (Morrison et al., 2021) and 

comparable (Camicioli et al., 2008; de Frias et al., 2007) RTs in PD. Similarly, studies using 

tasks that include a speeded decision making component, such as the Eriksen Flanker 

(Cagigas et al., 2007; Pappa et al., 2021) and choice reaction time tasks (Camicioli et al., 

2008; de Frias et al., 2007; Dujardin et al., 2013), have reported differing average RT results. 

On the other hand, the increased IIVRT-SD for PwPD seen in our study has been consistently 

reported across RT tasks (Burton et al., 2006; Camicioli et al., 2008; de Frias et al., 2007; 

Dujardin et al., 2013; Morrison et al., 2021). Amongst RT tasks the ARIT uniquely requires 
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the correctly timed execution of an internally generated response, rather than an externally 

cued response. Time perception, especially within the sub-second range (Nani et al., 2019), 

relies on striatal function (Harrington et al., 2010; Meck et al., 2008) and is therefore impaired 

in PD (Zhang et al., 2016). Of most relevance for this study, PwPD exhibit comparable 

averages but higher variability for time estimates compared to healthy controls (Singh et al., 

2021). It is therefore possible that impairments in predictive timing processes could be 

contributing to the larger IIVRT observed for PwPD using the ARIT.   

There are two important considerations when interpreting the current results. Firstly, 

despite the two groups completing the same behavioural task, data for healthy controls and 

PwPD were collected and compared across two separate studies. It is possible the different 

experimental environments contributed to the behavioural differences between groups. 

However, the non-significant group difference for average Go RT is an important factor 

which argues against this possibility. Nevertheless, a replication of these findings within a 

single study may be prudent. Secondly, the focus of this study has been on Go trials 

embedded within an inhibitory control task, as done previously (Epstein et al., 2023). It 

therefore cannot be ruled out that IIV was influenced by mechanisms engaged during Stop 

trials that affected behaviour on the subsequent Go trial. However, the vast majority of Go 

trials were not preceded by a Stop trial so any effect would be minimal. More importantly for 

the main findings of this study, both groups performed the same combinations of trials.  

 

Conclusion 

PwPD showed comparable average performance but impaired consistency in their Go trial 

responses on the ARIT compared to controls. Indexing IIV via nonlinear measures from graph 

theory and tau specifically revealed more rapidly varying trial-by-trial behaviour and a larger 

proportion of slower RTs, respectively. These characteristics of IIV changes in PD could be 
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reflecting dysfunctional dopamine bursting dynamics, cerebellar dysfunction, cognitive 

deficits such as attentional lapses, and/or temporal processing difficulties. The current study is 

the first to use the graph theory approach on RT data and shows it to be a viable method to 

assess IIV via short-term fluctuations on a trial-by-trial basis. Our study provides strong 

evidence for the inclusion of graph theory and ex-gaussian measures of tau, along with the 

ARIT, in future studies to investigate RT behaviour in PD and other dopamine-related 

conditions.  
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