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Abstract1

Mosquito-borne diseases are spreading into temperate zones, rais-2

ing concerns about local outbreaks driven by imported cases. Using3

stochastic methods, we developed a vector-host model to estimate the4

risk of import-driven autochthonous outbreaks in non-endemic regions.5

The model explores key factors such as imported cases and vector6

abundance. Our analysis shows that mosquito population abundance7

significantly affects the probability and timing of outbreaks. Even with8

moderate mosquito populations, isolated or clustered outbreaks can be9

triggered, highlighting the importance of monitoring vector abundance10

for effective public health planning and interventions.11
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1 Introduction12

The presence of Aedes mosquitoes in non-endemic regions has become a13

significant public health concern [1, 2], as these areas now face the potential14

risk of local transmission of mosquito-borne diseases such as dengue fever,15

Zika virus disease, and chikungunya fever [3]. Historically confined to tropical16

and subtropical climates, these diseases are now spreading into temperate17

zones, driven by factors like climate change, increased global travel, and the18

adaptability of these mosquitoes [4], which are now distributed across several19

parts of the world [5].20

The expansion of mosquito species into new regions creates an alarming21

epidemiological situation, referred to as an “invasion scenario of disease22

introduction”. This scenario represents an increased risk of mosquito-borne23

disease cases transmitted by newly established mosquito species that serve24

as disease vectors, going beyond a small local outbreak or merely reaching25

a threshold for continuous transmission. Such a situation presents new26

challenges for public health systems in non-endemic areas, which may not be27

adequately equipped to manage these emerging disease outbreaks.28

Understanding the concept of invasion scenarios of disease introduction29

is crucial for assessing the risk of autochthonous (locally transmitted) disease30

outbreaks in non-endemic regions [6, 7, 8, 9]. Even when a region is below31

the epidemiological threshold - indicating that the disease is not yet self-32

sustaining - significant outbreaks of autochthonous cases can still occur.33

Important examples include the Madeira Island outbreak in Portugal in 201234

[10] and more recent cases in France and Italy [11].35

In these invasion scenarios, the risk of autochthonous cases is closely linked36

to both the abundance of mosquito vectors and the influx of viremic imported37

cases - individuals who are infected returning from travels in endemic areas38

who are capable of transmitting the virus [12, 13, 14, 15]. As mosquito39

populations increase, the likelihood of disease outbreaks also rises, often40

following power-law scaling in the distribution of confirmed cases [16, 17, 18].41

This pattern, characteristic of systems approaching a critical threshold,42

indicates that small changes in key factors like mosquito population density43

or environmental conditions can lead to disproportionately large effects [19].44

Recognizing this is essential for public health, emphasizing the need for early45

intervention, mosquito control, and continuous surveillance to prevent the46

system from reaching a tipping point where large-scale outbreaks become47

inevitable.48

In the epidemiology of mosquito-borne diseases, classical compartmental49

models, both with and without explicit mosquito dynamics, have been50
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extensively used, primarily focusing on disease transmission in endemic51

regions [20, 21, 22, 23, 24]. These models provide essential parameters for52

understanding disease dynamics. However, assessing the potential impact of53

mosquito abundance and imported cases on invasion scenarios - where no54

autochthonous cases have yet occurred - presents additional challenges, such55

as data limitations, dynamic variability, and the stochastic nature of disease56

spread.57

To evaluate and quantify the risk of imported driven autochthonous58

cases in non-endemic regions, we propose a dynamic modeling approach that59

incorporates factors such as the presence of Aedes mosquitoes and viremic60

imported cases. Using stochastic methods and their deterministic counterpart,61

this paper offers a comprehensive analysis of the risk landscape, including62

estimates of waiting times until the first autochthonous case is identified63

and statistics on the inter-event times of imported cases, with confidence64

intervals derived from likelihood functions. Using the Basque Country as a65

case study - where mosquito populations are established and imported cases66

are frequently reported - we analyze trends in imported cases and assess67

the impact of mosquito abundance on the risk of autochthonous disease68

outbreaks. Our study provides a timely framework for predicting imported69

driven autochthonous disease cases based on available data on mosquito70

presence and imported case notifications, which is crucial for preventing71

sustained transmission and mitigating the effects of isolated outbreaks in72

non-endemic regions.73

2 The SIRUV modeling framework74

To assess the risk of mosquito-borne disease transmission in non-endemic75

regions, we refined and extended the SIRUV modeling framework [25, 26].76

Initially designed as a foundational model for simulating disease spread in77

endemic areas, the framework is adjusted to describe local transmission78

dynamics in non-endemic regions, potentially triggered by the introduction79

of viremic imported cases and the presence of competent mosquito vectors.80

In this section, we start by outlining the structure and key assumptions81

of the deterministic SIRUV model, which captures the interaction between82

human and mosquito populations in an endemic scenario. Using parameters83

obtained from data from endemic countries [27, 28, 29], the model is then84

extended to incorporate imported cases - which have little impact on sustained85

transmission in endemic areas - lower vector abundance, and stochastic86

elements. This extension allows for a more comprehensive analysis of how87
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these factors influence the probability of autochthonous disease outbreaks in88

non-endemic regions.89

2.1 The SIRUV model for endemic areas90

The classical Susceptible-Infected-Recovered (SIR) model [30, 24], which91

describes the dynamics of a host-host transmission disease, is given by92

d

dt
S = αR− βSIR

N
SI

d

dt
I =

βSIR
N

SI − γI (1)

d

dt
R = γI − αR ,

where βSIR represents the transmission rate, γ the recovery rate, N the93

human population size and α the waning immunity rate. These equations94

describe the flow of individuals between the compartments: S (susceptible),95

I (infected), and R (recovered).96

To model mosquito-borne diseases, the SIR model is extended to include97

explicit vector dynamics [31, 32, 25, 26, 33, 34, 35]. In its basic concept98

to describe different mosquito-borne diseases such as dengue, Zika and99

chikungunya, this results in the SIRUV type model, which incorporates100

compartments for Uninfected mosquitoes U , and infected mosquitoes, i.e.,101

the disease-Vector V . The equations for the SIRUV model are given by102

d

dt
S = αR− β

mN
SV

d

dt
I =

β

mN
SV − γI

d

dt
R = γI − αR (2)

d

dt
U = ψ − ϑ

N
UI − νU

d

dt
V =

ϑ

N
UI − νV ,

where ψ = ν ·mN represents the mosquito supply rate, with m being the103

ratio of the mosquito population size to the human population size N , ν the104

natural mosquito mortality rate, and β and ϑ the transmission rates from105

mosquitoes to humans and humans to mosquitoes, respectively.106
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It is important to note that the average lifespan of an Aedes mosquito in107

nature is two weeks [36], whereas the protection conferred by human immuno-108

logical responses persists for a much longer period. In the case of dengue109

fever, for example, protection against reinfection can last from 6 months110

to 2 years [28, 37, 38, 39, 40]. Given these differing timescales, a simplified111

model can be derived by using techniques such as singular perturbation or112

center manifold analysis [29, 26, 25] to describe time scale separation. As113

described in those studies, the mosquito dynamics are dominated by the114

slower dynamics of human infection on immunological time scales.115

To rescale the mosquito parameters ν and ϑ to align with the human116

immunological timescales, we introduce a parameter ϵ, which represents the117

ratio between the fast mosquito timescale and the slow human timescale.118

This rescaling is done such that ϵν = ν̂ ≈ α and ϵϑ = ϑ̂. Hence, the last119

equation of system (2) becomes120

d

dt
V =

1

ϵ

(
ϑ̂

N
UI − ν̂V

)
. (3)

In the limit as ϵ → 0, indicating that mosquito dynamics quickly reach a121

quasi-stationary state, the equation simplifies to122

ϵ
d

dt
V → 0 =

ϑ̂

N
(M − V )I − ν̂V . (4)

When considering the quasi-stationary solution for V (I) (i.e., dV
dt ≈ 0), the123

number of infected mosquitoes V can be expressed as124

V (I) =
ϑ
ν

I
N

1 + ϑ
ν

I
N

mN, (5)

where M(t) := U(t) + V (t) represents the total mosquito population, which125

quickly approaches M∗ = mN . This result captures how the number of126

infected mosquitoes adjusts according to the infection dynamics within the127

human population.128

When the infected population is much smaller compared to the total129

population size N , as is the case for typical SIR systems in endemic areas,130

we have, ϑ
ν

I
N ≪ 1, which simplifies equation (5) to131

V (I) =
ϑ

ν

I

N
mN . (6)

For more detailed calculations, see [29].132
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This simplified expression can be substituted for V in the human infection133

dynamics equations of system (2). Consequently, we obtain an effective SIR134

system with human-to-human transmission mediated by mosquitoes, given135

by136

d

dt
S = αR−

β ϑ
ν

N
SI

d

dt
I =

β ϑ
ν

N
SI − γI (7)

d

dt
R = γI − αR .

This relationship between models allows us to infer the basic infection137

parameters for mosquito-borne diseases from the host-host dynamic model138

given in system (1). Consequently, the infection rates from the SIRUV model139

and the effective SIR model are related by140

βSIR = β
ϑ

ν
. (8)

The parameter values used for our numerical simulations are listed in Table 1.141

Considering both primary and secondary infections, such as those observed142

in dengue, we set an approximate period of 10 years for the waning immunity143

α. The effective infectivity rate βSIR is estimated from results in endemic144

regions, known to range from approximately 1.1 · γ in low endemic areas to145

2 · γ in high endemic areas [27]. The selected value in our simulations reflects146

an effective infectivity rate, and it should be adjusted according to specific147

epidemiological information for the mosquito-borne disease and region under148

consideration. Any change in these values will be mentioned in the figure149

captions.150

2.2 The SIRUV model for an invasion scenario151

To model an invasion scenario of disease introduction, we consider an area152

where there is no sustained local transmission, but where mosquitoes are153

present - which are significantly less abundant than in endemic areas - and154

imported cases are frequently recorded.155

To quantify this relative reduction in the mosquito abundance, we intro-156

duce the ratio k ∈ [0, 1), defined as157

k =
vector abundance in the non-endemic area

vector abundance in a typical endemic area
. (9)
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Parameter Description Value (y−1)

γ Recovery rate (1 week) 52

α Waning immunity rate (10 years) 0.1

β Transmission rate from mosquitoes to humans 1.2 γ

ϑ Transmission rate from humans to mosquitoes 1.2 ν

ν Mosquito mortality rate (10 days) 36.5

βSIR Effective transmission rate 1.22 γ

Table 1: Baseline model parameters to describe mosquito-borne disease
transmission dynamics in endemic regions [27, 26]. These parameters can be
refined according to specific epidemiological data from endemic areas and
diseases.

Since monitoring adult mosquitoes and effectively measuring their contribu-158

tion to the infection process is challenging, the relative mosquito abundance159

k, could be measured using surrogate data such as ovitrap egg counts, posi-160

tive ovitrap index, vector indices, composite index, passive larval and pupal161

collections, adult collections, and Stegomyia indices, for example [41, 42, 43].162

The reduced supply rate of vectors ψ, in a non-endemic area can be163

expressed as a function of k164

ψ(k) = k νmN , (10)

where k = 1 represents the vector supply rate typical of an endemic scenario.165

On the other hand, the possibility of having imported infections Y into166

the population can be introduced in the model by assuming that there exists167

a steady input of new infections at constant ratio ϱ [28, 44]. In real life,168

those infections account for travelers arriving during their viremic period or169

residents returning from endemic regions with an active infection, which are170

often recorded in non-endemic areas when those individuals seek medical171

care. The number of imported cases is described by Y := ϱN , with ϱ > 0,172

and it is included in the infection term of the uninfected mosquitoes equation.173

After including these considerations in the System (2), the model for the174

7
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non-endemic area reads175

d

dt
S = αR− β

mN
SV

d

dt
I =

β

mN
SV − γI

d

dt
R = γI − αR (11)

d

dt
U = ψ(k)− ϑ

N
U(I + ϱN)− νU

d

dt
V =

ϑ

N
U(I + ϱN)− νV .

In this deterministic model, the expected number of imported cases is constant176

at ϱN , which is relatively small compared to the total human population size177

(usually on the order of a few individuals). However, because infectious disease178

transmission is inherently stochastic, this variability must be considered in179

the modeling process.180

2.3 The stochastic SIRUV model for an invasion scenario181

The stochastic version of the SIRUV model given in system (11) is described182

by the dynamics of the discrete state vector X := (S, I,R, U, V )tr, repre-183

senting the evolution of the state variables of the model. The probability of184

arriving to the state X at time t is modeled as a continuous time Markov185

process with the following master equation186

d

dt
p(X, t) =

n∑
j=1

(
wj(X +∆Xj) · p(X +∆Xj , t) − wj(X) · p(X, t)

)
,

(12)

where n = 7 is the number of different deviations from state X, which are187

given by ∆Xj := rj . For the SIRUV model for the non-endemic scenario,188

the transitions wj(X) and their shift vectors rj are189

w1(X) = αR , r1 = (−1, 0, 1, 0, 0)tr

w2(X) = β
mN SV , r2 = (1,−1, 0, 0, 0)tr

w3(X) = γI , r3 = (0, 1,−1, 0, 0)tr

w4(X) = ψ(k) , r4 = (0, 0, 0,−1, 0)tr

w5(X) = ϑ
NU(I + ϱN) , r5 = (0, 0, 0, 1,−1)tr

w6(X) = νU , r6 = (0, 0, 0, 1, 0)tr

w7(X) = νV , r7 = (0, 0, 0, 0, 1)tr .

(13)
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With these wj(X) and rj specified, we can obtain stochastic realizations of190

the process using the Gillespie algorithm [45].191

In the case of a well-defined system size, we can express the stochastic192

process in terms of the densities of the state variables. From this, we193

can obtain the mean field ODE system and, using the Kramers-Moyal194

approximation of the master equation, derive a Fokker-Planck equation and195

from it a system of stochastic differential equations [46]. In this study, we196

investigate stochastic processes with small numbers of cases, which are close197

to extinction thresholds. Therefore, we will primarily use the version with198

absolute numbers, rather than the densities.199

The expected number of autochthonous infected cases is denoted by ⟨I⟩200

and is defined as201

⟨I⟩ :=
∑
X

I p(X, t) = ⟨I(t)⟩ , (14)

where p(X, t) represents the probability of the system being in state X at202

time t. The dynamics of ⟨I⟩ is governed by the evolution of these probabilities203

over time.204

After performing the calculations, we obtain the following differential205

equation for the expected number of autochthonous infected cases206

d

dt
⟨I⟩ =

∑
X

I
d

dt
p(X, t) =

β

mN
⟨SV ⟩ − γ⟨I⟩ . (15)

In the mean field approximation, this simplifies to207

d

dt
⟨I⟩ = β

mN
⟨S⟩⟨V ⟩ − γ⟨I⟩ . (16)

Thus, the ordinary differential equation (ODE) system captures the dynamics208

of the stochastic process in terms of expectation values [19].209

2.4 Analytic results for the expected risk of autochthonous210

cases211

After defining the SIRUV model for non-endemic areas and accounting for212

the stochastic nature of the process, we found that the expected number213

of autochthonous infected cases ⟨I⟩, depends on the number of imported214

cases Y = ϱN , and the relative mosquito abundance k. We use the mean215

value of the quasi-stationary solution for I as a proxy to estimate the risk of216

autochthonous cases of arbovirus diseases in non-endemic regions.217

9
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From the invasion scenario model (see system (11)), which serves as a218

mean field approximation of the stochastic process, we derive an analytical219

expression for ⟨I⟩. For simplicity in notation, we will omit the expectation220

brackets in the following discussion.221

Starting from the mosquito dynamics given by the last two equations in222

system (11), the dynamics of the total mosquito population M = U + V , is223

d

dt
M = νkmN − νM . (17)

At stationarity, the total mosquito population is M∗ = kmN , and the224

uninfected mosquito population is U =M∗ − V = kmN − V .225

Assuming the time scale separation (dVdt ≈ 0) described in Section 2.1,226

the following expression for V (I) can be derived from the last equation in227

system (11)228

V (I) =
ϑ
ν
I+ϱN
N

1 + ϑ
ν
I+ϱN
N

kmN . (18)

The assumption that ϑ
ν
I+ϱN
N ≪ 1 remains valid since the number of infected229

and imported cases is small compared to the total population. Consequently,230

the relationship between infected mosquitoes and infected humans is approx-231

imately linear and given by232

V (I) =
ϑ

ν

I + ϱN

N
kmN . (19)

This expression can be substituted for V in the human disease dynamics233

equation in system (11)234

d

dt
I =

β

mN
SV (I)− γI . (20)

Considering that in a non-endemic area almost the entire population is235

susceptible, hence S(t) ≈ S0 ≈ N , the equation can be written as236

d

dt
I = (kβeff − γ)I + kβeffϱN , (21)

where βeff := β ϑ
ν
S0
N ≈ βSIR is the effective infection rate. Note that in the237

invasion scenario k can still modulate the infectivity.238

For kβeff < γ, i.e., below the epidemiological threshold for exponential239

growth upon index cases (βeff = γ), we have, triggered by import, a sub-240

critical stationary state of the dynamics given by Equation (21)241

I∗ = kβeff
1

γ − kβeff
ϱN , (22)

10
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where γ− kβeff =: ε(k) is defined as the distance away from the exponential242

growth threshold with self-sustained spreading in the local population, de-243

pending on the relative mosquito abundance k. Hence, the expected number244

of autochthonous cases, given the underlying stochastic process is245

⟨I⟩∗(k, ϱ) = k βeff
1

ε(k)
ϱN . (23)

This expression depends on the mosquito abundance k, in the invasion region246

and the import of infection ϱ. Although ⟨I⟩ is typically much smaller than247

one case, stochastic simulations can reveal isolated autochthonous cases and248

occasionally rare clusters of outbreaks, where more than one case occurs249

simultaneously, as illustrated in Figure 1.250

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5

I(
t)

t

Figure 1: One stochastic realization (in magenta), the trajectory towards
the stationary state of the SIRUV model (in black), and the approximation
solution using the equation (in green) with k = 40% as the proportion of
mosquitoes relative to endemic countries. For N = 104 and ϱ = 10−5, the
parameter values used in this simulation are listed in Table 1.

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2024. ; https://doi.org/10.1101/2024.10.10.24315163doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.10.24315163
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.5 The SIRUV model with explicit dynamics for imported251

cases Y252

Aimed at understanding the impact of imported cases on the dynamics253

of stochastic realizations, we extend the SIRUV framework by explicitly254

incorporating the dynamics of imported cases Y , to study their stochastic255

fluctuations.256

The SIRUVY model can be expressed as257

d

dt
S = αR− β

mN
SV

d

dt
I =

β

mN
SV − γI

d

dt
R = γI − αR (24)

d

dt
U = ψ(k)− ϑ

N
U(I + Y )− νU

d

dt
V =

ϑ

N
U(I + Y )− νV

d

dt
Y = ϱ̃N − γY ,

where ϱ̃ represents the constant input rate of imported cases, which can258

recover at rate γ. Note that the last equation is decoupled from System (24),259

and consequently, the stationary value of the imported cases Y ∗, is given by260

Y ∗ =
ϱ̃

γ
N = ϱN , (25)

consistent with the previous model in System (11).261

When considering the cumulative imported cases CY , over a given time262

interval, we have263

d

dt
CY = ϱ̃N . (26)

The numerical solutions for both the number of imported cases Y (t), and the264

cumulative imported cases CY (t), are illustrated in Figure 2. With initial265

conditions set to zero imported cases Y (t0) = 0, we observe that the mean266

field solution of the system described by Equation (24) converges quickly to267

its stationary state, as shown in Figure 2(a). After five years of simulation,268

the cumulative number of imported cases is expected to be approximately269

26 cases, see Figure 2(b).270
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Figure 2: Expected values from the mean field solution over a 5-year
simulation period. For N = 104 and ϱ = 10−5, the parameter values used in
this simulation are listed in Table 1. In (a), the imported cases and in (b),
the cumulative cases CY (t).

2.6 The stochastic SIRUVY model271

Following the stochastic approach described in Section 2.3, we model the272

SIRUVY system using the master equation (see equation (12)). The stochas-273

tic model is characterized by the extended state vectorX := (S, I,R, U, V, Y )tr274

and includes the following n = 9 transitions, each with its corresponding275

shift vectors276

w1(X) = αR , r1 = (−1, 0, 1, 0, 0, 0)tr

w2(X) = β
mN SV , r2 = (1,−1, 0, 0, 0, 0)tr

w3(X) = γI , r3 = (0, 1,−1, 0, 0, 0)tr

w4(X) = ψ , r4 = (0, 0, 0,−1, 0, 0)tr

w5(X) = ϑ
NU(I + Y ) , r5 = (0, 0, 0, 1,−1, 0)tr

w6(X) = νU , r6 = (0, 0, 0, 1, 0, 0)tr

w7(X) = νV , r7 = (0, 0, 0, 0, 1, 0)tr

w8(X) = ϱ̃N , r8 = (0, 0, 0, 0, 0,−1)tr

w9(X) = γY , r9 = (0, 0, 0, 0, 0, 1)tr .

(27)

Similarly to the deterministic approach, the dynamics of imported cases Y ,277

can be described on its own by the following master equation278

d

dt
p(Y, t) = ϱ̃N p(Y − 1, t) + γ(Y + 1) p(Y + 1, t)− (ϱ̃N + γY ) p(Y, t) .

(28)
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For the cumulative number of imported cases CY , using the entry transitions279

of the stochastic dynamics of Y , we have the master equation given by280

d

dt
p(CY , t) = ϱ̃N p(CY − 1, t)− ϱ̃N p(CY , t) . (29)

This represents a simple Poisson process with a known distribution in time281

evolution [47, 19].282

The analytical solution to the master equation (29), given the initial283

condition CY (t0) at time t0, is described by the conditional probability284

p(CY , t|CY (t0), t0) =
(λ(t− t0))

CY −CY (t0)

(CY − CY (t0))!
e−λ(t−t0) , (30)

where λ := ϱ̃N = ϱγN is constant. This represents a Poisson distribution285

for each time point t.286

Figure 3(a) illustrates the differences between the mean field approxi-287

mation and a stochastic realization for imported cases. We observe that,288

in contrast to the mean field approximation (in black), where the solution289

converges to a constant infected population, on average less than one infected290

case, the stochastic realization of imported cases (in magenta) can exhibit291

time intervals with no cases and others with multiple cases. This pattern is292

also observed in the cumulative imported cases, as shown in Figure 3(b).293

a)

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5

Y
(t

)

t b)

 0

 5

 10

 15

 20

 25

 30

 35

 0  1  2  3  4  5

C
Y
(t

)

t

Figure 3: One stochastic realization (in magenta) and the mean field
solution (in black) of (a) imported cases Y (t), and (b) cumulative imported
cases CY (t). For N = 104 and ϱ = 10−5, the parameter values used in this
simulation are listed in Table 1.

Motivated by stochastic modeling, we apply statistical methods to model294

imported cases and integrate these models with our risk estimator. Let τ295
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denote the waiting time between two consecutive imported cases, CY (tn−1)296

to CY (tn). The probability distribution of τ is given by297

p(τ) = λ e−λτ , (31)

where λ := ϱγN is the rate parameter. This distribution allows us to analyze298

the statistical characteristics of imported case notifications based on the299

waiting times between their occurrences.300

2.6.1 Parameter estimation from waiting time distribution301

Given the recorded imported cases and the time intervals between consecutive302

cases, represented as the data vector τ = (τ1, τ2, . . . , τn), we estimate the303

parameter λ using the log-likelihood method.304

The likelihood function for the waiting times is given by305

p(τ1, τ2, . . . , τn) =

n∏
i=1

λ e−λτi = L(λ) , (32)

where the log-likelihood function is maximized to determine the maximum306

likelihood estimator307

λ̂ =
1

1
n

∑n
i=1 τi

. (33)

From the given data, we order the waiting times to produce the observed308

distribution function (shown in magenta in Figure 4). This is then compared309

to the cumulative distribution function310

P (τ) :=

∫ τ

0
p(τ̃) dτ̃ = 1− e−λτ , (34)

using both the known parameter λ = ϱγN (represented by the black line311

in Figure 4) and the maximum likelihood estimator λ̂ (middle green line in312

Figure 4).313

We then quantify the confidence interval of the estimation, acknowledging314

that simulated data may deviate from the true parameters. Once the best315

estimate of λ, λ̂, is determined, the expected number of imported cases can316

be expressed as317

⟨Y ∗⟩ = λ̂

γ
. (35)

Although the risk estimator refers to average values, the model accounts for318

the intrinsic stochasticity of the time series.319
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2.6.2 Confidence intervals from the likelihood function320

Using the negative inverse Fisher matrix, which simplifies to a 1×1 matrix in321

the case of a single parameter, we can approximate the variance of a Gaussian322

distribution by examining the curvature of the log-likelihood function around323

its maximum. This variance is given by324

σ2 = − 1

d2

dλ2 lnL
∣∣∣
λ=λ̂

. (36)

For the exponential waiting time likelihood325

L(λ) = p(τ | λ) = λne−λ
∑n

i=1 τi , (37)

the variance simplifies to326

σ2 =
λ̂2

n
, (38)

where n is the number of data points. This provides a 2σ confidence interval,327

which approximately covers 95% of the Gaussian distribution328

λ = λ̂± 2σ , (39)

as shown in Figure 4).329

The estimate of λ can be applied to the cumulative distribution function330

P (τ). In Figure 4, P (τi) is obtained by ordering the τi values from smallest331

to largest (x-axis) and plotting i
n on the y-axis (in magenta), where the τi332

values are derived from simulations with λ = ϱγN . The figure also includes333

the maximum likelihood estimate P (τ) = 1− e−λ̂τ (middle green line) along334

with its 95% confidence intervals (upper and lower green lines). Additionally,335

the theoretical cumulative distribution function P (τ) = 1− e−ϱγNτ is shown336

(black line).337

For a more thorough analysis of estimation uncertainties, Bayesian meth-338

ods using conjugate priors, such as a Gamma distribution for the exponential339

case, could be used. The Bayesian posterior p(λ | τ) may provide asymmetric340

confidence intervals. For further details on these methods, see [47], as well as341

Appendices A and B for a more in-depth discussion in the present context.342

Note that the current analysis of inter-event times is preliminary, provid-343

ing a basic guide for stochastic simulations. As more data become available,344

the analysis can be refined and more sophisticated statistical methods can345

be applied.346
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Figure 4: The empirical cumulative distribution function is shown in magenta,
while the maximum likelihood estimate and its 95% confidence intervals are
represented by the green lines. The theoretical cumulative distribution,
represented by a black line, is known in simulations but not in empirical data
analysis. The numerical values are λ̂ = 6.276y−1 and ϱγN = 5.214 y−1.

2.6.3 Derivation of the maxima likelihood estimate variance and347

theoretical background348

For large data sets, the likelihood function approximates a Gaussian dis-349

tribution around the maximum log-likelihood estimator. Specifically, the350

likelihood function L(λ) can be approximated by a Gaussian distribution351

pG(λ), given by352

L(λ) ∼ 1

σ
√
2π
e−

(λ−λ̂)2

2σ2 =: pG(λ) , (40)

where λ̂ is the mean value and σ2 is the variance, determined by the curvature353

of the log-likelihood function around the maximum. This curvature is354

quantified by the second derivative of the log-likelihood function at the355

maximum, expressed as356

d2

dλ2
lnL

∣∣∣∣
λ=λ̂

. (41)
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For the Gaussian approximation, the variance is357

σ2 = − 1

d2

dλ2 lnL
∣∣∣
λ=λ̂

. (42)

Applying this to the likelihood function of the exponential distribution358

L(λ) = λne−λ
∑n

i=1 τi , (43)

we obtain359

d2

dλ2
lnL

∣∣∣∣
λ=λ̂

=
d2

dλ2

(
n ln(λ)− λ

n∑
i=1

τi

)∣∣∣∣∣
λ=λ̂

= − n

λ̂2
. (44)

Thus, the variance is360

σ2 = − 1

d2

dλ2 lnL
∣∣∣
λ=λ̂

=
λ̂2

n
. (45)

The standard deviation is σ = λ̂√
n
, which can be used to determine the confi-361

dence interval for λ as λ = λ̂± 2σ. While this approach is practically useful,362

a more fundamental description and justification is provided in Appendix B363

through the Cramér-Rao consideration, which offers only an inequality as a364

lower bound for Equation (45).365

3 Mosquito abundance and its impact on disease366

transmission367

Analyzing mosquito abundance is crucial for predicting the transmission368

of mosquito-borne diseases, but it presents significant challenges. To ad-369

dress these complexities, a practical approach is to establish a threshold for370

mosquito abundance. Below this threshold, the likelihood of local disease371

transmission is minimal, while exceeding it significantly increases the risk of372

autochthonous cases.373

3.1 Explicit calculation of Poisson process approximation for374

autochthonous cases375

To model the dynamics of autochthonous infected cases, we start with the376

differential equation377

d

dt
I = kβ

ϑ

ν

S0
N

(I + ϱN)− γI , (46)
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where I∗ = k · β ϑ
ν
1
ε · ϱN , see Equation (23), and ε → γ. For small k, the378

equilibrium value I∗ approaches zero, simplifying the dynamics.379

The cumulative number of autochthonous cases CI then follows380

d

dt
CI = kβ

ϑ

ν

S0
N
ϱN =: λI , (47)

where λI represents the rate of new autochthonous cases.381

Thus, the stochastic process for CI can be approximated by a Poisson382

process. The master equation for p(CI , t) is383

d

dt
p(CI , t) = λI p(CI − 1, t)− λI p(CI , t) , (48)

which has the Poisson distribution solution384

p(CI , t | CI(t0) = 0, t0) =
(λI(t− t0))

CI

CI !
e−λI(t−t0) , (49)

Where CI(t0) = 0 and T = t− t0 represents the time interval, similar to the385

analysis of imported cases, denoted by CY .386

The probability of having no autochthonous cases is387

p(CI = 0, T ) = e−λIT = e−kβ ϑ
ν

S0
N

ϱN T , (50)

which approaches 1 as k becomes small.388

The probability of having one or more autochthonous cases is389

p(CI ≥ 1, T ) = 1− p(CI = 0, T ) = 1− e−k·β ϑ
ν

S0
N

ϱN ·T =: pth , (51)

where pth is a threshold probability. Solving for k yields390

kth =
− ln(1− pth)

β ϑ
ν
S0
N · ϱN · T

, (52)

which gives the mosquito abundance kth needed to achieve a certain proba-391

bility pth of having one or more autochthonous cases. This can be used for392

different values of pth, such as pth = 9
10 or pth = 1

10 , in subsequent analyses.393

3.2 Analysing the mosquito abundance threshold394

In this section, we analyze the bounds for relative mosquito abundance395

based on theoretical scenarios. We assume S0 = N , ϱ = 10−5, N = 104,396
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and Y ∗ = 0.1. The threshold values for mosquito abundance k, for a given397

probability pth are determined using Equation (52).398

The relationship between imported cases and local transmission, empha-399

sizing the role of mosquito abundance in determining the probability and400

timing of autochthonous cases, is illustrated in Figure 5. In a real-world401

scenario, this is evident in the comparison between the Basque Country,402

which has reported zero non-travel-related cases so far, and Italy, which had403

over 80 cases notified in 2023 [11], highlighting the different risks potentially404

associated with varying mosquito densities and environmental conditions.405

Considering a probability threshold of pth = 1
10 , which means that in 1406

out of 10 stochastic runs we expect at least one autochthonous case within407

the time interval T = 1 year, we obtain408

kth =
− ln(1− pth)

β ϑ
ν
S0
N · ϱN · T

= 0.01403 ≈ 1.4% . (53)

For a higher probability threshold of pth = 9
10 , the value of kth is approxi-409

mately 31%. This indicates that we would nearly always observe at least one410

case in stochastic simulations within the first year.411
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Figure 5: For mosquito abundance k = 30%, ϱ = 10−5, and N = 104, in a)
imported cases Y (t) and b) autochthonous cases I(t). Stochastic simulation
is shown in magenta and its mean-field solution in black.

Figure 5 illustrates the relationship between imported cases and local412

transmission, highlighting how mosquito abundance impacts the likelihood413

and timing of autochthonous cases to occur. For a mosquito abundance414
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of k = 30%, Figure 5(a) shows the time series of imported cases Y (t),415

while Figure 5(b) presents the time series of autochthonous cases I(t). Two416

autochthonous cases occur in the first year (shown in magenta), but periods417

of up to a year with no autochthonous cases also occur, illustrating the418

stochastic nature of disease transmission even at relatively high mosquito419

abundance.420

The Poisson distribution for the threshold value kth = 0.3067 ≈ 30% is421

presented in Figure 6, showing the probability of no autochthonous cases422

being p(CI = 0, T ) = 0.1 and the probability of one or more cases being423

pth = 0.9.424
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Figure 6: Poisson distribution for kth = 0.3067 ≈ 30 %.
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Figure 7: a) Poisson distribution for kth = 0.01403 ≈ 1.4%. b) Time series
of autochthonous cases I(t), for a mosquito abundance of k = 2%.
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Conversely, for the threshold value kth = 0.01403 ≈ 1.4%, Figure 7(a)425

demonstrates that the probability of observing zero autochthonous cases is426

p(CI = 0, T ) = 0.9, leading to pth = 0.1 for one or more cases. Figure 7(b)427

indicates that with this threshold, we nearly always observe no autochthonous428

cases within the first year and rarely any cases in subsequent years.429

While the Poisson process approximation for the autochthonous cases430

I(t), especially for small mosquito abundance k, provides an indication of431

the expected frequency and duration without cases, the full stochastic model432

simulations reveal more clustering of cases. For example, Figure 5(b) shows433

up to three cases occurring simultaneously, and Figure 7(b) shows two cases434

at the same time. This clustering may be influenced by state-dependent435

factors in the stochastic variables wj that are not captured by the basic436

Poisson approximation.437

3.3 Analysis of the distance from exponential growth ε(k)438

For small mosquito abundance k, the term ε(k), defined in Section 2.4, can439

be approximated by the recovery rate γ. This approximation is illustrated440

in Figure 8, where k values are shown on a logarithmic scale (base 10). For441

instance, for k = 1%, the approximation ε ≈ γ is already quite accurate,442

with γ ≈ 52 y−1.443
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Figure 8: Values of ε(k), the distance to the threshold of exponential growth,
converge towards γ = 52y−1 as the relative mosquito abundance k, decreases.

In an invasion scenario with relatively low mosquito abundance and no444

observed autochthonous cases, the expected number of autochthonous cases445
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⟨I⟩ can be quantified using the simplified expression446

⟨I⟩(k, ϱ) = k ξ ϱN (54)

where ξ = β
γ
ϑ
ν
S0
N is constant. For a naive, completely susceptible population,447

S0
N = 1. Thus, ξ can be compared to the basic reproduction number typically448

expected in vector-borne disease models. Consequently, our risk estimator is449

given by Equation (54).450

It is important to note that, due to the presence of several imported cases451

over time, we might still expect occasional autochthonous cases, even if they452

occur infrequently. Additionally, observed increases in mosquito abundance453

over the years [11] could impact this risk.454

The primary focus of the risk measure is to determine the probability455

of observing the first autochthonous case in a non-endemic area. Although456

the calculated expectation ⟨I⟩ is well below one (see Figure 1), stochastic457

simulations can provide insights into when the first cases might occur, de-458

pending on the levels of imported cases and mosquito abundance. We will459

analyze scenarios ranging from low to intermediate mosquito abundance and460

examine conditions where the approximation ε ≈ γ no longer holds. In such461

cases, the non-linearity of ε(k) can lead to increasing clusters of outbreaks462

until the threshold for exponential growth and self-sustained transmissibility463

is reached.464

3.4 The risk of outbreaks in increasing mosquito abundance465

scenarios466

In this section, we analyze scenarios where mosquito abundance increases be-467

yond the simplest approximation explored previously. To analyze deviations468

from the simplest linear relationship of the expected number of autochthonous469

infections ⟨I⟩∗ with respect to mosquito abundance k, we need to consider470

how the effective transmission rate ε(k) changes as k increases.471

3.4.1 Deviations from the simplest linear relation of expected472

autochthonous infected on mosquito abundance473

The simplest risk estimator for the expected number of autochthonous474

infections ⟨I⟩∗ is given by475

⟨I⟩∗ = k · βeff · 1
ε
· ϱN , (55)
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where ε is the distance to the threshold of exponential growth and is given476

by477

ε(k) = γ − k · βϑ
ν
· S0
N

. (56)

In the initial phases of outbreaks, where S0 ≈ N , and as long as ε > 0,478

the expression ε(k) → γ as k → 0 indicates that the distance to the threshold479

of exponential growth approaches the recovery rate γ.480

However, deviations from the simplest linear relationship become signifi-481

cant as mosquito abundance k approaches the critical threshold kc. In this482

regime, the linear approximation of ⟨I⟩∗ ∼ k
ε(k) ≈ k

γ fails to hold, and the483

expected number of autochthonous cases can increase very rapidly.484

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

k
/ε

(k
)

k

Figure 9: Graphical representation of the expression ⟨I⟩∗ ∼ k
ε(k) as a function

of the relative mosquito abundance k (bent curve). The vertical line represents
the critical value kc.

As shown in Figure 9, the relationship between ⟨I⟩∗ ∼ k/ε(k) and485

mosquito abundance reveals that for small k the expression k/ε(k) approxi-486

mately behaves linearly as k/γ. This is expected since ε(k) ≈ γ for small487

values of k. Nevertheless, close to the critical threshold kc there is a significant488

non-linear growth in ⟨I⟩∗. As k approaches kc, ε(k) decreases rapidly, causing489

⟨I⟩∗ to rise sharply. This non-linearity is due to the rapid approach of ε(k)490

towards zero, leading to a divergence in ⟨I⟩∗. These findings highlight the491

importance of accounting for the non-linearity of ε(k) in disease transmission492

models and emphasize the need for careful empirical observation of mosquito493

abundances, as they may increase from year to year.494
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3.4.2 Temporal dynamics and scaling close to the epidemiological495

threshold496

The dynamics described in Equation (21) for the sub-critical regime reads497

d

dt
I = −(γ − kβeff ) · I + kβeff · ϱN (57)

and can be solved, yielding its time-dependent solution given by498

I(t) = I(t0) · e−(γ−kβeff )·(t−t0)+
kβeff · ϱN
γ − kβeff

(
1− e−(γ−kβeff )·(t−t0)

)
. (58)

When the mosquito abundance k reaches its threshold value kc, given by499

γ − kc · βeff = 0, the time-dependent solution is500

I(t) = I(t0) + kβeff · ϱN · (t− t0) (59)

i.e. with the distance to threshold ε = γ − kβeff = 0. This implies that501

close to the threshold, the total number of infected individuals becomes502

asymptotically self-similar, i.e., a homogeneous function of the general form503

I(t) = tθ̂ · F
(
εt

1
ν̂∥ , ϱt

µ̂
ν̂∥

)
. (60)

The critical exponents θ̂, ν̂∥, and µ̂ characterize the self-similar, scale-invariant504

behavior of the infection spread near the critical threshold, governing the505

growth, time evolution, and density fluctuations of the infected population506

[48].507

Rescaling in terms of the parameter ε, we have508

I(t) = ε−θ̂ν̂∥ · F (tεν̂∥ , ϱε−µ̂) . (61)

In the mean-field regime, i.e., no spatial effects, the exponents are θ̂ = 0,509

ν̂∥ = 1, and µ̂ = 1 (see [48] for further details on general scaling theory510

around critical thresholds).511

For empirical epidemiological systems, this results in distributions of512

avalanches with power-law tails, leading to larger numbers of autochthonous513

cases more frequently than expected, for example, in classical Gaussian514

distributions.515

Thus, from a management point of view, once mosquito abundance516

increases and leads to larger clustered outbreaks, even small additional517

increases in mosquito numbers will result in significantly larger outbreaks of518

autochthonous cases.519
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4 Applying the model to Basque Country data520

The Basque Country is an autonomous region in northern Spain with ap-521

proximately 2.2 million inhabitants. In this region, the Public Health Epi-522

demiological Unit, in collaboration with NEIKER - the Basque Institute for523

Agricultural Research and Development - monitors records of both imported524

disease cases and the distribution and establishment of disease vectors. Al-525

though the Basque Country is considered a non-endemic area for tropical526

mosquito-borne diseases, it has established populations of Aedes mosquitoes527

(with increasing distribution) and frequently reports viremic imported cases528

of dengue, Zika, and Chikungunya. This makes it an ideal setting for this529

study.530

4.1 Imported cases of Aedes mosquito-borne diseases in the531

Basque Country in 2019 (Pre-COVID) and 2022 (Post-532

COVID)533

The raw empirical data of cumulative imported cases of dengue, Zika and534

chikungunya in the Basque Country for the years of 2019 and 2022, provided535

by the Health Basque Department, is illustrated in Figure 10.536

Figure 10: Epidemiological records of imported disease cases in the Basque
Country from 2019 to 2022.

The data reveals a steady registration of imported cases throughout the537

year, with a notable increase during the summer months. This seasonal surge538

coincides with the period of peak mosquito activity, which can contribute to539
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higher disease transmission rates. Note that for the years of 2020 and 2021,540

very few imported cases were recorded since travel restrictions were in place541

due to the COVID-19 pandemic.542

4.1.1 Estimation of imported cases543

Applying the statistical analysis described in Section 2.6.2, we obtain the544

inter-event cumulative distribution of imported cases, and the cumulative545

counts of imported cases of dengue, chikungunya, and Zika, i.e. Aedes546

mosquito-transmitted diseases notified in the Basque Country for the years547

2019. For 2022, there were no significant differences in the number of548

imported cases compared to 2019; the numbers remained relatively similar,549

although travel activity was higher in the latter half of the year. The primary550

difference was the increase in mosquito abundance, as illustrated in Figure551

12.552

For 2019, Figure 11 (a) shows the inter-event cumulative distribution553

of imported cases P (τ) for dengue, chikungunya, and Zika in the Basque554

Country (in blue), alongside the inter-event rate λ = (0.085± 0.031) d−1 (in555

green). Figure 11 (b) shows the cumulative number of imported cases CY (t)556

for dengue, chikungunya, and Zika (in blue) and the estimated mean number557

of cumulative imported cases ⟨CY ⟩ = λ̂(t− t0) (in green).558
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Figure 11: For the year of 2019, in (a) the inter-event cumulative distribution
of imported cases P (τ) (in blue), alongside the inter-event statistics (in green).
In (b) the cumulative number of imported cases CY (t) (in blue), and the
estimated mean number of cumulative imported cases ⟨CY ⟩ = λ̂(t− t0) (in
green). The inter-event times τi include the first and the last day of the year.
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The estimation of imported cases in the Basque Country is derived from559

the data on imported cases using maximum likelihood estimators. The560

estimation of the parameter λ is given by Equation (33). The confidence561

interval for λ is calculated as σ = λ̂√
n
. For the Basque Country in 2019, this562

yields563

λ = λ̂± 2σ = 0.085± 0.031 day−1 (62)

Additionally, data from the post-COVID-19 pandemic period in 2022 provides564

an estimated mean number of imported cases565

λ = 0.128± 0.037 day−1 . (63)

This indicates some increase in the number of imported cases in 2022. Varia-566

tions in the risk of autochthonous cases across different years are evident,567

with a clear upward trend. Differences in trends may also be observed at568

different spatial scales, such as by province, though these differences are gen-569

erally not substantial, especially if confidence intervals overlap. Furthermore,570

variations over the years show lower risks before August and after September,571

with increased risks during the summer months, aligning with the period of572

higher mosquito activity.573

The expected number of imported cases ⟨Y ⟩∗ is related to the Poisson574

rate λ as follows575

⟨Y ⟩∗ = ϱN =
λ

γ
. (64)

As an example, using the results for 2019 in the Basque Country, where576

λ = 0.1, we obtain577

⟨Y ⟩∗ = 0.1 day−1

1
7 day

= 0.1 · 7 = 0.7 (65)

This initial statistical analysis provides insights into the trends of imported578

cases in the Basque Country, offering preliminary estimates of parameters579

critical for assessing the risk of mosquito-borne diseases in the region.580

To further refine this analysis, a potential improvement would involve581

seasonal breakdowns, such as spring, summer, and autumn, to capture582

variations in case numbers. However, this approach faces challenges, including583

a smaller dataset for each season and the lack of robust patterns due to584

significant regional variations. Additionally, the sparse data for 2020 and585

2021, due to travel restrictions from the COVID-19 pandemic, limits the586

analysis. Future data may reveal a return to more typical patterns and587

provide clearer trends.588
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4.1.2 Mosquito abundance data in the Basque Country589

In the Basque Country, the Basque Institute for Agricultural Research and590

Development (NEIKER) has been monitoring mosquito breeding sites and591

recording egg count data across various localities for over a decade [49],592

providing increasingly detailed insights into mosquito population trends.593

The data show a significant increase in egg counts from ovitraps in recent594

years. Notably, the counts in the most populated traps have reached levels595

comparable to those in endemic regions, with maximum counts nearing 1, 000596

eggs. However, since the ovitraps are not yet standardized across temporal597

and spatial scales, comparing mosquito abundance between invasion scenarios598

and endemic areas remains challenging.599

Given the increasing number of traps deployed each season, this analysis600

focuses on the sum of the highest 20 egg counts as a preliminary indicator of601

mosquito abundance in the Basque Country for 2019 and 2022.602

Figure 12 shows the 20 highest egg counts in the Basque Country. There603

is a noticeable difference between 2019 (pre-COVID-19 pandemic) and 2022604

(post-COVID-19 pandemic). In 2022, the maximum egg counts reached 1000605

eggs, with a mean of approximately 530, while in 2019, the maximum count606

was only a quarter of that, with a mean around 140 eggs.607

Since no autochthonous cases of Aedes mosquito-borne diseases have yet608

been detected in the region, these egg counts serve as initial indicators of609

mosquito abundance. These results can be applied to calculate the relative610

risk of disease transmission, considering the presence of imported cases and611

mosquito levels in the Basque Country.612

4.1.3 Risk of autochthonous cases in the Basque Country613

The expected risk of autochthonous cases ⟨I⟩∗ is given by614

⟨I⟩∗ = k · βeff
1

ε
· ⟨Y ⟩∗ = f(k, ⟨Y ⟩∗), (66)

and for small mosquito abundance k, where ε(k) ≈ γ, this simplifies to615

⟨I⟩∗ = k · βeff
1

γ
· λ
γ
= k · β

γ

ϑ

ν
· λ
γ

. (67)

Here, β
γ
ϑ
ν = ξ is a factor defined from basic information in endemic countries.616

As discussed in Section 2, we use β
γ = 1.2 and ϑ

ν = 1.2, giving β
γ
ϑ
ν = 1.44 ≈ 1.5.617

These values can be adjusted based on updated information for different618

vector-borne diseases.619
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a)

b)

Figure 12: The largest 20 eggs counts in Basque Country in a) 2019, and b)
2022.

The expected number of autochthonous cases in the Basque Country,620

based on mosquito abundance in 2019, can be estimated as ⟨I⟩∗ = 0.0671,621

and in 2022 as ⟨I⟩∗ = 0.5602, suggesting a potential rise in the number of622

cases. Although these estimates may indicate fewer than one person affected,623

stochastic simulations suggest that clusters of infected cases could emerge in624

the coming years.625

Using this approach, the risk can be calculated on a smaller spatial626

scale, such as at the provincial and municipal levels, as more data become627

available. Additionally, risk maps with finer spatial resolution, such as at the628

municipality level, can be generated. These maps would consider imported629

cases, mosquito abundance, and the combined risk of autochthonous cases,630

providing a more detailed risk assessment.631
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5 Discussion and conclusion632

Driven by climate change and increased global travel, mosquito-borne diseases633

like dengue, Zika, and chikungunya, once confined to subtropical and tropical634

regions, are now being reported in non-endemic areas. Although most635

cases originate from infected travelers - referred to as imported cases - they636

can trigger unexpected autochthonous outbreaks in regions with competent637

mosquito vectors. This has been evident recently, with non-travel-related638

dengue cases reported in France and Italy, as noted by the European Center639

for Disease Prevention and Control [11].640

In endemic areas, mathematical models have been developed to estimate641

disease outbreak risks, with the Basic Reproduction Number (R0) being642

widely used to assess the likelihood and intensity of outbreaks occurring643

throughout the year. This metric, which represents the average number of644

secondary cases produced by an infected individual in a completely susceptible645

population, is crucial for understanding the dynamics of disease spread in646

regions where transmission is ongoing. However, in non-endemic areas647

where no local cases have been recorded, R0 is typically less than 1 (R0 <648

1), indicating that the disease is not currently spreading within the local649

population. As a result, R0 is not a useful measure for assessing outbreak650

risks in these regions. Instead, alternative models and metrics must be used to651

account for the role of imported cases and the presence of competent mosquito652

vectors, which can introduce and potentially amplify disease transmission in653

previously unaffected areas.654

In this study, a dynamic vector-host model is developed to assess the655

risk of autochthonous cases driven by imported infections in non-endemic656

regions. Using stochastic methods, the model analyzes waiting times for the657

first local cases and inter-event statistics of imported cases, with a specific658

application to the Basque Country. This approach incorporates imported659

cases and the presence of mosquito populations, relative to those in endemic660

regions, to estimate the risk of mosquito-borne disease outbreaks.661

Stochastic simulations reveal that even in non-endemic regions with662

moderate mosquito abundance - such as 40% of that found in endemic areas663

- there is a potential for isolated autochthonous cases driven by imported664

infections, as well as the possibility of outbreak clusters. These simulations665

indicate that the dynamics of mosquito-borne disease transmission can be666

significantly influenced by the presence and density of mosquito populations,667

even at lower levels. By estimating the expected number of infected cases and668

assessing the risk of autochthonous infections based on imported case data669

and mosquito abundance, the model provides a robust tool for predicting670
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and managing mosquito-borne disease risks in non-endemic areas. This671

approach allows public health authorities to anticipate potential outbreaks672

and implement targeted interventions to mitigate the risk of disease spread.673

By considering the Basque Country - a region in Spain with documented674

imported cases but no local cases to date - as a case study, we apply our675

method to assess the risk of an autochthonous disease outbreak. Essential676

data for this analysis include mosquito egg counts recorded by NEIKER677

across various localities and epidemiological information on viremic imported678

cases provided by the Epidemiology Unit of the Public Health Department679

of the Basque Country.680

Using a Poisson process, we analytically computed the trend of imported681

cases and applied this method to data from the Basque Country for 2019682

and 2022. We also calculated the confidence intervals for the cumulative683

curve of imported cases via likelihood functions. It is important to note that684

for the years 2020 and 2021, very few or no imported cases were recorded685

due to travel restrictions imposed by the COVID-19 pandemic, resulting in686

insufficient data to apply our method effectively. Our analysis demonstrates687

that mosquito population abundance significantly impacts the likelihood688

and timing of autochthonous cases. This explains why autochthonous cases689

have been identified in countries like France and Italy but not yet in other690

European regions, such as the Basque Country. The findings underscore the691

critical importance of considering non-linear dynamics in disease transmission692

models, particularly near critical thresholds of mosquito abundance, and call693

for continued research into seasonality and other factors influencing mosquito694

abundance.695

By coupling mosquito abundance calculations with the estimated mean696

number of imported cases in 2019, we apply the risk estimator developed697

through the stochastic framework. The expected number of autochthonous698

cases in the Basque Country rose from ⟨I⟩ = 0.0671 in 2019 to ⟨I⟩ = 0.5602699

in 2022, and this increasing trend is anticipated to continue in the coming700

years. Although these estimates suggest fewer than one case on average,701

stochastic simulations indicate that clusters of infected cases could emerge702

in the coming years.703

Our approach allows for risk calculation on a smaller spatial scale, such704

as at provincial and municipal levels, as more data becomes available. The705

spatial distribution of imported cases versus the measurements points of706

ovitraps pose some challenges on spatial correlation of the risks, however707

it facilitates the creation of risk maps with finer spatial resolution, such708

as at the municipality level, which will be investigated in future research,709

providing a more detailed risk assessment for public health authorities.710
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Appendices:924

A Analysis of mean and variance via hypothetical925

ensembles of data926

In this section, we summarize both the frequentist and Bayesian approaches927

to parameter estimation, along with their theoretical foundations.928

In the previous analysis, we constructed the maximum likelihood estima-929

tor (MLE) and assessed its variance using frequentist methods. The variance930

of the MLE was estimated as σ2 = λ̂2

n , which was derived from the curvature931

of the likelihood function.932

To theoretically justify this result, we consider the likelihood function933

L(λ) = p(τ | λ), which describes the probability of observing data ensembles934

given a particular model. The Gaussian approximation of the likelihood935

function provides a good fit for the distribution of estimators p(λ̂ | λ). This936

fit can be validated through simulations that evaluate multiple data sets937

and examine the resulting histogram of estimators λ̂i. Although an exact938

analytical solution for the ensemble variance ⟨(λ̂−⟨λ̂⟩)2⟩ is not feasible, it can939

be approximated using the variance expression obtained from the negative940

inverse Fisher matrix [50]941

σ2 =
λ̂2

n
.

This expression is consistent with the Cramér-Rao inequality [51], which942

provides a lower bound for the variance of λ given by λ2/n. The Cramér-Rao943

inequality involves the true but unknown parameter λ, while our heuristic944

method uses the estimator λ̂. The complete form of the inequality also945

accounts for any bias in the estimator, resulting in946

⟨(λ̂− ⟨λ̂⟩)2⟩ ≥ λ2

n

(
n

n− 1

)2

,

where the impact of bias diminishes quickly. Detailed calculations related947

to the Fisher information and the Cramér-Rao inequality can be found in948

Appendix B.949

The likelihood function L(λ) = p(τD | λ) from a single empirical data set950

τD approximates the functional form of the distribution p(λ̂ | λ) obtained by951

marginalizing over all possible hypothetical data sets τ , even if the estimator952

λ̂ deviates from the original parameter λ.953
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In contrast, Bayesian analysis updates prior beliefs about the parameter954

λ using the empirical likelihood function from a single data set. The prior955

distribution p(λ), specified before observing the data, is updated to form956

the posterior distribution p(λ | τD). This posterior provides estimates and957

confidence intervals and can be applied to the empirical data of imported958

cases in the Basque Country, as demonstrated in the analysis for the Basque959

Country. Due to the very limited data, the maximum likelihood method960

of frequentists provides reasonable information, while the more elaborate961

Bayesian approach might not refine the results significantly in the present962

study. Hence, we focus on the frequentist framework here.963

B Calculation of the lower bound of the ensemble964

variance of maximum likelihood estimators965

B.1 Conditioned ensemble averages, the starting point of the966

analysis, to the variance inequality967

Conditioned ensemble averages serve as the starting point for analyzing the968

variance inequality. For the ensemble mean of estimators, we have969

⟨λ̂⟩ =
∫ ∞

0
λ̂ p(λ̂|λ) dλ̂ , (68)

where the probability p(λ̂ | λ) of estimators λ̂, given a stochastic model with970

parameter λ, can be expressed by marginalizing over ensembles of data sets971

τ obtained from the likelihood function972

L(λ) = p(τ | λ) = λn e−λ
∑n

i=1 τi .

The likelihood function L gives the probability for the data given an underly-973

ing model with parameter λ. These data determine the estimators λ̂ = f(τ)974

via the probability975

p(λ̂ | τ) = δ(λ̂− f(τ)) ,

where λ̂ = f(τ) = 1
1
n

∑n
i=1 τi

, with the analytic functional form of the maxi-976

mum likelihood estimator, giving977

p(λ̂ | λ) =
∫ ∞

0
· · ·
∫ ∞

0
p(λ̂ | τ) · p(τ | λ) dnτ , (69)
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which essentially marginalizes via

p(λ̂ | τ) · p(τ | λ) = p(λ̂, τ | λ)

the joint probability p(λ̂, τ | λ) over τ . Hence, we have978

⟨λ̂⟩ =

∫ ∫
· · ·
∫
λ̂ p(λ̂ | τ) · p(τ | λ) dnτ dλ̂

=

∫
· · ·
∫ ∫

λ̂ δ(λ̂− f(τ)) dλ̂ p(τ | λ) dnτ

=

∫
· · ·
∫
f(τ) p(τ | λ) dnτ , (70)

which gives, for the exponential distribution, after some calculations, the979

explicit result980

⟨λ̂⟩ = n

n− 1
λ ,

essentially via deriving and solving the ordinary differential equation981

d

dλ
⟨λ̂⟩ = n

⟨λ̂⟩
λ

− n ,

via the variable transformation z := ⟨λ̂⟩/λ, hence982

⟨λ̂⟩ = z · λ = ⟨λ̂⟩(z, λ) .

Then, the bias of the estimator is defined as the deviation of the ensemble983

mean of the estimator ⟨λ̂⟩ and the original parameter λ, that is984

b(λ) := ⟨λ̂⟩ − λ ,

which is here in the case of the exponential distribution b(λ) = 1
n−1λ,985

converging quickly to zero with increasing number n of data points.986

An analogous calculation for the variance of the estimator gives987

⟨(λ̂− ⟨λ̂⟩)2⟩ =

∫ ∫
...

∫
(λ̂− ⟨λ̂⟩)2 p(λ̂|τ) · p(τ |λ) dnτ dλ̂

=

∫
...

∫ ∫
(λ̂− ⟨λ̂⟩)2 δ(λ̂− f(τ)) dλ̂ p(τ |λ) dnτ (71)

=

∫
...

∫
(f(τ)− ⟨λ̂⟩)2 p(τ |λ) dnτ

=

∫
...

∫
(f(τ)2 − ⟨λ̂⟩2) p(τ |λ) dnτ ,
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where in the last step we used in expectation ⟨(λ̂−⟨λ̂⟩)2⟩ = ⟨λ̂⟩2−⟨λ̂⟩2. This988

can only be treated via an inequality giving a lower bound of the estimator989

variance.990

In order to apply the Cauchy-Schwarz inequality, (which is in ordinary991

vector spaces relating the scalar product of two vectors to the Euclidian992

norm of the vectors as g · h ≤ ||g|| · ||h||), we first analyze993

d

dλ
⟨λ̂⟩ =

∫
...

∫
f(τ)

d

dλ
p(τ |λ) dnτ

=

∫
...

∫
f(τ)

(
d

dλ
ln p(τ |λ)

)
p(τ |λ) dnτ (72)

=

∫
...

∫
f(τ)

√
p(τ |λ) ·

(
d

dλ
ln p(τ |λ)

)√
p(τ |λ) dnτ ,

where in the last step the integrand is written as a product of two functions994

g(τ) := f(τ)
√
p(τ |λ) and h(τ) :=

(
d
dλ ln p(τ |λ)

)√
p(τ |λ) to give in the995

Cauchy-Schwarz inequality, now for integrals ,the treatable expressions in996

form of expectation integrals.997

After we considered d
dλ⟨λ̂⟩ evaluating the definition of ⟨λ̂⟩ we now evaluate998

from the definition of the bias b(λ) := ⟨λ̂⟩ − λ, hence ⟨λ̂⟩ = λ+ b(λ) giving999

d

dλ
⟨λ̂⟩ = 1 +

d

dλ
b(λ) . (73)

Applying, thus, the Cauchy-Schwarz inequality replacing the sums by inte-1000

grals and the finite dimensional vectors by functions, we get1001

(
d

dλ
⟨λ̂⟩
)2

=

(
1 +

d

dλ
b(λ)

)2

(74)

=

(∫
...

∫
f(τ)

√
p(τ |λ) ·

(
d

dλ
ln p(τ |λ)

)√
p(τ |λ) dnτ

)2

=

(∫
...

∫
g(τ) · h(τ) dnτ

)2

,
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and applying the Cauchy-Schwarz inequality1002 (
1 +

d

dλ
b(λ)

)2

=

(∫
...

∫
g(τ) · h(τ) dnτ

)2

(75)

≤
∫
...

∫
g2(τ) dnτ ·

∫
...

∫
h2(τ) dnτ

=

∫
...

∫
f2(τ) p(τ |λ) dnτ

·
∫
...

∫ (
d

dλ
ln p(τ |λ)

)2

p(τ |λ) dnτ ,

and hence, the inequality1003 ∫
...

∫
f2(τ) p(τ |λ) dnτ ≥

(
1 + d

dλb(λ)
)2∫

...
∫ (

d
dλ ln p(τ |λ)

)2
p(τ |λ) dnτ

(76)

holds, which only needs little refinement for the final result.1004

For this, we consider now the normalization of the probability of the1005

likelihood function
∫
...
∫
p(τ |λ) dnτ = 1 and its first two derivatives in1006

respect to the parameter λ. We have1007

d

dλ

∫
...

∫
p(τ |λ) dnτ =

d

dλ
1 = 0 , (77)

and hence1008

0 =

∫
...

∫
d

dλ
p(τ |λ) dnτ =

∫
...

∫ (
d

dλ
ln p(τ |λ)

)
p(τ |λ) dnτ . (78)

The zero can be multiplied by any function to still be zero, and any function1009

not depending on the data τ can be taken into the integrals. Hence, for the1010

function ⟨λ̂⟩ we obtain1011

0 = ⟨λ̂⟩
∫
...

∫
d

dλ
p(τ |λ) dnτ =

∫
...

∫
⟨λ̂⟩ d

dλ
p(τ |λ) dnτ , (79)
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and with this we can rewrite Eq. (72) as follows1012

d

dλ
⟨λ̂⟩ =

∫
...

∫
f(τ)

d

dλ
p(τ |λ) dnτ − 0

=

∫
...

∫
f(τ)

d

dλ
p(τ |λ) dnτ −

∫
...

∫
⟨λ̂⟩ d

dλ
p(τ |λ) dnτ

=

∫
...

∫
(f(τ)− ⟨λ̂⟩) d

dλ
p(τ |λ) dnτ

=

∫
...

∫
(f(τ)− ⟨λ̂⟩)

(
d

dλ
ln p(τ |λ)

)
p(τ |λ) dnτ (80)

=

∫
...

∫
(f(τ)− ⟨λ̂⟩)

√
p(τ |λ) ·

(
d

dλ
ln p(τ |λ)

)√
p(τ |λ) dnτ ,

and redefining g(τ) := (f(τ) − ⟨λ̂⟩)
√
p(τ |λ) allows us, in all subsequent1013

calculations above, to replace f(τ) by (f(τ)− ⟨λ̂⟩). Hence, in Equation (76)1014

we have now the complete variance on the left hand side of the inequality1015 ∫
...

∫
(f(τ)− ⟨λ̂⟩)2 p(τ |λ) dnτ ≥

(
1 + d

dλb(λ)
)2∫

...
∫ (

d
dλ ln p(τ |λ)

)2
p(τ |λ) dnτ

(81)
as desired.1016

The final step is to take the second derivative of the normalization of the1017

likelihood function given by1018

0 =
d2

dλ2

∫
...

∫
p(τ |λ) dnτ

=

∫
...

∫
d

dλ

d

dλ
p(τ |λ) dnτ

=

∫
...

∫
d

dλ

((
d

dλ
ln p(τ |λ)

)
p(τ |λ)

)
dnτ (82)

=

∫
...

∫ (
d2

dλ2
ln p(τ |λ)

)
p(τ |λ) +

(
d

dλ
ln p(τ |λ)

)(
d

dλ
p(τ |λ)

)
dnτ

=

∫
...

∫ (
d2

dλ2
ln p(τ |λ)

)
p(τ |λ) +

(
d

dλ
ln p(τ |λ)

)(
d

dλ
ln p(τ |λ)

)
p(τ |λ) dnτ ,

and hence1019

0 =

∫
...

∫ (
d2

dλ2
ln p(τ |λ)

)
p(τ |λ) dnτ+

∫
...

∫ (
d

dλ
ln p(τ |λ)

)2

p(τ |λ) dnτ

(83)
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or1020 ∫
...

∫ (
d

dλ
ln p(τ |λ)

)2

p(τ |λ) dnτ = −
∫
...

∫ (
d2

dλ2
ln p(τ |λ)

)
p(τ |λ) dnτ

(84)
with the Cramér-Rao inequality now in its final form given by1021 ∫

...

∫
(f(τ)− ⟨λ̂⟩)2 p(τ |λ) dnτ ≥

(
1 + d

dλb(λ)
)2∫

...
∫ (

− d2

dλ2 ln p(τ |λ)
)
p(τ |λ) dnτ

(85)
with the Fisher information1022

⟨ − d2

dλ2
ln p(τ |λ) ⟩ =

∫
...

∫ (
− d2

dλ2
ln p(τ |λ)

)
p(τ |λ) dnτ (86)

in its expectation value form in the denominator of the inequality and the1023

variance1024

⟨
(
λ̂− ⟨λ̂⟩

)2
⟩ =

∫
...

∫
(f(τ)− ⟨λ̂⟩)2 p(τ |λ) dnτ . (87)

So we can write in short1025

⟨
(
λ̂− ⟨λ̂⟩

)2
⟩ ≥

(
1 + db

dλ

)2
⟨ − d2

dλ2 ln L(λ) ⟩
(88)

as the easiest memorizable form of the Cramer-Rao inequality, using the1026

likelihood notation L(λ) = p(τ |λ), since the ensemble average is always taken1027

over the data points τ now.1028

B.2 Application to the exponential distribution and its max-1029

imum likelihood estimator1030

We first calculate explicitly the ensemble mean of the estimator by deriving1031

an ODE and solving it. From Eq. (70) we have with L(λ) = p(τ |λ) =1032

λn e−λ
∑n

i=1 τi and f(τ) = 1
1
n

∑n
i=1 τi

for the exponential distribution1033

⟨λ̂⟩ =

∫
...

∫
f(τ) · p(τ |λ) dnτ

=

∫
...

∫
1

1
n

∑n
i=1 τi

· λn e−λ
∑n

i=1 τi dnτ (89)
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and hence, for its derivative1034

d

dλ
⟨λ̂⟩ =

∫
...

∫
f(τ) · d

dλ
p(τ |λ) dnτ (90)

=

∫
...

∫
1

1
n

∑n
i=1 τi

·

(
nλn−1 · e−λ

∑
i=1 nτi + λn · (−

n∑
i=1

τi)e
−λ

∑n
i=1 τi

)
dnτ

=
n

λ

∫
...

∫
f(τ) · p(τ |λ) dnτ − n

∫
...

∫
p(τ |λ) dnτ

=
n

λ
⟨λ̂⟩ − n ,

since the first integral
∫
...
∫
f(τ) · p(τ |λ) dnτ = ⟨λ̂⟩ gives the expectation1035

value, and the second
∫
...
∫
p(τ |λ) dnτ = 1 gives the normalization of1036

probability. Thus, we have the ODE for ⟨λ̂⟩ given by1037

d

dλ
⟨λ̂⟩ = n

⟨λ̂⟩
λ

− n (91)

to be solved. This can be done via the variable transformation z := ⟨λ̂⟩/λ,1038

hence ⟨λ̂⟩ = z · λ = ⟨λ̂⟩(z, λ). We transform the original ODE into an ODE1039

in new variable1040

d

dλ
⟨λ̂⟩ = d⟨λ̂⟩

dz

dz

dλ
+
d⟨λ̂⟩
dλ

dλ

dλ
= λ

dz

dλ
+ z (92)

and on the other side of the original ODE1041

d

dλ
⟨λ̂⟩ = nz − n (93)

to be solved1042

λ
dz

dλ
+ z = nz − n (94)

or1043

dz

dλ
=

1

λ
(n− 1)(z − n

n− 1
) (95)

which can now be resolved easily via separation of variables. Then,1044 ∫
1

z − n
n−1

dz = (n− 1)

∫
1

λ
dλ , (96)

giving as general solution1045

ln

(
z − n

n− 1

)
+ cz = (n− 1)(lnλ+ cλ) (97)
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and after some elementary steps, and replacing z with ⟨λ̂⟩/λ again, we have1046

⟨λ̂⟩ = n

n− 1
λ+ c · λn (98)

using integration constants cz and cλ to be combined to c = e(n−1)cλ−cz . To1047

leading order in λ we have the solution ⟨λ̂⟩ = n
n−1λ, since λ is in general a1048

small number.1049

Hence, for the bias b(λ) := ⟨λ̂⟩ − λ we have1050

b(λ) =
1

n− 1
λ (99)

and in the expression for the Cramér-Rao bound of the ensemble variance1051

⟨
(
λ̂− ⟨λ̂⟩

)2
⟩ ≥

(
1 + db

dλ

)2
⟨ − d2

dλ2 ln L(λ) ⟩
=
λ2

n
·
(

n

n− 1

)2

(100)

since the expectation of the negative second derivative of the log-likelhood1052

function is − d2

dλ2 ln L(λ) = n
λ2 independent of the data τi, as calculated1053

previously. Therefore, the expectation ⟨− d2

dλ2 ln L(λ)⟩ = n
λ2 , also know as the1054

Fisher information).1055

In conclusion, the analysis of the maximum and its vicinity of the likeli-1056

hood using the empirical data gives the same information as the ensemble1057

analysis of mean and variance of the estimator, just with small extra terms1058

which vanish for large data sets. Already for 10 data points, (for instance1059

using the Gaussian approximation), compared with p(λ̂|λ) it can be quite1060

good, and gives qualitatively the correct result for confidence interval analysis1061

(see for another example [47] in Figure 2 b)), using extended simulations for1062

the conditioned probability of estimators from the original parameter.1063
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