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Abstract 

Little is known about the acute and long-term sequelae of COVID-19 and its pathophysiology in 

African patients, who are known to have a distinct immunological profile compared to Caucasian 

populations. Here, we established proteomic signatures to define severe outcomes of acute 

COVID-19 and determined whether proteome signatures during the first week of acute illness 

predict the risk of post-acute sequelae of COVID-19 (Long COVID) in a low-income country (LIC) 

setting. Using the Olink inflammatory panel, we measured the expression of 92 proteins in the 

plasma of COVID-19 patients (n=55) and non-COVID-19 individuals (n=23). We identified distinct 

inflammatory proteomic signatures in acute severe COVID-19 individuals (n=22) compared to 

asymptomatic or mild/moderate COVID-19 cases (n=33), and non-COVID-19 controls. Levels of 

SLAMF1, CCL25, IL2RB, IL10RA, IL15RA, IL18 and CST5 were significantly upregulated in patients 

with critical COVID-19 illness compared to individuals negative for COVID-19. The cohort was 

followed for an average of 20 months, and 23 individuals developed Long COVID, based on the 

WHO’s case definition, while 32 COVID-19 patients recovered fully. Whereas upregulated levels 

of SLAMF1, TNF, TSLP, IL15RA, IL18, ADA, CXCL9, CXCL10, IL17C, and NT3 at the acute phase of 

the illness were associated with increased Long COVID risk, upregulated expression of TRANCE 

was associated with a reduced risk of developing Long COVID. Proteomic expression levels of 

SLAMF1, IL15RA, and IL18 associated with critical illness during the acute phase of COVID-19 also 

predicted Long COVID risk. Unravelling the pathophysiology of severe acute COVID-19 and Long 

COVID before its advent may contribute to designing novel interventions for diagnosing, treating, 

and monitoring of SARS-CoV-2 infection and its associated acute and long-term consequences.      

 

Introduction 

Acute COVID-19 is characterized by protean clinical manifestations, including asymptomatic, 

mild/moderate, severe, or critical conditions. Moreover, a multitude of complex symptoms persist 

in SARS-CoV-2 infected individuals post-acute phase, affecting the cardiovascular, respiratory, 

gastrointestinal, genitourinary, hematologic, musculoskeletal, central nervous, and other 

systems, collectively known as post-acute sequelae of COVID-19 or Long COVID (1,2). The WHO 

defines Long COVID as an ongoing, relapsing, or new symptom or condition present  three or 

more months from the onset of COVID-19 with symptoms that last for at least  two months and 

cannot be explained by an alternative cause (3). However, other organizations use different 

definitions for Long COVID indicating the elusive characteristics of the condition (4,5). Systematic 

reviews demonstrated that the burden of Long COVID ranges between 45% and 62% depending 

on the case definition, the study design, and the region where the study was conducted (6-8). 

Most of these data have been reported from high-income countries (HICs), and a significant 

knowledge gap exists in low-income country (LIC) settings (9-10). 
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Though its exact cause remains unknown, age, sex, socio-economic conditions, ancestry, co-

morbidities, severity during acute illness, reinfection, SARS-CoV-2 genotype, and vaccination 

appear to be associated with the risk of developing Long COVID (1,2,11-16).  Persistence of 

replication-competent viruses, or viral components, reactivation of latent virus, autoimmunity, 

microbiota dysbiosis, and chronic inflammation have been proposed as the mechanism(s) leading 

to multiple organ damage in patients with Long COVID (2). Several biomarkers have been 

investigated to  assess the risk of severe illness during acute COVID-19 or Long COVID in HICs (17-

38). However, many of these biomarkers have not been validated and are not yet commonly used 

in clinical practice. Additionally, there is limited knowledge of the overall pathophysiology and 

molecular mechanisms underlying the acute and long-term sequelae of COVID-19 in LICs. In 

particular, the distinct immunological background, high burden of co-infections due to HIV-1, 

malaria, tuberculosis, helminths, and the diverse sociodemographic factors may impact the 

biological profile following infection with SARS-CoV-2 infection in African populations (39-42). 

Indeed, a recent report demonstrated distinct COVID-19 immune signatures associated with 

COVID-19 severity in Ugandan patients co-infected with HIV-1 (21). Given that Long COVID is a 

heterogeneous disease with complex symptoms, it is imperative to unravel the role of biomarkers 

that can predic the development of severe acute COVID-19 and Long COVID in the context of 

Africa.  

In this study, we performed a longitudinal analysis of patients in Ethiopia with COVID-19. 

Specifically, we compared proteomic profiles between COVID-19 patients and COVID-19-negative 

individuals. In addition, we assessed plasma proteomic signals associated with severe outcomes 

following acute COVID-19 and determined whether unique proteins that appear early during the 

onset of acute COVID-19 illness predict Long COVID risk. Our findings show that differential 

expression of proteomes represents immune dysregulation in COVID-19 individuals who develop 

critical illness as well as those who developed Long COVID. Understanding the pathophysiology 

of acute COVID-19 illness, and Long COVID before its advent may contribute to designing novel 

interventions related to diagnosing, treating, and monitoring acute COVID-19, Long COVID, and 

other chronic post-viral syndromes.     

 

Results 

Study participants and characteristics. Study participants were recruited from an ongoing 
prospective observational cohort study in Ethiopia (43). A cohort of 55 patients with confirmed 
COVID-19 were recruited for this study. In addition, another 23 randomly selected COVID-19-
negative individuals examined for other respiratory illnesses were enrolled as controls (Figure 1). 
There were no significant differences in sociodemographic or clinical factors, SARS-CoV-2 vaccine 
uptake, hospital admission status or medication taken among the two groups (Table 1, Figure 2A). 
However, only COVID-19 patients were admitted to the intensive care unit (ICU). 
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Of the 55 individuals with COVID-19, 33 had mild or moderate (non-critical) disease and 22 were 
severe, requiring hospital admission only or with intensive care (critical). Fatigue/malaise (54.6%), 
arthralgia (52.7%), myalgia (50.9%), fever (50.9%), loss of smell (49.1), sore throat (47.3%), loss 
of taste (45.5%), headache (45.5%), anorexia (45.5%), cough (40.0%), and shortness of breath 
(30.9%) were the most frequent symptoms experienced by COVID-19 patients during the acute 
phase of COVID-19 illness (Table 1 supplementary). Critically ill COVID-19 cases were older than 
non-critical patients, had significantly more frequent symptoms, more comorbid conditions, as 
well as more frequent hospital and intensive-care unit (ICU) admissions. Anticoagulants, 
antibiotics, anti-inflammatory drugs, and oxygen supplementation were more frequently 
administered to critically ill COVID-19 patients than non-critical COVID-19 counterparts. SARS-
CoV-2 Delta and Omicron were the two most predominantly circulating variants during the 
pandemic wave in Ethiopia when the study was undertaken (Supplementary Figure 1) (44-46). As 
expected, the predominant circulating SARS-CoV-2 variant (i.e. Delta) at the time of enrollment 
was significantly associated with critical acute COVID-19 illness (Table 1). 

Participants were followed for an average of 20 (IQR: 9-21) months. Overall, 41.8% (23 out of 55) 
of COVID-19 patients reported experiencing at least one persistent symptom, according to the 
WHO’s case definition for Long COVID (3). The most commonly reported symptoms among these 
patients were fatigue (47.8%), cough (47.8%), myalgia (47.8%), insomnia (30.4%), foggy brain 
(21.7%) and shortness of breath (21.7%). Notably, age > 50 years (HR=2.85, 95% CI: 1.19-6.86), 
having at least one comorbid condition (HR=2.63, 95% CI: 1.16-5.99), and being infected during 
the predominant circulating Delta SARS-CoV-2 variant phase of the pandemic wave (HR=2.58, 95% 
CI: 1.13-5.91) were associated with a significantly increased hazard of Long COVID (Figure 2B).    

COVID-19 patients exhibited increased levels of inflammatory proteins. Overall, 14,076 protein 

levels in 153 samples (78 at baseline, 44 at 6-month and 31 at 12-month follow-up) derived from 

78 individuals were measured using the Olink targeted 96 inflammation proximal extension assay 

(PEA) platform. Initially, we compared the proteomic signatures of COVID-19 patients during the 

acute phase of COVID-19 illness (n=55) with the COVID-19-negative non-COVID-19 controls 

(n=23). Figure 3A shows the clustering of inflammatory proteome profile in individuals with 

COVID-19 compared to non-COVID-19 controls. Thirty-one proteins were significantly increased 

in COVID-19 patients compared to non-COVID-19 controls after adjustment for multiple testing 

(Figure 3B and 3C). The top ten significantly increased proteins were TNF, IL7, VEGFA, CCL20, CSF1, 

CXCL6, MCP4, CD40, FGF21, and CXCL11 (Figure 3C).  

COVID-19 patients with critical illness exhibit a distinct plasma proteomic signature. Within the 

COVID-19 patient group, we then determined the proteomic signatures in those with critical 

outcomes (n=22) and compared them with those who did not develop critical COVID-19 (n=33), 

or non-COVID-19 controls (Figure 3B, 4A-D). We identified that only three proteins, namely TNF, 

SLAMF1, and CDCP1, were differentially expressed in critically ill COVID-19 patients compared to 

those with non-critical illness presentation (Figure 4A). However, when critical COVID-19 patients 

were compared to non-COVID-19 controls, there was significant clustering between the two 

groups (Figure 4B), and the number of differentially expressed proteins increased significantly to 

31 (Figure 4C and 4D). Seven proteins that were highly expressed and associated with an 
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increased hazard of critical COVID-19 outcome were SLAMF1, CCL25, IL2RB, IL10RA, IL15RA, IL18 

and CST5 (Figure 4E). Additionally, the predictive power assessed by the AUC curve showed that 

IL15RA (AUC=0.842), SLAMF1 (AUC=0.775) and IL18 (AUC=0.775) as the top three proteins 

predicting critical COVID-19 illness (Figure 4F). The combined AUC score of these three proteins 

is 0.836 (Supplementary Figure 3A). Gene Ontology (GO) analysis revealed significant enrichment 

in phagocytotic pathway, and protein-protein interaction pathways showed significant cytokine-

cytokine, cytokine-cytokine receptor, and cytokine-chemokine, cytokine-chemokine receptor, 

chemokine-chemokine receptor interactions when critical and non-critical COVID-19 patients 

were compared (Figure 4G). 

Differential plasma proteomic expression  during acute COVID-19 illness predicts the risk of 

Long COVID. Here, we compared proteomic signatures in the study cohort with long-term 

outcomes – namely Long COVID. Proteomic expression levels in recovered COVID-19 patients 

segregated clearly from those who eventually developed Long COVID (Figure 5A). Overall, COVID-

19 patients who developed subsequent Long COVID exhibited 44 differentially expressed proteins 

compared to those who recovered (Figure 5B, 5D). Of these, ten proteins, namely SLAMF1, TNF, 

TSLP, IL15RA, IL18, ADA, CXCL10, IL17C, NT3, and CXCL9 were significantly increased (Figure 5C), 

and associated with an increased hazard of developing Long COVID after controlling for age, 

comorbidity and the Delta variant (Figure 5E). Notably, the expression level of the protein TRANCE 

was reduced in patients who developed Long COVID compared to recovered COVID-19 patients 

and reduced the Long COVID risk (Figure 5C-5E). After adjusting for age, comorbidity and SARS-

CoV-2 variant, the hazard of Long COVID was 1.58 up to 4.12-fold in COVID-19 patients with 

upregulated baseline protein expression levels of SLAMF1, TNF, TSLP, IL15RA, IL18, ADA, CXCL10, 

IL17C, NT3, and CXCL9 (Figure 5E). On the contrary, it was only 0.50-fold in patients with a higher 

baseline TRANCE expression levels (Figure 5E). Additionally, the predictive power assessed by the 

AUC curve showed that TNF (AUC=0.973), SLAMF1 (AUC=0.894) and IL18 (AUC=0.857) as the top 

three proteins predicting increased Long COVID, and TRANCE (AUC=0.700) predicted reduced 

Long COVID risk (Figure 5F). The combined predictive AUC score of these three proteins in 

predicting Long COVID is 0.857 (Supplementary Figure 3B). Gene Ontology (GO) analysis revealed 

significant enrichment in cytokine-, chemokine-, IL17-, TLR-signaling pathways, and protein-

protein interaction pathways showed significant cytokine-cytokine, cytokine-cytokine receptor, 

and cytokine-chemokine, and chemokine-chemokine interactions when recovered COVID-19 and 

Long COVID patients were compared (Figure 5G). 

Differential proteomic signatures persist throughout post-acute sequelae of COVID-19. During 

the first year period following enrollment, plasma samples were obtained in a subset of recovered 

COVID-19 patients and those who developed Long COVID at an average of 6- and 12-months. 

Trends in the profile of proteomic expression were distinct between the two groups (Figure 6B). 

Although we observed a tendency towards reduction, the majority of the proteins associated with 

the increased risk of Long COVID remained unchanged during the follow-up period, except TNF 

and IL18 which showed significant reductions. On the contrary, IL17C and NT3 levels increased 

significantly among recovered COVID-19 patients. CXCL10 was the only protein that exhibited a 
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significant reduction in both recovered and Long COVID patients. There was a tendency towards 

increases in TRANCE levels in both recovered and Long COVID cases, the difference was not 

significant.     

 

Discussion 

In this study, we demonstrated that circulating proteome is broadly dysregulated in COVID-19 
patients and is associated with the risk of post-COVID-19 sequelae. To the best of our knowledge, 
the current study is the first to characterize the proteomic profiles of acute and long-term COVID-
19 outcomes in the context of Sub-Saharan Africa. 

Acute COVID-19 is characterized by immune activation and inflammation (47). Our data is 
consistent with other studies that  find that COVID-19 patients exhibit increased levels of 31 
unique proteins compared to non-COVID-19 controls (17-27). This includes proteins such as TNF, 
CD40, CSF, IL6, IL10, IL18RA, CCL23, CXCL10, CXCL11, MCP-2, and FGF21, which has been reported 
previously (17-27). Dysregulation of these cytokines and chemokines has been related to 
excessive inflammation and tissue damage in COVID-19 patients, particularly among COVID-19 
patients with severe clinical outcomes (47). Here, we demonstrated that the unique signature 
featuring SLAMF1, CCL25, IL2-RB, IL10RA, IL15RA, IL18, and CST significantly increased the risk of 
critical illness in COVID-19 patients. Increased levels of SLAMF1 and IL18 in this patient group 
were similar to those reported previously (17-21). However, other investigators reported that 
CCL25 was lower in ICU-admitted patients than in non-ICU cases, and increased CCL25 was 
observed with clinical improvement (22). We were not able to confirm the findings in our setting; 
however, a major difference is that our study is derived from a setting in a LIC. Overall, these 
inflammatory response-related cytokines and chemokine ligands play a pivotal role in the 
pathogenesis of tissue injury associated with severe COVID-19.  

High expression of the proteins SLAMF1, TNF, TSLP, IL15RA, IL17C, IL18, ADA, CXCL9, CXCL10 and 
NT3 during the acute phase of the illness was associated with an increased hazard of Long COVID 
in our cohort. Similar to our data, previous findings also showed increased levels of TNF, IL18, 
CXCL9, and CXCL10 (20,30,31). Notably, baseline protein expression levels of SLAMF1, IL15RA and 
IL18 associated with the critical illness during the acute phase of COVID-19 were also able to 
predict Long COVID risk. These biomarkers may play a pivotal role in the earlier identification of 
individuals who will succumb to severe disease during the acute phase of the illness as well as 
long-term sequelae. TSLP is a cytokine involved in the context of inflammation and allergy. Recent 
studies have shown that TSLP levels correlated with the duration of hospitalization in COVID-19 
patients (48). This suggests that TSLP might play a role in the prolonged inflammatory responses 
seen in Long COVID. Most of the proteins associated with the increased Long COVID risk remained 
unchanged during the follow-up period indicating a sustained immune activation and 
inflammation. However, three proteins, namely TNF, IL18, and CXCL10, exhibited significant 
reductions, and the repeated measurement of these biomarkers may be relevant in monitoring 
treatment outcomes. Whereas studies concur with our result showing continuous reductions at 
6 months of follow-up (30), others showed persistent elevations up to 18-24 months (20). In 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2024. ; https://doi.org/10.1101/2024.10.09.24315196doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.09.24315196
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

addition, persistent and sustained level of CXCL9 was observed in the current study as reported 
by others (20). Two proteins, namely IL17C and NT3 exhibited significant increased expression 
levels among recovered COVID-19 patients. IL17C is a member of the IL17 family that plays a role 
in the immune response and enhances inflammatory responses by inducing the release of 
cytokines, such as IL1β, TNFα and IL6 (49). It might play a role in the persistent activation of the 
immune system contributing to the symptoms observed in Long COVID. NT3, a cytokine primarily 
known for its role in the nervous system (50), could be relevant in Long COVID through its role in 
immune regulation and tissue repair. By influencing the activity and survival of immune cells, NT3 
might help modulate the persistence of immune activation and inflammation seen in Long COVID.  

TRANCE, also known as RANKL, or TNFSF11, is known to be involved in the regulation of T cells 
and dendritic cells (51), which are key players in the immune response against SARS-CoV-2 (47). 
In this study, a high baseline level of TRANCE was associated with a reduced risk of developing 
Long COVID. Notably, reduced expression of TRANCE has been associated with severe COVID-19, 
including admission to the ICU (19,26), and low levels of TRANCE in the CSF predicted Long COVID 
in patients followed for 13 months (52). Given that Long COVID has been linked to  persistent viral 
replication (53-56), it is tempting to propose that this biomarker plays a role in modulating the 
anti-SARS-CoV-2 immune response.  

The differences in the findings between our data and other studies may be attributed to 
differences in the case definitions for COVID-19 severity, Long COVID, follow-up duration, study 
design, and differences in patient population characteristics. We and others have previously 
demonstrated that acute COVID-19 illness in Africa is, in general, less severe than in HICs despite 
the intense transmission rate in LICs (11,57,58). Notably, an estimated 25-42% of COVID-19 
individuals in HICs end up being hospitalized or admitted into the intensive care unit (ICU), 
particularly during the earlier phases of the pandemic due to the ancestral  variant (59-61). On 
the contrary, in the setting of LICs, only <5% of all COVID-19 patients develop severe COVID-19 
(11,57). This has been ascribed to pre-existing cross-immunity, immuno-modulation, or trained 
immunity (39-41). Likewise, we hypothesize that a similar mechanism operates in the 
pathogenesis of Long COVID showing a low burden of Long COVID in certain parasite-endemic 
areas in Africa (62).  

A strength of our study includes the interrogation of proteomics related to the pathophysiology 
of acute and long-term sequelae of SARS-CoV-2 infection in an LIC setting. Additionally, the 
plasma sampling time and the assessment of the baseline proteomic levels for predicting Long 
COVID risk. Several studies have included samples that were analyzed ranging between day <1 
and >24 months (63-65). Adjustment for confounders which included age, comorbidity and SARS-
CoV-2 variant associated with increased risk of Long COVID in our cohort is another strength of 
this study. Finally, albeit in a small number of patients, we also included the assessment of protein 
level trajectories over time that revealed some unique features that may help in Long COVID 
treatment outcomes. Nonetheless, our study has several limitations. Similar to several other 
studies, our cohort also suffers from analysis based on a relatively small sample size (63-65). 
Second, we did not have SARS-CoV-2 genotype data although we have attempted to relate our 
analysis to the predominant variants circulating in the country during the enrollment period of 
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our cohort participants (44-46). Finally, we determined 92 proteins focusing on inflammatory 
panels  and we may have failed to detect all relevant proteomic biomarkers.    

In conclusion, our data revealed that unique proteomic signatures are associated with severe 

COVID-19 and Long COVID in the African context. Dysregulation of proteomic patways involved in 

cellular degranulation and proteolysis was significantly expressed among COVID-19 patients 

versus non-COVID-19 controls. Additionally, significantly increased unique proteomic expression 

in critically ill COVID-19 patients compared to non-COVID-19 controls or recovered COVID-19 

patients compared to those who developed Long COVID exhibited inflammatory cytokines, 

chemoattractant for neutrophils, T cells, NK cells, monocytes, and endothelial cells. The findings 

should serve as baseline data informing future -omics studies in LMIC settings involving a larger 

sample size and more diverse additional proteomic panels related to cardiovascular, neurological, 

and metabolic dysregulations associated with post-COVID-19 sequelae (32-36). Additionally, this 

study provides critical insights into the pathophysiology of acute and long-term consequences of 

COVID-19, informing strategies and treatment approaches (66). 

Methods 

Patient recruitment and follow-up. This study (Clinicaltrials.gov: NCT04584424) is a prospective 

observational cohort study being undertaken in Ethiopia and the study protocol has been 

described in detail previously (43). The study was reviewed and approved by the Health Research 

Ethics Review Committee of the Ethiopian Public Health Institute in Ethiopia (EPHI-IRB-282-2020) 

and the Hamilton Integrated Research Ethics Board (HiREB:16956). Written informed consent was 

obtained by all participants, or their guardians, for participation in the study.  

Adults 18 years and older presenting with respiratory infections attending hospital-based settings 

between August 2021 and February 2022 were recruited and screened using real-time 

polymerase chain reaction (RT-PCR) and/or antigen tests, or anti-nucleocapsid antibody tests. 

Individuals with confirmed SARS-CoV-2 infection (i.e., positive in any of the tests mentioned 

above) were considered COVID-19 cases. Those with a negative SARS-CoV-2 PCR, or antigen, or 

no documented evidence of COVID-19 clinically were considered as COVID-19-negative non-

COVID-19 controls. The controls were not tested for other pathogens although the patients had 

“influenza-like illness” at enrollment. Individuals without evidence of COVID-19 at enrollment 

who became infected during follow-up were excluded. In addition, individuals with 

immunosuppression, including HIV-1 infection were excluded. Sociodemographic, clinical, and 

laboratory data were collected using standardized Case Record Forms (CRFs) adapted from the 

International Severe Acute Respiratory and Emerging Infection Consortium’s (ISARIC) CRFs for 

emerging severe acute respiratory infections (67). Data was entered using the REDcap software 

package. The baseline patient’s severity status was classified following the WHO criteria as 

asymptomatic, mild/moderate, severe (with dyspnea, respiratory rate ≥ 30 breaths per minute, 

O2 saturation ≤ 93%, lung infiltrates ≥ 50% of the lung fields within 24-48 hours), and critical (with 

respiratory failure, septic shock, and/or multiple organ failure) (68). Cohort follow-up was 
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conducted for the survey of persistent symptoms occurring at any time from the onset of COVID-

19 included in the WHO case definition and defined as the presence of at least one persistent 

symptom of > 2 months duration occurring 12 weeks from the onset of acute COVID-19 illness 

(3).  

Sample collection and processing. Peripheral blood was collected using EDTA vacutainers within 

1 to 21 days of SARS-CoV-2 diagnosis during acute illness, and follow-up samples were collected 

after 180 (+30), and 365 (+30) days post-symptom onset. Plasma was stored frozen at -80oC until 

analysis and transported to McMaster University for Olink proteomic analysis.  

Proteomic analysis. The Olink targeted 96 inflammation proximal extension assay (PEA) platform 

(Uppsala, Sweden) was used as per the manufacturer’s guidelines (69). The Olink Target 96 

Inflammation panel offers a broad selection of proteins associated with inflammatory and 

immune response processes. In brief, the PEA platform uses antibody pairs linked to unique DNA 

oligonucleotides, that bind to target proteins. The binding of the antibodies to their target 

proteins brings the DNA oligonucleotides into closer proximity and results in the hybridization 

and formation of a new DNA sequence. The DNA sequence is then amplified and quantified using 

real-time PCR. Normalized Protein eXpression (NPX), an arbitrary unit normalized into the log2 

scale, is used to define the protein expression level. Measurements that failed the internal quality 

control with a warning were excluded from the dataset. 

Statistical analysis. Baseline characteristics with continuous variables were summarized as 
median [interquartile ranges (IQR)], and categorical variables as frequencies (percentages). 
Continuous variables were compared by Mann-Whitney U or Kruskal-Wallis tests, and categorical 
variables using χ² test or Fisher’s exact test. Cox proportional hazard (HR) was used to ascertain 
the association between explanatory variants (including age, sex, body-mass index, comorbidity, 
vaccination, reinfection, SARS-CoV-2 variant) and outcomes of interest, namely critical COVID-19 
during acute illness and development of Long COVID. Multivariate HR was estimated by including 
all significant values (age above 50 years, comorbidity, and infection during the predominant 
circulating Delta variant) in univariate analysis.   

Initial unsupervised clustering of groups was performed by principal component analysis (PCA) 
and heat maps. The differential fold-change (log2) expression of proteomics was estimated 
between the different groups. Multiple testing corrections were applied according to Benjamini 
and Hochberg’s procedure, and data were visualized using violin plots. The association between 
the expression of each protein and outcome (i.e. critical illness or Long COVID) was then 
compared using cox-proportional hazard. Cox proportional regression models were conducted to 
estimate the association of each biomarker expression level [as the dependent variable, 
categorized into high (> median NPX) or low (< median NPX) expression levels] with incident Long 
COVID followed by adjustments for confounding covariates (70). Kaplan-Meier curves were 
created to visualize the effect of protein expression levels on the risk of developing Long COVID. 
Statistical differences between groups were estimated by rank test. Gene Ontology (GO) terms 
and STRING was used for protein-protein interaction pathways analysis (70). In addition, Receiver 
operating curves (ROCs) was used to determine which protein significantly predicted symptoms. 
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p-values < 0.05 were considered significant. R studio, GraphPad Prism, and STATA software were 
used for statistical analysis.  
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Figure legends 

Fig. 1. Study design and data analysis.  

Fig. 2. Clinical characteristics of study groups at baseline. (A) Age-, sex-distribution, and SARS-
CoV-2 vaccination coverage of the different group study participants. (B) Adjusted hazard risk (HR) 
for critical illness during the acute phase of COVID-19, or Long COVID. 

Fig. 3. Differential expression of inflammatory proteome in COVID-19 patients compared to 
non-COVID-19 controls. (A) A principal component analysis between COVID-19 and non-COVID-
19 individuals.  (B) Median (IQR) protein expressions [expressed as log2-transformed Normalized 
Protein eXpression (NPX) values in non-COVID-19 controls, COVID-19, non-critical COVID-19, or 
critical COVID-19 patients. P values: *<0.05, **0.01, ***<0.001, and ****<0.0001 were calculated 
using Kruskal Wallis with Dun’s correction for multiple tests. (C) A volcano plot showing 
differential expression analysis comparing proteomics from COVID-19 patients with non-COVID-
19 controls. Red and blue dots represent significantly (adjusted for multiple testing by Benjamini-
Hochberg) up- and down-regulated proteomics, respectively. Gray dots indicate nonsignificant.  

Fig. 4. Differential expression of inflammatory proteome in critical COVID-19 patients compared 

to non-critical COVID-19 patients or non-COVID-19 controls. Predicting power of differentially 

expressed proteins, gene enrichment and protein-protein interactions. A principal component 

analysis between critical COVID-19 and non-critical illness (A), or between critical COVID-19 and 

non-COVID-19 individuals (C). A volcano plot showing differential expression analysis comparing 

proteomic expression levels of critical COVID-19 patients with non-critical COVID-19 patients (B), 

or non-COVID-19 controls (D). Red dots represent significantly (adjusted for multiple testing by 

Benjamini-Hochberg) upregulated proteins. Gray dots are insignificant. (E) Heat maps showing 

differential expression of proteins in individuals without COVID-19, non-critical COVID-19, or 

critically ill COVID-19 (F) Adjusted cox-proportional hazard risk (HR) for critical illness. HR [(95% 

confidence intervals (CI)] in red colour signifies increased risk of critically ill COVID-19 patients per 

unit change in log2-transformed NPX values of each protein. Gray colours are statistically not 

significant values. (G) Receiver operating characteristic (ROC) curve analysis of the upregulated 

proteins associated with Critical COVID-19 illness. (H)  Gene enrichment and protein-protein 

interaction pathways of significantly expressed proteomes between critical and non-critical 

COVID-19 patients. 

Fig. 5. Differential proteomic expression  in individuals with COVID-19 who developed Long 

COVID compared to recovered COVID-19 patients, and predicting power of differentially 

expressed proteins, gene enrichment and protein-protein interactions  of significantly differed 

proteins in Long COVID. (A) A principal component analysis between recovered COVID-19 and 

those who developed Long COVID. (B) Heat maps showing differential expression of proteins in 

non-COVID-19, recovered COVID-19, or Long COVID. (C) Median (IQR) protein expressions in 

individuals with COVID-19 who developed Long COVID compared to recovered COVID-19 

patients. P values, ****<0.0001 were calculated using Kruskal Wallis with Dun’s correction for 
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multiple tests. (D) A volcano plot showing differential expression analysis comparing proteomics 

in those who developed Long COVID with those who recovered. Red and blue dots represent 

significantly (adjusted for multiple testing by Benjamini-Hochberg) up- and down-regulated 

proteins, respectively. Gray dots indicate nonsignificant. (E) Adjusted cox-proportional hazard risk 

(HR) for Long COVID. HR (95% CI) in red signifies an increased risk and blue signifies a reduced 

risk of Long COVID per unit change in log2-transformed NPX values of each proteome. Gray colours 

are not significant. (F) Receiver operating characteristic (ROC) curve analysis of the upregulated 

or downregulated proteins associated with Long COVID risk. (G) Gene enrichment and protein-

protein interaction pathways of significantly expressed proteomes between critical and non-

critical COVID-19 patients. 

Fig. 6. Predicting of progression to Long COVID and trajectories of proteomic expression levels 

overtime. (A) Kaplan-Meier curves showing the clinical progression of Long COVID. Statistical 

differences between high (> median NPX) or low (< median NPX) proteomic expression levels 

were estimated by rank test. (B) Simple regression analysis of the trajectories of the significantly 

expressed proteomic levels in recovered COVID-19 versus Long COVID.  
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Figure 1. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 

 

 

 

 

 

 

 

 

Patient group:                             Baseline           2
nd

 sampling          3
rd

 sampling 

Recovered COVID-19: 

                   Sampling month:               0.5+0.2                     6.0+0.7                     11.3+0.5 

                   # sampled:                                 32                               20                                 20 

 Long COVID:           

                    Sampling month:               0.4+0.2                     6.0+0.6                     12.0+0.6 

                   # sampled:                                  23                               12                                  8 
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Table 1. Baseline Sociodemographic and Clinical Characteristics of Study Participants 

Characteristic Non-COVID-19 
controls 
(n = 23) 

COVID-19 positive  

All COVID-19 
(n =55) 

Acute illness outcome Long-term outcome 

Non-critical 
(n=33) 

Critical 
(n=22) 

Recovered 
COVID-19 

(N=32) 

Long COVID 
(n=23) 

Sex (Female) § 11 (47.8) 37 (47.4) 16 (48.5) 10 (45.5) 16 (50.0) 10 (43.5) 

Age [median, y (IQR)] 43 (34-60) 38 (29-49) 36 (28-45) 43 (34-54) 35.5 (28-45) 43 (34-60) 

Age group       

   ≥50 7 (30.4) 12 (21.8) 5 (15.2) 7 (31.8) 4 (12.5) 8 (34.8)* 

BMI category  
(overweight and obese) 

9 (39.1) 21 (38.2) 14 (42.4) 7 (31.8) 13 (40.6) 8 (34.8) 

Comorbidity  
(at least 1 pre-existing condition) 

7 (30.4) 17 (30.9) 4 (12.1) 13 (59.1)**** 6 (18.8) 11 (47.8)* 

Hospital admission 9 (39.1) 22 (40.0) 0 (0.0) 22 (100.0)*** 6 (18.8) 16 (69.6)**** 

Intensive Care Unit admission 0 (0.0) 7 (12.7)**** 0 (0.0) 7 (31.8)*** 4 (12.5) 3 (13.0) 

Vaccination (at least 1 dose) 8 (34.8) 21 (38.2) 13 (39.4) 8 (36.4) 11 (34.4) 10 (43.5) 

On medications       

   Anticoagulants 7 (30.4) 18 (32.7) 0 (0.0) 18 (81.8)*** 5 (15.6) 13 (56.5)** 

   Antibiotics 8 (34.8) 24 (43.6) 6 (18.2) 18 (81.8)*** 12 (37.5) 12 (52.2) 

   Immunosuppressants 7 (30.4) 14 (25.5) 0 (0.0) 14 (63.6)**** 3 (9.4) 11 (47.8)** 

Oxygen supplemental therapy    9 (39.1) 22 (40.0) D0 (0.0) 22 (100.0)*** 6 918.8) 16 (69.6)*** 

Predominant variant in pandemic wave        

    Delta N/A 22 (40.0) 4 (12.1) 18 (81.8)**** 9 (28.1) 13 (56.5)* 

    Omicron N/A 33 (60.0) 29 (87.9) 4 (18.2) 23 (71.9) 10 (43.5) 

SARS-CoV-2 reinfection N/A 5 (9.1) 4 (12.1) 1 (4.6) 3 (9.4) 2 (8.7) 
§Data are participants, No. (%) unless otherwise described. 

***p<0.001; ****p<0.0001 (Pearson’s Chi2 or Fisher’s exact test, where appropriate) when non-COVID-
19 compared to COVID-19, or non-critical compared to critical COVID-19 patients, or recovered 
compared to Long COVID. 
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Supplemental materials 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1. The four major COVID-19 waves in Ethiopia (Source: 

https://www.worldometers.info/coronavirus/country/ethiopia) and the corresponding                          

SARS-CoV-2 variants circulating in the country during the different pandemic waves. Data for the                         

SARS-CoV-2 genotyping is obtained from EPHI and has been published previously (44-46). The cohort for 

the current study enrolled between waves 2 and 4.  
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Supplementary Figure 2. Gene Ontology (GO), KEGG and Reactome pathways (A) and STRING 

protein-protein interaction  (B). 
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Supplementary Figure 3. Combined AUC scores of SLAMF1, IL15RA, and IL18 in critical COVID-
19 (A), or TNF, IL15RA and IL18 in Long COVID (B) 
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Supplementary Table 1. Baseline Clinical Characteristics of Study Participants 

Characteristic a All COVID-19 
(n =67) 

Non-critical COVID-19 
 (n =45) 

Critical COVID-19 
(n =22) 

P value* 

Headache 25 (45.5) 11 (33.3) 14 (63.6) 0.027 

Loss of smell 27 (49.1) 12 (36.4) 15 (68.2) 0.021 

Loss of taste 25 (45.5) 11 (33.3) 14 (63.6) 0.027 

Cough 22 (40.0) 5 (15.2) 17 (77.3) <0.0001 

Shortness of breath 17 (30.9) 4 (12.1) 13 (59.1) <0.0001 

Wheezing 13 (23.6) 6 (18.2) 7 (31.8) 0.244 

Chest pain 22 (40.0) 9 (27.3) 13 (59.1) 0.018 

Sore throat  26 (47.3) 9 (27.3) 17 (77.3) <0.0001 

Nasal congestion 25 (45.5) 13 (39.4) 12 (54.6) 0.269 

Anorexia 25 (45.5) 14 (42.2) 11 (50.0) 0.580 

Vomiting/nausea 12 (21.8) 11 (33.3) 1 (4.6) 0.011 

Diarrhea 8 (14.6) 7 (21.2) 1 (4.6) 0.086 

Abdominal pain 9 (16.4) 7 (21.2) 2 (9.1) 0.234 

Arthralgia 29 (52.7) 13 (39.4) 16 (72.7) 0.015 

Myalgia 28 (50.9) 12 (36.4) 16 (72.7) 0.008 

Fatigue or malaise 30 (54.6) 13 (39.4) 17 (77.3) 0.006 

Fever 28 (50.9) 12 (36.4) 16 (72.7) 0.008 

Conjunctivitis 18 (32.7) 15 (45.5) 3 (13.6) 0.014 

Pneumonia 15 (27.3) 0 (0.0) 15 (68.2) <0.0001 
aData is number (%). *Differences calculated using Pearson’s Chi2 or Fisher’s exact test where 
appropriate. 
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Supplementary Table 2. Inflammatory panel proteomics assessed in this study. 

ADA Adenosine Deaminase 

ARTN Artemin 

AXIN1 Axin-1 

Beta-NGF Beta-nerve growth factor 

CASP-8 Caspase-8 

CCL9 C-C motif chemokine 19 

CCL20 C-C motif chemokine 20 

CCL23 C-C motif chemokine 23 

 CCL25 C-C motif chemokine 25 

  CCL28 C-C motif chemokine 28 

  CCL3 C-C motif chemokine 3  

  CCL4  C-C motif chemokine 4 

  CD40 CD40L receptor 

  CDCP1 CUB domain-containing protein 1 

  CXCL1 C-X-C motif chemokine 1 

  CXCL10  C-X-C motif chemokine 10  

  CXCL11 C-X-C motif chemokine 11 

  CXCL5  C-X-C motif chemokine 5  

  CXCL6 C-X-C motif chemokine 6 

  CXCL9  C-X-C motif chemokine 9 

  CST5 Cystatin D 

  DNER Delta and Notch-like epidermal growth factor-related receptor 

  CCL11 Eotaxin 

  4E-BP1 Eukaryotic translation initiation factor 4E-binding protein 1 

  FGF-19 Fibroblast growth factor 19 

  FGF-21 Fibroblast growth factor 21 

  FGF-23 Fibroblast growth factor 23 

  FGF-5 Fibroblast growth factor 5 

  Flt3L Fms-related tyrosine kinase 3 ligand  

  CX3CL1  Fractalkine 

  GDNF Glial cell line-derived NEUtrophic factor 

  HGF Hepatocyte growth factor 

  IFN-gamma Interferon gamma  

  IL-1 alpha Interleukin-1 alpha 

  IL10 Interleukin-10 

  IL-10RA Interleukin-10 receptor subunit alpha 

  IL-10RB Interleukin-10 receptor subunit beta 

  IL-12B Interleukin-12 subunit beta 

  IL-13 Interleukin-13 

  IL-15RA Interleukin-15 receptor subunit alpha 

  IL-17A Interleukin-17A 

  IL-17C Interleukin-17C 

  IL-18 Interleukin-18 

  IL-18R1 Interleukin-18 receptor 1 

  IL-2 Interleukin-2  

  IL-2RB Interleukin-2 receptor subunit beta 

  IL-20 Interleukin-20 

  IL-20RA Interleukin-20 receptor subunit alpha 

  IL-22 RA1 Interleukin-22 receptor subunit alpha-1 

  IL-24 Interleukin-24 

  IL-33 Interleukin-33 

  IL-4 Interleukin-4 
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  IL5 Interleukin-5 

  IL6 Interleukin-6 

  IL-7 Interleukin-7  

  IL-8 Interleukin-8  

  LAP TGF-beta-1 Latency-associated peptide transforming growth factor beta-1 

  LIF Leukemia inhibitory factor 

  LIF-R Leukemia inhibitory factor receptor 

  CSF-1 Macrophage colony-stimulating factor 1 

  MMP-1 Matrix metalloproteinase-1  

  MMP-10 Matrix metalloproteinase-10 

  MCP-1 Monocyte chemotactic protein 1  

  MCP-2 Monocyte chemotactic protein 2 

  MCP-3 Monocyte chemotactic protein 3 

  MCP-4 Monocyte chemotactic protein 4 

  CD244 Natural killer cell receptor 2B4 

  NT-3 NEUtrophin-3 

  NRTN Neurturin 

  OSM Oncostatin-M 

  OPG Osteoprotegerin 

  PD-L1 Programmed cell death 1 ligand 1 

  EN-RAGE  Protein S100-A12 

  SLAMF1 Signaling lymphocytic activation molecule 

  SIRT2 SIR2-like protein 2 

  STAMPB STAM-binding protein 

  SCF Stem cell factor  

  ST1A1 Sulfotransferase 1A1 

  CD6 T cell surface glycoprotein CD6 isoform 

  CD5 T-cell surface glycoprotein CD5 

  CD8A T-cell surface glycoprotein CD8 alpha chain 

  TSLP Thymic stromal lymphopoietin 

  TNFB TNF-beta 

  TRANCE TNF-related activation-induced cytokine 

  TRAIL TNF-related apoptosis-inducing ligand 

  TGF-alpha Transforming growth factor alpha  

  TWEAK Tumor necrosis factor   Ligand superfamily member 12 

  TNF Tumor necrosis factor 

  TNFSF14  Tumor necrosis factor ligand superfamily member 14  

  TNFRSF9 Tumor necrosis factor receptor superfamily member 9 

  uPA Urokinase-type plasminogen activator 

  VEGF-A Vascular endothelial growth factor A 
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