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ABSTRACT

Background: Echocardiograms provide vital insights into cardiac health, but their complex, multi-
dimensional data presents challenges for analysis and interpretation. Current deep learning models
for echocardiogram analysis often rely on supervised training, limiting their generalizability and
robustness across datasets and clinical environments.
Objective: To develop and evaluate EchoVisionFM (Echocardiogram video Vision Foundation
Model), a self-supervised video learning framework designed to pre-train a video encoder on large-
scale, unlabeled echocardiogram data. EchoVisionFM aims to produce robust and transferrable
spatiotemporal representations, improving downstream performance across diverse echocardiogram
datasets and clinical conditions.
Methods: Our framework employs Echo-VideoMAE, an autoencoder-based video transformer that
compresses and reconstructs echocardiogram video data by masking non-overlapping video patches
and leveraging a ViT encoder-decoder structure. For enhanced representation, we introduce STFF-
Net, a Spatio Temporal Feature Fusion Network, to integrate spatial and temporal features from the
manifold representations. We pre-trained EchoVisionFM using the MIMIC-IV-ECHO dataset and
fine-tuned it on the EchoNet-Dynamic dataset for downstream tasks, including classification and
regression of key cardiac parameters.
Results: EchoVisionFM demonstrated superior performance in classifying left ventricular ejection
fraction (LVEF), achieving an accuracy of 89.12%, an F1 score of 0.9323, and an AUC of 0.9364.
In regression tasks, EchoVisionFM outperformed state-of-the-art models, with LVEF prediction
reaching a mean absolute error (MAE) of 4.18% and an R² of 0.8022. The model also showed
significant improvements in estimating end-systolic and end-diastolic volumes, with R² values of
0.8006 and 0.7296, respectively. Incorporating STFF-Net led to further performance gains across
tasks.
Conclusion: Our results indicate that large-scale self-supervised pre-training on echocardiogram
videos enables the extraction of transferable and clinically relevant features, outperforming traditional
CNN-based methods. The EchoVisionFM framework, particularly with STFF-Net, enhances
the extraction of spatiotemporal features, improving the predictive accuracy for various cardiac
parameters. EchoVisionFM offers a powerful, scalable approach for echocardiogram analysis, with
potential applications in clinical diagnostics and research.
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1 Introduction

Echocardiograms are among the most widely used non-invasive imaging techniques in cardiology, essential for
assessing cardiac structure and function.[1] The dynamic nature of echocardiogram videos provides a rich dataset for
diagnosing various heart conditions, including valvular heart disease, cardiomyopathies, heart failure, and congenital
heart disease.[2] The clinical utility of echocardiogram lies in its ability to deliver real-time imaging of cardiac anatomy
and function without exposing patients to radiation, making it a safer alternative to imaging modalities such as CT scans
and X-rays. Echocardiograms offer invaluable insights into heart morphology, blood flow, and tissue motion, aiding
clinicians in diagnosing conditions, planning treatment strategies, and monitoring therapeutic interventions.[1] Their
diagnostic capabilities are diverse, enabling visualization of left ventricular size and function, assessment of valvular
abnormalities, detection of pericardial effusions, and evaluation of myocardial ischemia.[2] Additionally, their rapid
availability and cost-effectiveness enhance their appeal in clinical settings.

Despite their widespread use, interpreting echocardiograms poses challenges. Cardiologists and echocardiographers
rely on manual interpretation, a process that demands significant expertise and is inherently subjective.[3] Variability
in image quality, inter-operator differences, and the need for experience in distinguishing normal from pathological
findings contribute to the complexity of echocardiogram interpretation. As global demand for echocardiogram increases,
the shortage of expert clinicians becomes evident, particularly in under-resourced healthcare systems. Furthermore, the
complexity of echocardiographic images, influenced by patient body composition and operator skill, complicates the
standardization of interpretations and leads to inter-observer variability.[4]

In the past decade, advancements in deep learning and computer vision have led to the development of numerous vision
models that impact various industries, including healthcare. Recently, the application of Vision Foundation Models
(VFMs)[5, 6, 7, 8, 9, 10] in medical imaging analysis has shown great promise, particularly in echocardiogram.[11]
These advanced machine learning frameworks, pre-trained on extensive datasets, provide a robust foundation for
constructing specialized models that enhance the accuracy and efficiency of analyzing cardiac ultrasound images.[12,
3, 13, 14, 15] By leveraging VFMs, clinicians and researchers can utilize deep learning capabilities to automatically
recognize and quantify cardiac structures and functions, potentially transforming the diagnostic landscape. This
approach promises improved diagnostic accuracy and a significant reduction in variability associated with human
interpretation, paving the way for more tailored and expedient cardiac treatment.

Traditionally, echocardiogram analysis has heavily relied on the interpretation of static two-dimensional frames,
[16, 17, 18, 19, 20, 21, 22] which can limit understanding due to the dynamic nature of cardiac function. This
reliance results in the loss of crucial temporal and three-dimensional spatial information necessary for assessing cardiac
dynamics.[23, 24, 25] Static frames provide only snapshots, omitting continuous motion and volumetric changes of the
heart throughout the cardiac cycle, which are vital for evaluating parameters such as ejection fraction, wall motion,
and blood flow patterns. This dimensionality reduction can lead to inaccuracies and oversights in diagnoses, as critical
aspects of heart function between frames may be missed. Additionally, dependence on single-frame interpretations
heightens variability and subjectivity among different interpreters, potentially resulting in inconsistent clinical outcomes.
The inability to capture and analyze the full spectrum of cardiac activity in real time poses significant challenges for
accurate diagnosis and effective monitoring of heart conditions.

To address these limitations, we employed one of the most popular and robust video VFMs, VideoMAE (Video Masked
Auto-Encoder), to directly model video data and generate a sequence of video manifold representations.[26] By utilizing
VideoMAE, we gain a comprehensive view of the heart’s movements and functionalities over time. This methodological
shift allows us to extract temporal and spatial features that more accurately represent physiological conditions, providing
deeper insights into cardiac mechanics. The capacity to model sequential video data facilitates continuous assessment
of the heart, enabling the identification of subtle changes that might be overlooked when analyzing isolated frames.
This approach enhances the precision and reliability of cardiac assessments and propels us toward more sophisticated,
automated diagnostic tools that can improve patient outcomes through early and accurate detection of cardiac anomalies.
We adapted the vanilla VideoMAE for the echocardiogram domain, training the model on a public dataset, resulting in
our Echo-VideoMAE.

An important question arises regarding the optimal use of video representations generated by VideoMAE. In traditional
2D image processing, pooling all representations to create the most expressive representation is common, whether
derived from ConvNets [27, 28, 29] or Transformers-style models.[30, 31] However, we argue that applying the same
strategy to video data would squander the spatiotemporal correlations inherent in these representations. To improve
cardiac function assessment and other heart-related tasks, we propose a concise, efficient fine-tuning network, called the
Spatio Temporal Feature Fusion network (STFF-Net), to enhance the performance of echocardiogram diagnoses.

In this paper, we develop EchoVisionFM (Echocardiogram video Vision Foundation Model), an effective two-stage
deep learning framework for automating echocardiogram diagnosis. First, Echo-VideoMAE is trained on the MIMIC-
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IV-ECHO dataset in a self-supervised manner. Next, STFF-Net is applied on top of the well-trained echo video encoder,
fine-tuning all trainable parameters for specific downstream tasks. Our extensive experiments demonstrate that our
proposed method surpasses state-of-the-art models in echocardiogram tasks. In summary, our contributions are as
follows:

• Contribution 1: Through efficient self-supervised video pre-training utilizing a masking strategy, we developed
a powerful echocardiogram vision encoder that processes entire video clips instead of individual image frames.
Notably, all data used for the pre-training stage is sourced from publicly available datasets.

• Contribution 2: We introduced a lightweight and innovative spatiotemporal feature fusion network, enhancing
predictive accuracy across multiple cardiac clinical tasks.

• Contribution 3: Our proposed model surpassed a range of existing state-of-the-art models in echocardiogram
analysis, establishing a new benchmark for future research in this field.

2 Related work

2.1 Automated clinical diagnosis for echocardiogram

Significant advancements have been made in automated clinical diagnosis using echocardiograms, largely driven
by developments in artificial intelligence (AI) and machine learning (ML). Numerous studies [23, 25, 32, 33] have
demonstrated the potential of deep learning models, particularly convolutional neural networks (CNNs), to accurately
identify and quantify cardiac structures, assess cardiac function, and detect pathologies in echocardiographic data.
For instance, research indicates that AI can automate the measurement of standard echocardiographic parameters,
such as left ventricular volume and ejection fraction, achieving accuracy comparable to that of experienced clinicians.
Moreover, innovative approaches utilizing recurrent neural networks (RNNs) [34, 35] and 3D CNNs [36] have been
explored to better handle the temporal and volumetric data inherent in echocardiogram videos, [24], enhancing the
ability to monitor dynamic changes over time. These technologies not only promise to alleviate the workload of
cardiologists by automating routine tasks but also aim to standardize echocardiographic assessments, thereby reducing
inter-observer variability and improving diagnostic consistency. This growing body of work signifies a pivotal shift
toward more sophisticated, AI-driven diagnostic tools in cardiology, suggesting a promising future for the automation
of echocardiographic analysis.

The increasing availability of large echocardiogram datasets has further facilitated the development of AI-based
diagnostic approaches. [37] Both traditional machine learning models and contemporary deep learning techniques have
shown promise in automating echocardiogram interpretation and accurately detecting various heart conditions.[37]
However, these models often depend on large amounts of labeled data, which can be expensive and time-consuming to
acquire.[3] While supervised deep learning models have demonstrated success, annotating medical videos, such as
echocardiograms, requires specialized domain expertise, where even minor errors can lead to significant diagnostic
inaccuracies.[38] This bottleneck in generating large, annotated datasets limits the full potential of these models.
Consequently, a major challenge within the AI community is to develop methods that can leverage unlabeled data to
create robust models without extensive manual labeling.[39]

2.2 Video representation learning

In the deep learning and computer vision communities, the traditional approach to vision analysis and representation
learning has predominantly involved fully supervised learning.[40, 27] Training effective models typically necessitates
a substantial amount of labeled data, governed by various task-specific labels. When transferring models to other
tasks, the prediction head is removed from the pre-trained model, and a new head is established for the new tasks.
Recently, semi-supervised video representation learning has gained attention, allowing unlabeled training samples to be
supervised using representations from labeled samples.[41] However, the top-down training paradigm employed in
supervised or semi-supervised representation learning does not adequately explore the fundamental structure of video
data.

Several multi-modal contrastive learning algorithms have been developed to extract video representations from loosely
structured text supervision.[42, 43] With the emergence of self-supervised video learning, large-scale foundation models
have begun to be built solely using unlabeled data, which is significantly less costly than acquiring high-quality labeled
data. Prior knowledge of temporal information is often leveraged to design pretext tasks for self-supervised video
learning (SSVP). [44, 45, 46] Contrastive learning [47, 48, 49, 50] Contrastive learning has emerged as a prominent
method for enhancing visual representations, although it typically requires substantial data augmentation and large mini-
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batch sizes.[51] Researchers have employed CNNs or LSTMs to predict video clips in pixel space, while VideoMAE
utilizes a basic masked autoencoder with modern ViT backbones for data-efficient SSVP.

Given the scarcity of labeled echocardiogram datasets, employing traditional fully-supervised models for feature
extraction is often impractical, thereby creating a niche for self-supervised models. In the medical domain, certain
predetermined data modalities, such as chest X-rays and echocardiograms, exhibit high structural consistency across
different patient cases, with significant variation primarily in regions of interest (ROIs) reflecting various health
conditions or disease severities. This characteristic of medical visual data stands in contrast to natural visual data,
which can vary dramatically even within the same category. Consequently, variational autoencoders (VAEs) [52, 53, 54]
are well-suited for modeling echocardiogram data, as they effectively capture intra-class characteristics and compress
high-dimensional data into lower-dimensional representations by reconstructing input data from learned latent vectors.
A substantial body of research has focused on VAEs for learning representations [55, 56, 57], image generation
[58, 59] and this line of inquiry continues to evolve. Inspired by this work, we employed video masked autoencoders
(VideoMAE) [26] for learning compact, informative video representations.

2.3 Spatiotemporal feature funsion

Several approaches have been proposed to effectively fuse spatial and temporal features in video understanding tasks.
One of the earliest and most influential methods is the Two-Stream Network, which processes spatial features from
individual RGB frames using a CNN and temporal motion features from stacked optical flow with another CNN.
[60, 61]. This method processes spatial features from individual RGB frames using a CNN and temporal motion
features from stacked optical flow using another CNN. These two streams are subsequently fused to leverage both
appearance and motion information for tasks such as action recognition. The advent of 3D Convolutional Networks (3D
CNNs), exemplified by C3D, marked a significant shift towards integrated spatial-temporal processing.[62, 63, 64]
3D CNNs extend traditional 2D convolutions into the temporal domain, enabling the simultaneous capture of spatial
and temporal features from raw video data. More recently, transformer-based models have emerged as powerful tools
for spatial-temporal fusion, applying multi-scale self-attention over hierarchical spatial-temporal windows to capture
both local and global dependencies across space and time.[65, 66, 67] Our STFF-Net builds upon the Two-Stream
Network framework, utilizing both 2D and 3D CNNs along with self-attention blocks to enhance performance in video
understanding tasks.

3 Methodology

In this section, we first explain our choice of VideoMAE as the self-supervised model framework and analyze its
architecture and properties. We then introduce our pre-trained framework, termed Echo-VideoMAE. Finally, we
propose a novel, lightweight SpatioTemporal Feature Fusion Network (STFF-Net) designed to optimize the utilization
of representations from the pre-trained video encoder while leveraging spatiotemporal correlations in a low-dimensional
representation space.

3.1 Echo-VideoMAE

We utilized the powerful self-supervised video learning framework, Echo-VideoMAE, for our first-stage pre-training.[26]
This framework is based on VideoMAE, which was trained on approximately 200,000 echocardiogram samples from
the publicly available MIMIC-IV-ECHO dataset.[68] Following the original model’s structure, we implemented a
straightforward tube masking strategy with a high masking ratio to facilitate MAE pre-training using an asymmetric
encoder-decoder architecture derived from ImageMAE.[55] Figure 1(a) illustrates the workflow of the proposed
EchoVisionFM framework. Below, we revisit the key components and concepts of VideoMAE.

Masking strategy: As present by VideoMAE, our framework employed high-ratio masking strategy (masked ratio up
to 80%-90%) to account for the temporal redundancy in videos.[69, 70] An echocardiogram video typically comprises
a series of captured frames that gradually change in the temporal dimension.[70, 71] As shown in Figure 1(b), there
is considerable duplication between frames, leading to two significant challenges for masked video auto-encoding.
First, maintaining the original temporal frame rate during pre-training would be less effective, necessitating a focus on
static or slow motions. Second, the presence of temporal redundancy dilutes motion-based representations, making it
relatively straightforward to reconstruct missing pixels using a standard masking ratio (e.g., 50% to 75%). Consequently,
dynamic motion representations may not be effectively captured by the encoder backbone.

To address the temporal redundancy observed between consecutive echocardiogram frames, we employed a strided
temporal sampling technique for more efficient video pre-training. We randomly selected a video clip with Traw

consecutive frames from the original video V , compressing it to T frames using temporal sampling, with each frame
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Figure 1: Framework for Echocardiogram Videos Vision Foundation Model (a) The EchoVisionFM framework
consists of three stages: pre-training the Echo-VideoMAE, fine-tuning for specific downstream tasks, and testing for
inference. During the fine-tuning phase, the encoder weights can either be frozen or further optimized to enhance
performance.(b) Tube Masking employs a consistent masking map across all frames, utilizing a high-ratio masking
strategy to improve robust feature extraction.(c) The STFF-Net architecture features dual pathways for feature fusion:
the joint space-time pathway, which integrates dense absolute 3D positional encoding with a ResNet block, and the
disjoint space-time pathway, which processes these dimensions using sparse relative 1D time-series positional encoding.

containing 3 × H × W pixels. In our experiments, the stride τ was set to 2 for the MIMIC-IV-ECHO dataset. In
Echo-VideoMAE, we used a joint space-time cube embedding approach [3, 22, 39], treating each 2× 16× 16 cube as a
single token embedding. This cube embedding layer generates T

2 × H
16 × W

16 3D tokens, which are then transferred to
the channel dimension D. This design reduces spatiotemporal redundancy in frames and enhances the effectiveness of
the reconstruction task.

Backbone: Due to the high masking ratio, the encoder receives only a limited number of tokens as input. To capture
high-level spatiotemporal information from the unmasked tokens, we employed a vanilla ViT backbone[30] and joint
space-time attention [9, 72] for both the encoder and decoder. The multi-head self-attention layer facilitates interactions
among all pairs of tokens.[73]

Learning objective: Following the standard workflow of auto-encoders, [52, 58], our Echo-VideoMAE model
compresses input data into manifold representations through an encoder and then reconstructs these representations
back to the raw pixel space via a decoder. Specifically, VideoMAE performs masking and reconstruction tasks by
splitting the input video clip V ∈ RT×3×H×W is splitted into non-overlapping cubes of size 2× 16× 16 (stride τ set to
be 2). Each cube is treated as a token embedding, with (90%) randomly unmasked tokens supplied to the ViT encoder
(Φenc). The reconstruction is performed using a shallow decoder (Φdec) applied to the visible tokens and learnable
masks. The loss function calculates the mean squared error (MSE) between the normalized masked tokens and the
reconstructed ones in pixel space:

Lrecon =
1

M

∑
i∈M

|V (i)− V̂ (i)|2 (1)

where i is the token index, M is the set of masked tokens, V is the input video clip, and V̂ is the reconstructed version.

By optimizing this loss function, the encoder and decoder are effectively trained to encode input videos and decode
manifold representations back to the input data. After pre-training, we retain the lightweight decoder while using the
powerful encoder to obtain representations. Unlike traditional CNN-based networks, our ViT encoder is flexible and
insensitive to the number of token embeddings, allowing us to input any unmasked video data to generate complete,
expressive video representations in a low-dimensional space, suitable for various downstream tasks requiring minimal
fine-tuning..

3.2 STFF-Net

We propose a novel, efficient SpatioTemporal Feature Fusion network (STFF-Net), designed to leverage all available
representations and their spatiotemporal correlations from the pre-trained Echo-VideoMAE..
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Inefficient utility of representations: As previously discussed, we utilized a vanilla ViT as the video encoder to
transform video clips into a sequence of manifold representations containing the most expressive information from the
raw video. However, due to the use of joint space-time attention within the ViT, these learned representations primarily
capture global, high-level visual information while neglecting the spatiotemporal relationships between individual video
patches.[66]In natural language processing tasks, [73, 74], the relationships between words in a sentence are sequentially
one-dimensional, allowing each word to be uniformly attended to by all others. In contrast, the three-dimensional
correlations among video patches are crucial and should not be overlooked or simplified through pooling operations, as
each patch’s relative position significantly impacts the information it conveys.

Architecture: To address these challenges, we designed a customized spatiotemporal feature fusion network, as
illustrated in Figure 1(c). This network takes a sequence of patch embeddings from the video encoder as input and
outputs a final embedding for downstream tasks, such as regression and classification. To account for the distinct
yet complementary relationships between spatial and temporal dimensions, we propose two separate feature fusion
pathways for deeper integration of features.

Joint space-time feature fusion pathway: The manifold representations, shaped as N × L × D (where N is the
mini-batch size, L is the length of patch embeddings, and D is the feature dimension), are first reshaped into a
three-dimensional feature map of size N ×D× t×h×w, where t = T

τ , h = H
16 , w = W

16 . Note that L = t ∗h ∗w. We
then add dense 3D positional encoding [75, 76] to the feature maps before passing them into a ResNet block consisting
of 3D convolutional layers, batch normalization, and ReLU activation. This strengthens the 3D relationships among
the representations. The resulting feature map is flattened while maintaining the batch size and feature dimension.
Finally, we apply a gated attention mechanism[77] to assign self-attention weights to each patch embedding, achieving
a compact joint space-time video representation, yielding an output size of N ×D.

Disjoint space-time feature fusion pathway: In contrast to the previous pathway, we treat the manifold representations
as a 2D feature map of size N ∗ t×D× h×w. This approach allows us to isolate spatial and temporal relationships to
learn disjoint representations. This 2D feature map is processed through a 2D ResNet block for spatial information
extraction[29], followed by a large-stride 2D convolutional layer (with a stride of (h,w)) to compress the feature map
and capture abstract semantic representations in 2D space. The output is reshaped into a sequential tensor of size
N × t×D. Given that downsampling frames from the original echocardiogram video results in large temporal gaps,
these frame indices are encoded using 1D positional encodings generated by a sinusoidal function and transformed by
the proposed sparse positional encoding network(a two-layer fully connected network).[73, 78, 79] We then incorporate
the learned sparse temporal positional encodings into the sequential tensor, followed by compression of the sequence of
embeddings using a gated attention mechanism. The output of this pathway is also of size N ×D.

The embeddings from both pathways are concatenated along the feature dimension, resulting in a final embedding of
size N × 2 ∗D. This representation serves as input for any task-specific head. Our experiments demonstrate that the
proposed network performs effectively, surpassing state-of-the-art models across multiple downstream tasks.

3.3 Study Approval

This study exclusively used publicly available data.

4 Experiments

In this section, we first introduce the datasets used to pre-train our Echo-VideoMAE and to fine-tune it, with and without
the proposed STFF-Net, for comprehensive cardiac assessment. We then present the main results from EchoFM on
downstream tasks, comparing its performance to that of vanilla VideoMAE [26], Video ResNet [80], and Vivit [72].

4.1 Datasets

MIMIC-IV-ECHO: We utilized the MIMIC-IV-ECHO dataset [68] for pre-training our Echo-VideoMAE, which is part
of the larger MIMIC-IV database. [81] This dataset comprises approximately 500,000 echocardiogram videos collected
from 7,243 studies involving 4,579 distinct patients at Beth Israel Deaconess Medical Center between 2017 and 2019.
The videos were originally stored as DICOM files, a standard format in medical imaging that includes both video data
and metadata. For our purposes, these DICOM files were converted to AVI format using the PyDICOM library, retaining
only the video frames and excluding metadata. To preserve comprehensive visual information, we uniformly sampled
16 frames from each original AVI file, resizing each frame to 224× 224. Simple data augmentation techniques, such as
random vertical and horizontal flips, were applied to enhance data utility and model generalizability. Consequently, all
video data used for pre-training had a uniform shape of 16× 3× 224× 224, with each pixel represented in RGB color
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space. To the best of our knowledge, this work is the first to leverage the MIMIC-IV-ECHO dataset—a fully public,
de-identified, large database—to establish a video vision foundation model. For practical reasons related to storage, we
utilized 40% of the available data from this dataset.

EchoNet Dynamic: The EchoNet-Dynamic database [17] includes 10,030 labeled echocardiogram videos along with
human expert annotations, including measurements, tracings, and calculations. Specifically, this dataset comprises
apical-4-chamber echocardiogram videos from individuals who underwent imaging as part of routine clinical care at
Stanford University Hospital between 2016 and 2018. The original standardized 112x112 pixel videos were upsampled
to 224× 224 using bilinear interpolation. Each video is linked to clinical measurements and calculations performed by
a registered sonographer and verified by an echocardiographer as part of the standard clinical workflow. Key metrics,
including left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (ESV), and left ventricular
end-diastolic volume (EDV), are associated with each video.

4.2 Echocardiogram interpretation

Using the well-trained echo video encoder from Echo-VideoMAE, we cascaded this encoder with STFF-Net and a
classification head, fine-tuning the entire model across a variety of benchmark echocardiogram datasets. We evaluated
our method on the held-out test set from EchoNet-Dynamic.[17] The results demonstrated an accuracy of 0.8912,
an F1 score of 0.8912, and an area under the ROC curve (AUC) of 0.9323. Figure 2(a) presents the ROC curve for
Echo-VideoMAE without STFF, while Figure 2(b) and Table 1 compare Echo-VideoMAE against other baseline models,
highlighting the improved performance of Echo-VideoMAE with STFF, which achieved a higher AUC of 0.94.

(a) Echo VideoMAE(w/o STFF) (b) Baseline Comparison

Figure 2: Comparison of ROC Curves of EF-Classification

Table 1: Classification performance of LVEF (threshold 50%) on Echonet-Dynamic dataset
Accuracy F1 Score AUC

Vivit 0.8371 0.9013 0.8540

Video ResNet 0.8747 0.9223 0.8975

Vanilla VideoMAE 0.8768 0.9228 0.9136

Echo VideoMAE with max pooling 0.8896 0.9311 0.9330

Echo VideoMAE with STFF-Net 0.8912 0.9323 0.9364

The confusion matrices for the baseline models are displayed in Figure 3, demonstrating that Echo-VideoMAE with
STFF-Net outperforms the others in terms of true positives and false positives.
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Figure 3: Comparative Confusion Matrix for Baseline Model.

4.3 Cardiac function and pressure assessment

Following the same pipeline, we further evaluated our method on quantitative tasks, specifically estimating left
ventricular ejection fraction (LVEF), left ventricular end-systolic volume (ESV), and left ventricular end-diastolic
volume (EDV) from EchoNet-Dynamic.[17]

EchoFM predicts LVEF with a mean absolute error (MAE) of 4.18% and a R of 0.8022. The performance metrics are
summarized in Tables 2 3 4, indicating that our model exhibits superior performance compared to previous models.
Figure 4 illustrates the advantages of the Echo-VideoMAE model, particularly when enhanced by the STFF-Net module,
in accurately predicting crucial cardiac functional parameters.

Table 2: Regression performance of LVEF on Echonet-Dynamic dataset
MAE MSE RMSE R²

Vivit 0.0668 0.0082 0.0906 0.4510

Video ResNet 0.0544 0.0055 0.0741 0.6323

Vanilla VideoMAE 0.0505 0.0045 0.0671 0.6986

Echo VideoMAE with max pooling 0.0481 0.0040 0.0635 07304

Echo VideoMAE with STFF-Net 0.0418 0.0030 0.0547 0.8022

Table 3: Regression performance of ESV on Echonet-Dynamic dataset
MAE MSE RMSE R²

Vivit 0.3704 0.2286 0.4781 0.3763

Video ResNet 0.2473 0.1018 0.3190 0.7223

Vanilla VideoMAE 0.2990 0.1477 0.3843 0.5970

Echo VideoMAE with max pooling 0.2286 0.0856 0.2952 0.7666

Echo VideoMAE with STFF-Net 0.2096 0.0731 0.2703 0.8006

5 Discussion

This study demonstrates that large-scale video datasets of echocardiogram studies can serve as a foundation for training
and deploying medical video models. Our echocardiogram video foundation model, along with the designed two-stage
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Table 4: regression performance of EDV on Echonet-Dynamic dataset
MAE MSE RMSE R²

Vivit 0.2732 0.1219 0.3491 0.3901

Video ResNet 0.2009 0.0674 0.2596 0.6626

Vanilla VideoMAE 0.2252 0.0816 0.2856 0.5918

Echo VideoMAE with max pooling 0.1977 0.0638 0.2526 0.6806

Echo VideoMAE with STFF-Net 0.1796 0.0540 0.2325 0.7296

(a) LVEF (b) ESV (c) EDV

Figure 4: Comparison of Echo-VideoMAE with and without the STFF module (top row) alongside baseline models
(bottom row) for predicting LVEF, ESV, and EDV. Performance is assessed using the correlation coefficient (R) in
relation to the ground truth.

pipeline, effectively addressed several benchmark prediction and assessment tasks. The model exhibited remarkable
transferability and robustness in domain adaptation, having been pre-trained on data from one healthcare facility
and fine-tuned on downstream tasks from entirely separate hospitals with diverse acquisition settings. Moreover, the
Echo-video encoder, leveraging self-supervised video pre-training and a unique masking strategy, adapted well to the
structured manifold space, yielding strong and transferable visual representations. Through the use of SSVP and masked
auto-encoding, our model outperformed existing state-of-the-art baselines, which often relied on fully supervised
learning. Additionally, the proposed STFF-Net, designed to leverage the spatiotemporal correlations within video
representations, significantly enhanced performance across nearly all assessments of cardiac function and key clinical
value predictions.

EchoVisionFM is the first echocardiogram video foundation model trained exclusively on publicly available datasets.
In contrast, previous echo-related vision models were trained on private datasets from specific healthcare systems,
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which hampers the broader application of these AI systems. [82, 23, 83] Notably, EchoVisionFM outperformed
previous models, achieving competitive results. For instance, it attained a mean absolute error (MAE) of 4.18% in
external validation of LVEF prediction from Echonet-Dynamic, while the most recent video-based LVEF AI model [83]
achieved an MAE of 4.34% and a multi-modal AI model [82] reported an MAE of 7.1%. For the clinically significant
LVEF threshold of 50%, EchoVisionFM surpassed previous AI models, achieving an AUC of 0.9364 compared to the
0.89–0.90 achieved by others. [82].

A central challenge in integrating emerging AI systems in the medical field is the scarcity of available training data.
Previous echocardiogram AI models were typically trained on a maximum of 150,000 echocardiogram videos.[84]
Medical labeling remains a labor-intensive task, even for experienced clinicians, often requiring hundreds or thousands
of labeled samples for challenges like regression and segmentation.[85, 86, 87] Consequently, training a medical
foundation model using fully supervised learning is often impractical, despite its potential for superior performance due
to robust supervision. The first-stage pre-training utilized in this study capitalized on large unlabeled public datasets,
instilling comprehensive video prior knowledge into our Echo-video encoder. The well-trained encoder can serve not
only as a feature extractor for echocardiogram vision tasks related to heart function evaluation but also as a visual
encoder for future language-vision models. We believe that this out-of-the-box medical video encoder has significant
potential to enable more powerful multi-modal foundation models capable of processing various 3D medical video data,
including CT scans, MRIs, and endoscopy videos.

In cardiovascular diagnosis and evaluation, clinicians typically use echocardiogram videos to assess patient conditions
and severity. Over the past few years, numerous vision AI models have been developed, exploring both pure vision
models and language-vision models.[5, 6, 7, 8, 9, 10, 3, 13] and language-vision models [82, 88] We noted that many
echocardiogram-related models rely on 2D image frames extracted from the entire echocardiogram[6, 82, 23] rather
than directly modeling 3D video clips, which contain crucial motion-based information for accurately analyzing heart
contraction and function. Our model processes entire echocardiogram videos as input, ensuring that comprehensive
visual information is utilized while avoiding significant computational costs. Intuitively, video-based features are likely
to be more informative than image-based features, and empirically, our model has indeed outperformed previous AI
models on comparable visual tasks.

In addition to the Echo-video encoder, we developed a novel, simplified Spatiotemporal Feature Fusion Network
(STFF-Net). This network is integrated with the Echo-video encoder and fine-tuned during the second stage. For
standard ViT encoders using the original self-attention mechanism, [73, 30], adding a learnable classification token [30]
pooling the last-layer token embeddings is common practice for specific downstream tasks. However, this approach
overlooks the correlations between video patches and fails to leverage the full range of information available from the
echocardiogram videos. Our design can be adapted to any ViT-style encoder, potentially enhancing overall performance.

Limitation
Despite the promising results demonstrated by our Echo-VideoMAE model and STFF-Net, there are several
limitations that warrant discussion First, while our model was trained on the MIMIC-IV-ECHO dataset and
fine-tuned on the EchoNet-Dynamic database, the generalizability of our approach to diverse populations and
varying clinical practices remains uncertain. The datasets used primarily originate from specific healthcare facilities,
which may not capture the full spectrum of echocardiographic variations encountered in broader clinical settings.
Second, although we utilized a high masking ratio to exploit temporal redundancy in echocardiogram videos,
our approach may overlook finer temporal details crucial for specific cardiac assessments. The sampling and
compression of video frames may result in the loss of critical motion-related information, potentially affecting
the accuracy of certain predictions. Third, given the relatively limited diversity of echocardiographic data in the
datasets used, there is a risk of overfitting. While the pre-training strategy mitigates this concern, continuous mon-
itoring and validation on external datasets are necessary to ensure robust performance across different clinical scenarios..

Future work
Future directions for this work involve enhancing the spatiotemporal network to capture more intricate patterns in
heart dynamics, integrating additional modalities such as electrocardiograms, and deploying the system in real-time
clinical settings. Additionally, exploring multi-task learning to predict multiple cardiac conditions simultaneously
could significantly enhance its utility for comprehensive heart disease detection. Like many deep learning models,
Echo-VideoMAE operates as a "black box," which can complicate the interpretation of its decision-making processes.
Gaining a clearer understanding of how the model generates its predictions is essential for fostering clinical adoption
and building trust. Therefore, further research into interpretability techniques will be critical. As AI continues to
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advance, EchoVisionFM offers a promising foundation for developing more efficient, scalable, and accurate diagnostic
tools in medicine.

6 Conclusion

In this study, we developed EchoVisionFM, a pioneering echocardiogram video foundation model that leverages
large-scale, publicly available datasets for training and deployment. Our approach demonstrates significant
advancements in the prediction and assessment of cardiac function through a self-supervised learning framework,
highlighting the model’s robust transferability and adaptability across diverse clinical settings. By integrating
Echo-VideoMAE with a novel STFF-Net, we achieved superior performance in various cardiac assessment tasks
compared to existing state-of-the-art models. The findings suggest that utilizing a complete echocardiogram video
rather than isolated frames provides richer information, leading to more accurate predictions of critical cardiac
parameters. EchoVisionFM represents a significant step forward in harnessing the potential of AI in cardiology, paving
the way for more effective diagnostic tools that can enhance patient care and outcomes. As we continue to innovate in
this space, we aim to contribute to the broader goal of advancing healthcare through intelligent, data-driven solutions.
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Appendix

7 Model architecture

Here, we provide an overview of the model backbone, prediction head, and loss function for all our experiments in
Table 5.

Table 5: Model architecture
backbone prediction head loss function

Echo-VideoMAE with STFF ViT-B

2-layer MLP mean square erro for regression,
binary cross entropy for classification

Echo-VideoMAE ViT-B
Vanilla VideoMAE ViT-B

Video Resnet Resnet50
Vivit ViT-B

8 Training setting

We conducted our experiments using four GPUs for pre-training on the MIMIC-IV-ECHO dataset and one GPU for
fine-tuning on downstream labeled datasets. To enhance training and inference speed, we utilized the PyTorch [89],
PyTorch Lightning [90], Tramsformers [91] and Accelerate [92] frameworks. Additionally, we have made our code and
pre-trained models publicly available to support future research in echocardiogram and general medicine.

MIMIC-IV-ECHO. Our Echo-VideoMAE was pre-trained for 50 epochs on the MIMIC-IV-ECHO dataset by default.
We employed simple random flip data augmentation with a 0.5 probability. The detailed pre-training configuration is
presented in Table 6.

Table 6: Pre-training setting
MIMIC-IV-ECHO[68]

optimizer AdamW [93]
learning scheduler LinearWarmupCosineAnnealing [94]
initial learning rate 1e-4

warmup learning rate 1e-5
optimizer momentum 0.9, 0.95 [95]

weight decay 0.05
warmup epochs 2k
training epochs 50k

batch size 64
filp augmentation yes

Echonet-Dynamic. Our fine-tuning experiments were conducted over 50 epochs on the downstream dataset. We
employed simple random flip data augmentation with a 0.5 probability. The detailed fine-tuning configuration is
provided in Table 7. We trained Vivit and Video ResNet from scratch using fully supervised learning. Additionally,
we fine-tuned Vanilla VideoMAE with pre-trained weights [26] on Kinetics-400 [96]. The echo video encoder was
fine-tuned both with and without the STFF-Net, utilizing the pre-trained weights from our first-stage pre-training.
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Table 7: Fine-tuning setting
Echonet-Dynamic [17]

optimizer AdamW [93]
learning scheduler LinearWarmupCosineAnnealing [94]
initial learning rate 5e-4

warmup learning rate 1e-5
optimizer momentum 0.9, 0.999

weight decay 0.01
warmup steps 5k

training epochs 20k
batch size 32

filp augmentation yes
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