
A flexible multi-sensor device enabling handheld

sensing of heart sounds by untrained users

Andrew McDonald1*†, Maximilian Nussbaumer1†,
Nirmani Rathnayake1, Richard Steeds2, Anurag Agarwal1

1Department of Engineering, University of Cambridge, Cambridge,
United Kingdom.

2Queen Elizabeth Hospital and Institute of Cardiovascular Sciences,
University of Birmingham, Birmingham, United Kingdom.

*Corresponding author(s). E-mail(s): andrewmcdonald@cantab.net;
†These authors contributed equally to this work.

Abstract

Heart valve disease has a large and growing burden, with a prognosis worse
than many cancers. Screening with a traditional stethoscope is underutilised,
often inaccurate even in skilled hands, and requires time-consuming, intimate
examinations. Here, we present a handheld device to enable untrained users to
record high-quality heart sounds without the need to undress. The device incor-
porates multiple high-sensitivity sensors embedded in a flexible substrate, placed
at key chest locations by the user. To address challenges from localised heart
sound vibrations and noise interference, we developed time-frequency signal qual-
ity algorithms that automatically select the best sensor in the device and reject
recordings with insufficient diagnostic quality. A validation study demonstrates
the device’s effectiveness across a diverse range of body types, with multiple sen-
sors significantly increasing the likelihood of a successful recording. The device
has the potential to enable accurate, accessible, low-cost heart disease screening.
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1 Main

The stethoscope is a classic medical device for assessing bodily functions by listening to
acoustic vibrations (auscultation). It is of particular importance for the first detection
of heart murmurs indicating valvular heart disease (VHD), which is one of the most
common causes of heart failure and has been described as the ‘next cardiac epidemic’
[1]. More than half of patients with significant VHD remain undiagnosed [2], and
more than half of patients in Europe receive surgery too late, when intervention is less
effective [3].

A key reason for this underdiagnosis is that accurate cardiac auscultation requires
significant skill and can be a time-consuming and intimate process. A stethoscope exam
requires a patient to undress and for the small chest piece to be placed carefully at
key locations on the chest, including under the left breast [4]. Because of these factors,
auscultation was only performed on 38% of UK patients with symptoms indicative of
VHD [5], and female patients are less likely to receive a complete cardiac exam [6].

Even when a stethoscope exam is performed, the overall diagnostic accuracy of
primary clinicians is poor [7]. General practitioners miss more than half of significant
asymptomatic cases of VHD [8], and unnecessary referrals for innocent or absent
murmurs are common [9].

In recent years, machine learning algorithms to automatically diagnose heart sound
recordings have shown promising performance [10–13]. However, these algorithms still
rely on a good quality signal recorded by a digital stethoscope [14]. Given the signif-
icant skill required in auscultation, digital recordings are often poor quality [14, 15].
This limits the reliable use of digital stethoscope screening to skilled clinicians in
traditional primary care environments.

Designing a device with a large sensing area over the thorax increases the likeli-
hood of capturing high-quality signals from the key auscultation sites, eliminating the
need for skilled placement [16]. Previous studies have designed large spatial arrays of
adhesive sensors [17, 18]. However, sticking sensors onto the skin is time-consuming,
intrusive, and often painful. Other studies have proposed wearable sensor arrays that
are pressed against the chest using straps or vests [16, 19–21]. However, designing
a wearable device that can conform to a wide range of body shapes and breast
sizes is challenging. Dressing a patient in a wearable ‘jacket’ may also be cumber-
some and time-consuming, requiring intimate contact between the clinician and the
patient. None of these devices have demonstrated formal usability studies that would
be suitable for regulatory approval.

Crucially, most of these proposed devices require subjects to undress to apply the
device on a bare chest [16–20]. This is a significant barrier to the widespread adoption
of screening, particularly for female patients [22, 23]. With appropriate application
force, piezoelectric sensors have been shown to obtain good-quality recordings through
clothing [22]. Therefore, the need to undress may be overcome by a device design that
does not rely on adhesives or wearables.

In this work, we present a proof-of-concept design and the first validation of a
novel acoustic device that enables quick and easy self-collection of a patient’s heart
sound data, removing the need for an intimate examination by an external clinician.
Paired with machine learning algorithms [24], this device has the potential to enable
widespread screening of VHD to be carried out by non-skilled operators in resource-
strained primary care and community settings. This is made possible through (1)
using multiple high-sensitivity piezoelectric sensors, optimally arranged in a flexible
substrate, (2) keeping the device large enough to allow imprecise placement and small
enough to fit in the palm of a hand, and (3) developing signal processing techniques to
automatically assess the signal quality of recordings and provide feedback to the user.
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Fig. 1 Design and example usage of sensor prototype. a, Exploded schematic of full sensor prototype. In this prototype, the
housed sensors are connected to an external data acquisition system through flexible wires (not shown). A future design could
be made wireless using a Bluetooth connection. b, Exploded view of one housed piezoelectric sensor. c, The prototype held
by subjects at three key auscultation locations on the chest. The flexibility of the device allows it to conform to the curved
surface of the chest, which is particularly important under the left breast at the mitral location.

2 Results

2.1 Mechanical device design

The device, shown in Fig. 1a, consists of six piezoelectric sensors arranged in a pen-
tagonal pattern within a flexible 10.5 cm diameter substrate, ensuring easy handling
for over 95% of users [25]. The sensors are spaced with a maximum separation of 5
cm, ensuring there are no sensing gaps large enough to miss localised heart sounds,
thus providing comprehensive coverage of the sensing area around each auscultation
site. Each sensor houses a PZT transducer (Fig. 1b), chosen for its insensitivity to
airborne noise and reliability in vibration detection.

The flexible substrate, made of silicone gel, maintains sensor positioning while
minimising mechanical coupling. This ensures independent chest vibration measure-
ments, with the device conforming to curved areas, especially around the left breast.
The overall contact area is 87 cm2, with only 15 cm2 occupied by rigid components
(see Extended Fig. E1).

Fig. 1c shows the application of the device at the key auscultation locations. Tra-
ditionally, four locations are used for cardiac auscultation. However, the pulmonic
auscultation site is less critical for screening acquired valvular heart disease, as most
VHD primarily affects the aortic and mitral valves. Consequently, the pulmonic loca-
tion is often excluded in clinical studies focused on these more common left-sided valve
pathologies [8]. Further design details and material properties are provided in Section
4.1.
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Fig. 2 Response of a device sensor and a Littmann 3200 electronic stethoscope to the same excitation
signal on a laboratory phantom. PSDs are referenced to the sensor’s noise floors (also shown). For
details see section 4.2.

2.2 Signal acquisition and benchmarking

Each sensor contains a 15 mm diameter PZT disc housed in a 3D-printed casing. The
PZT material is sandwiched between a brass electrode, which forms the outer layer,
and a smaller silver electrode. When the sensor is pressed against the chest, vibrations
cause the brass electrode to bend, which in turn deforms the PZT material, generating
an electric charge. This charge is converted into a voltage signal by an integrated charge
amplifier, optimized with a 1 nF feedback capacitance and 4.5 V supply to maximise
dynamic range. Low-frequency artefacts, such as hand tremors, are reduced by a 20
Hz high-pass filter, and the sensor is shielded to minimize electrical interference. The
six sensors are sampled simultaneously at 5,120 Hz.

Figure 2 presents a comparison of our device sensor and the Littmann 3200 stetho-
scope, a standard reference for benchmarking, in response to identical excitation on a
laboratory phantom. Both sensors’ outputs are referenced to their mean noisefloors in
the 500–1,000 Hz range (detailed in section 4.2). The excitation level is tuned to give
a fairly flat response for the Littmann 3200 at an average amplitude of 36 dB above
its reference noise floor. Below 200 Hz, typical heart sounds are expected to exceed
this amplitude. Under these conditions, both sensors produce signals well above their
noisefloors.

Our device sensor outperforms the Littmann 3200 at frequencies below 300 Hz,
indicating enhanced sensitivity to the key frequency range of heart sounds. While the
Littmann 3200 shows better performance above 300 Hz, the device sensor maintains
a significant margin above its noisefloor. Although this paper focuses on the 20–200
Hz range, the validation demonstrates the sensor’s potential for detecting higher-
frequency murmurs and respiratory sounds. Overall, the performance of both sensors
is comparable, as expected, given their similar use of PZT discs for vibration detection.

2.3 Processing of heart vibration data

In a subject with a structurally normal heart, two major heart sounds, known as S1
and S2, are heard in rhythm [4]. The S1 sound, caused by the closure of the mitral and
tricuspid valves at the start of the systolic period has a frequency range of 10-200Hz
[26], with power concentrated in the 25-45Hz band [27]. The S2 sound is similarly
caused by the closure of the aortic and pulmonary valves at the start of diastole and
has a frequency range of 25-250Hz [26] with power concentrated between 55-75Hz [27].
The corresponding chest accelerations are of the order of milli-gravity (mg) [28] and
have a duration of approximately 0.1 seconds [26]. The strength of S1 and S2 sounds
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Fig. 3 Example multi-sensor heart sound recording from the device, held by a female subject at the aortic auscultation site. a, Sensor
outputs after a zero-phase 20 to 600Hz bandpass filter. Significant variations in signal amplitude and SNR can be seen across the sensors,
with sensor 5 achieving a clear peak of 21.9 dB. b, The aortic auscultation location on the chest, illustrating that the best recordings in
this case were towards the sternal border. c, SNR results shown visually, with a traffic light system coding poor SNR (<8 dB), moderate
SNR (8-12 dB), and good SNR (>12 dB).

across the chest is highly non-uniform, with S1 stronger towards the lower left of the
chest, near the apex of the heart.

Figure 3a shows an example of the synchronised recordings obtained from a female
subject at the aortic auscultation position at the upper left sternal border. Significant
variations in signal strength can be observed across the multi-sensor device, illustrating
the advantage of having a large sensing area. The position of the heart within the chest,
combined with varying widths of fatty tissue and the ribs, leads to highly localised
vibration zones on the chest. In addition, non-uniform application pressure from the
hand and spurious movement can cause inter-sensor differences.

Automated signal quality assessment algorithms are applied to the multi-sensor
output to objectively select the best sensor for further analysis and decide if a record-
ing needs to be repeated. We compute a signal-to-noise ratio (SNR) for each sensor in
the recording, by comparing the power spectral density of S1 and S2 sounds to sur-
rounding quiet systolic or diastolic sections. When used on the chest, sensors encounter
background vibrations, contributing to mechanical noise. This noise, calculated as
background noise in this paper, stems from room vibrations, biological processes in the
body of the subject and the shaking of the user’s hand. These background vibration
levels exceed the noise floor of the sensor shown in Figure 2. However, the high sensi-
tivity of the sensors enables them to achieve high SNRs ensuring that sensor self-noise
does not limit performance. The SNR algorithm is further described in Section 4.4.

Figure 3c shows the significant variation in SNR across the device. It also shows
a potential way these SNR values could be displayed to a user to help guide optimal
device placement. In this specific example, the user would need to reposition the device
slightly northeast from their current position for better signal quality. A sensor signal
with a high SNR (e.g. sensor 5 in Figure 3) would be selected for further analysis,
either by a clinician (remotely or in-person) or a diagnostic machine learning model.
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2.4 Validation study

A proof-of-concept study on healthy volunteers assessed the device’s performance at
collecting heart sounds in the hands of untrained users. A total of 40 participants (20
male and 20 female), all without medical training, were recruited from Cambridge,
UK. The participants represented a diverse range of ages and BMIs, as shown in
Table 1. Participants were categorised into standard adult BMI categories of under-
weight (BMI ≤ 18.5 kgm−2), normal (18.5 kgm−2 < BMI ≤ 25 kgm−2), overweight
(25 kgm−2 < BMI ≤ 30 kgm−2), and obese (BMI > 30 kgm−2).

Table 1 Key biometric variables of study participants, split by biological sex.

Variable Group Female (n=20) Male (n=20) p-value

Age (years) 45 (32-56) 42 (28-56) 0.61

BMI (kgm−2) 22.9 (21.1-28.5) 26.6 (23.2-29.0) 0.59

BMI group Underweight 1 (5%) 1 (5%) -
Normal 11 (55%) 7 (35%) -
Overweight 4 (20%) 7 (35%) -
Obese 4 (20%) 5 (25%) -

Chest size (cm)1 90 (87-110) 101 (95-109) 0.28

Bra No bra - 20 (100%) -
Bra without underwire 6 (30%) - -
Bra with underwire 14 (70%) - -

Continuous variables are reported as median (interquartile range). Categorical variables
are reported as frequency (proportion). Statistical difference between the means of the
continuous variables was assessed using Welch’s t-test.
1Chest size was measured as circumference around the widest part of the chest.

Under supervision from a researcher, patients placed the patch at four different
locations on their chests. Three of these are shown in Figure 1: the aortic area (second
intercostal space [ICS], right sternal border), tricuspid area (fourth ICS, left sternal
border), and mitral area (here defined as fifth ICS, midclavicular line). The mitral loca-
tion is typically found by palpating for the apex beat. However, to make this recording
accessible for untrained users, the midclavicular line was used as an anatomical refer-
ence point. Additionally, a nearby ‘mitral left’ location was included in the protocol,
where the patch was moved left (from the patient perspective) from the mitral site so
that the patch edge was located on the midclavicular line. This ensured comprehensive
coverage of the mitral region. Extended Data Figure E2 details these four locations.
At each location, three 15-second recordings were made over a thin layer of cloth-
ing such as a T-shirt or blouse. For participants wearing a bra, recordings were made
both with and without it to investigate the effect of the bra on recording quality. See
Methods 4.3 for further details on the study protocol.

All recordings were segmented using the machine learning algorithm from Section
2.3. A researcher manually checked all segmentations. Recordings where the researcher
could not confidently validate the segmentation due to excessive noise or low signal
strength were labelled as ‘unsegmentable’. An SNR was then calculated for each of the
six sensors in every segmentable recording. The sensor with the highest SNR within
any 10-second window was selected as the ‘best’ SNR for that recording. This process
avoided unwanted noise in certain brief sections of the recording (e.g. start or end).
A recording was deemed to ‘pass’ the signal quality assessment if it met the following
criteria: (i) a valid segmentation, (ii) at least six complete sections of S1, S2, sys-
tole, and diastole, and (iii) a sensor with an SNR above a chosen threshold (8 dB in
this paper, as explained below). Table 2 presents the pass rate for patients across all
recording locations, categorised by sex and BMI. For males, performance was excel-
lent at the three main auscultation sites (aortic, mitral, tricuspid), with every male
participant achieving a passable recording at the tricuspid and mitral sites, regard-
less of BMI. For normal or underweight female participants, similar high performance
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was observed. However, the performance was reduced for females with higher BMIs
at the tricuspid and mitral sites. Specifically, 75% of overweight or obese patients had
a successful tricuspid recording, while only 50% of obese patients achieved a passable
mitral recording. The impact of BMI was further compounded when recordings were
attempted whilst patients wore a bra. Mitral recordings with a bra were successful in
75% (n=3) of overweight participants but only 25% (n=1) of obese participants.

Most participants (n=32) achieved a passable recording at both the mitral and
‘mitral left’ recording sites. Two participants had a passable recording at the ‘mitral
left’ location alone, whereas five participants had a passable recording at only the
mitral location. Only one participant failed to get a passable recording at either of the
mitral sites.

Table 2 Per-location signal quality assessment pass rate for patients with different
sex and BMIs.

Signal quality pass rate (%)

Female BMI Male BMI

Recording location
< 25 25− 30 > 30 < 25 25− 30 > 30

(n=12) (n=4) (n=4) (n=8) (n=8) (n=4)

Aortic 100 100 100 88 88 100
Tricuspid 92 75 75 100 100 100
Mitral 92 100 50 100 100 100
Mitral Left 100 75 75 100 62 75
Mitral (with bra) 83 75 25
Mitral Left (with bra) 92 25 50

All BMI values are in kgm-2. A recording location passed for a patient if any of the
three repeats passed.

Table 3 Advantages of a multiple sensor device, broken down by recording location. The
first part of the table shows the frequency with which each sensor had the best SNR. The
second part shows how the signal quality pass rate changes between using the best of 6
sensors, or just the central sensor in the device.

Frequency Pass rate (%)

best sensor BMI<25 BMI>25

1 2 3 4 5 6 Best Central Best Central

Aortic 5 1 1 9 55 39 90 60 83 32
Tricuspid 22 14 25 9 18 25 93 88 85 60
Mitral 20 7 27 39 6 8 90 85 72 50
Mitral Left 13 12 44 22 3 1 87 70 53 28
Mitral (Bra) 4 3 13 13 0 6 81 72 33 17
Mitral Left (Bra) 5 3 13 14 4 4 86 61 33 8

Patients made three recordings at each site - each recording repeat is reported separately.
The best sensors at each location are shown in bold.

The critical importance of using multiple sensors over a single-sensor device was
systematically examined. Table 3 shows that the sensor with the highest SNR varied
significantly across different auscultation sites. For the aortic site, sensors 5 and 6,
positioned near the sternum (see Figure 3c), consistently provided the best recordings.
Notably, the central sensor, which users aimed to align with the recording site, was
never the optimal choice. Table 3 also shows that the pass rate across different locations
would have considerably decreased if only the central sensor in the device was available.
This reduction in performance was particularly pronounced in overweight and obese
patients. For instance, at the aortic site the pass rate for these patients was 83% using
the best of 6 sensors, compared to just 32% when relying solely on the central sensor.

These pass rates for the recordings are dependent on the SNR threshold. The value
of 8 dB was selected to ensure clear S1 or S2 sounds in the recording and a significant
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Fig. 4 Distribution of recording signal-to-noise ratios (SNRs) by key variables. a, Proportion of unsegmentable and segmentable recordings
for each chest location, with segmentable recordings categorised into poor, moderate, or good SNR ranges. b, SNR of segmentable recordings,
split by biological sex. c, SNR of segmentable recordings, split into normal and high (overweight or obese) BMI. The means of the
distributions were compared using Welch’s t-test, with p-values shown.

gap between signal and noise for future usage on patients with abnormal murmurs that
may have lower signal power than the major heart sounds. However, other thresholds
could be picked depending on the exact clinical usage. Extended Fig. E3 shows the
distribution of SNRs for all segmentable recordings in the dataset, and shows how the
pass rate varies with the choice of threshold. The use of multiple sensors significantly
improves the recorded SNR compared to a single sensor, regardless of the chosen
threshold.

Beyond a binary pass criterion, the effect of recording location, sex, and BMI on the
SNR distribution was further investigated, as shown in Figure 4. Device performance
was highest at the tricuspid site, where 73% of recordings had an SNR greater than
12 dB. However, when comparing male and female participants (Figure 4b), SNR at
the tricuspid site was significantly lower for female patients (p < 0.001). Figure 4b also
indicates that female SNRs were higher than males at the aortic (p = 0.016) and mitral
left (p = 0.036) sites. However, BMI is a significant confounder in these results, with
no statistically significant differences at these sites among non-overweight patients. In
fact, Figure 4c shows that overweight or obese participants have significantly lower
SNRs (p < 0.001) at all locations except the tricuspid site.

3 Discussion

This paper presents a novel medical device designed to simplify the process of obtaining
high-quality heart sounds, particularly for untrained users. Notably, the ability to use
the device over clothing could significantly improve both comfort and adoption rates,
especially for female participants in routine screening programs. The device’s large,
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flexible sensing area significantly improves the quality of signals recorded compared to
a single central sensor. The objective signal quality assessment we developed provides
useful feedback, guiding users as they position the device over key auscultation sites.

The current design is in its alpha prototype phase, and future work will focus
on progressing towards medical device certification. This will require the design of a
manufacturing process, but the sequential bottom-up construction of the device means
techniques such as silicone overmoulding may be used. A key advantage of our design is
that all the device components can be easily available at scale, requiring no specialised
manufacturing processes.

The prototype currently uses a wired connection to an external data acquisition
unit, but transitioning to a fully wireless device would enhance usability. This could
be achieved by integrating a simultaneous ADC and Bluetooth Low Energy chip into
the existing circuitry. The primary challenge in this transition will be maintaining the
device flexibility while accommodating the additional components.

The participant study described in this paper serves as an initial validation of
the device’s use by untrained users, particularly its functionality over clothing. The
procedure was an example of a potential use-case of the device, where a trained pro-
fessional is present in the room to supervise the use of the device but does not make
physical contact with the patient. This setup simulates a common telemedicine use-
case, where a clinician may supervise the process remotely without direct contact. The
device has particular value in screening communities often missed by primary care,
where patients may prefer minimal physical interaction or remain fully clothed. How-
ever, further studies are needed to assess its usability by unsupervised patients, which
will require the development of straightforward instructional materials.

In our study, the device performed well for male participants and for underweight
or normal-weight females, with and without a bra. However, a decrease in performance
was observed for overweight and obese female participants, particularly at the mitral
site, likely due to the attenuation of heart vibrations by additional tissue. The presence
of a bra likely further contributes to this effect. A couple of female participants also
advised that they had breast implants, which reduced the signal quality further at
the tricuspid site, likely due to the added damping from the implant material. Future
iterations of the device would integrate real-time signal quality feedback, guiding users
on the direction they should move the patch to obtain an optimum signal, particularly
in challenging cases. Female participants could be asked to first attempt recordings
with a bra, and then remove it if the signal quality is insufficient.

A limitation of the validation study is the small sample size, particularly for sub-
analyses of the effect of BMI and wearing a bra. A second limitation is the absence
of participants with cardiovascular disease. However, laboratory testing demonstrates
that the device should be capable of detecting higher-frequency murmurs, and the sig-
nal quality assessment is designed to be robust in the presence of systolic or diastolic
murmurs. Although the volunteer pool included a range of ages, as a screening device,
the target population will predominantly be older, more likely to have hand tremors
and less familiar with apps and technology. The device will be prospectively tested on
a more representative population in a future clinical study, where it is combined with
a diagnostic machine learning algorithm [24] to provide a full screening solution for
valvular heart disease.

4 Methods

4.1 Device construction

The substrate of the device consists of a 4mm thick layer of highly-damped silicone
gel (Ecoflex™ gel with Silc Pig™ white pigment), which is cast in a mould. The base
of the substrate is covered with a very thin layer of polyethylene to provide insulation
and ingress protection. The individual sensors are mounted onto the polyethylene base
layer during assembly (using double-sided adhesive tape), and the silicone gel is then
moulded around them. Two layers of acoustic foam above the gel substrate provide
protection to the device internals and provide minor additional rigidity so that the
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device can be easily held in one hand. The layers of foam are not glued in place, and
there is air between them and the surrounding layers, increasing the flexibility of the
device. Finally, a silicone top layer is bonded to the substrate to yield a fully encased,
waterproof device that is safe for patient contact.

Each vibration sensor in the device consists of a lead zirconate titanate (PZT) disc
transducer housed in a circular 3D-printed casing with an outer diameter of 18mm.
The PZT discs are rim-mounted to the support structure via a foam layer that ensures
contact with the chest when the sensor is pressed against it. When a vibration sensor
is pressed against the chest, it forms a coupled system with the human body, where the
operator’s hand not only provides mechanical impedance but also affects the properties
of the chest tissue and the skin surface topology. MEMS accelerometers, air-coupled
electret microphones, and piezoelectric contact microphones are commonly used to
capture body sounds. However, MEMS accelerometers exhibit reduced performance
when held, as the grip impedes their motion. In contrast, pressure sensors perform
optimally when held, as the firm contact maximises the pressure applied to the sensor,
similar to the mechanism of traditional acoustic stethoscopes [29]. Among these, piezo-
electric contact microphones are preferable for this application due to their reduced
sensitivity to airborne noise and manufacturing variations, compared to air-coupled
sensors.

Each device sensor is connected to three wires: a reference voltage, a supply voltage,
and signal output channel. A shielded cable is used to connect the device to a ‘hub’
circuit board fitted to two NIc9232 input modules mounted on an NI 9174 compact
data acquisition chassis. The ‘hub’ circuit board is used to provide a power source for
the operational amplifiers in the form of three 1.5 V AA batteries. The six sensors
on the device are sampled simultaneously at a sampling frequency of 5,120 Hz, with
anti-aliasing filtering provided by the data acquisition unit.

4.2 Laboratory testing

To characterise a sensor for use on the human chest the typical ratio between the heart
sound signals it can pick up and its own noise floor must be established. However, the
level of excitation on the human chest can display significant inter- and intra- subject
variation. For a more repeatable comparison between sensors, we employ a simple
laboratory setup (“phantom”) consisting of a cylinder of silicone elastomer (Ecoflex
00-10), excited by an electrodynamic shaker.

To validate the sensors used in this device, we compare their performance to that
of a Littmann 3200 electronic stethoscope, a device which is often used to benchmark
new heart sound sensors.

First, we establish an estimate for the noisefloor for each sensor. This is done by
hanging the sensor in air in a quiet room. We take a 10 second segment for the middle
of a longer recording (to counteract and edge effects) and compute the PSD using
Welch’s method with Hann windows, 50% overlap and a 20 Hz frequency resolution.
The measured noisefloors of a Littmann 3200 and one of the sensors in the device
are shown in Figure 2. For the Littmann 3200 bandpass filtering effects are clearly
evident. For both sensors the noisefloor between 500 and 1000 Hz is fairly constant
(neglecting a spike at 800 Hz for the Littmann 3200), and we take the mean PSD
in this frequency range as a reference level. We note that for the device sensor the
noisefloor above 300 Hz is set by the noise level on the NI data acquisition unit, rather
than by the sensor itself.

Next, we measure the response of both sensors to the same excitation signal on
our phantom. The excitation signal can be controlled to yield a desired output level,
and here we use a signal designed to give a fairly uniform response for the Littmann
3200 between 20 and 1800 Hz, at a mean level of 36 dB above the reference noise level.
At frequencies below 200 Hz the amplitude of normal heart sounds (male, normal
BMI) typically exceeds this amplitude, while above 200 Hz the amplitude of normal
heart sounds is typically lower. We have extended the excitation to 1800 Hz in order
to establish the suitability of the sensors for detecting murmurs and other higher
frequency body sounds.
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Figure 2 shows the PSD levels measured on the phantom, normalised by the refer-
ence noise level for each sensor. This allows us to compare the response amplitudes, and
also assess whether body sounds at the chosen amplitude level could be distinguished
from the noisefloor of the sensors.

4.3 Participant study

The adult participants (n=40) were invited through departmental bulletins within the
university, or direct contact by a researcher. Participants were excluded if they had
a chest wound, any known cardiovascular disease, or had received any prior clinical
training. All participants provided informed, written consent. The study was approved
by the Ethics Committee of the Department of Engineering, University of Cambridge
under code 489.

To ensure the study protocol was correctly followed, an expert researcher was in
the room to ensure the device was placed at approximately the correct location on the
chest. Participants were asked to remove outer layers so that they were just wearing
a T-shirt, blouse, or similar. The researcher briefly instructed the patient on how to
place the patch by feeling for their intercostal spaces or other anatomical features
as appropriate. Participants were then asked to place the centre of the patch at the
identified location and apply moderate, uniform pressure with their palm.

Standard biometric data (age, sex, weight, height and chest circumference) was
recorded for each patient. At the end of the session, participants were asked to complete
a short questionnaire on how they found the usability of the device and the recording
process.

4.4 Quantitative signal quality assessment

We define a signal-to-noise ratio (SNR) for heart sound signals, following previous
work [14], to objectively measure the clarity of the S1 and S2 sounds relative to
the silent sections of the recording. Previous methods relied on peak-to-peak time
series measurements [14], which are highly variable across devices due to different
digital filters affecting signal morphology. In this work, we compute an SNR based
on a comparison of the power spectral density (PSD) of the signal sounds in a fixed
frequency band.

The full SNR computation method, shown in Fig 5, requires that the signal first
be segmented into S1, systole, S2, and diastole sections (Fig 5a). We use a recurrent
neural network and hidden semi-Markov model algorithm to automate this process
[24], which previously won the George B. Moody PhysioNet Challenge 2022 [11]. Any
segmented sections with high amplitude spikes (e.g. due to stethoscope movement) are
removed, by searching for any sections where the maximum amplitude of the section
is more than three times the 98% quantile for all sections of that heart sound state.

Next the individual S1 and S2 sounds are aligned using their cross-correlation
to allow for slight time offsets in their segmentation. All states are then padded or
truncated to the lower quartile of their durations (Fig 5b).

We then compute a spectrogram for each heart sound state section, and take a
median to form a median spectrogram representation of the heartbeat (Fig 5c). The
median is used to discard spectrogram frames that have large energies due to record-
ing spikes and keep only time-frequency content that repeats with every heartbeat. A
Hann window is used with a length of 40ms and step of 20ms. This gives a frequency
resolution of 25Hz. A power spectral density for each heart sound state is then cal-
culated by taking the mean of each spectrogram section over time (Fig 5d). To create
the ‘signal’ PSD, we then take the maximum of the S1 or S2 PSDs in each frequency
bin. To create the ‘noise’ PSD, we take the minimum of the systole or diastole PSDs
across frequency (Fig 5e). The SNR, as a function of frequency, is then calculated by
simply dividing the signal by the noise PSD in V2/Hz. To produce a single value, we
take the mean of the SNR in the 25 ≤ f < 200 Hz range, which contains the majority
of S1 and S2 energies [26]. We finally report values in decibels by transforming to a
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Fig. 5 Computation of signal-to-noise ratio (SNR) for a moderate-quality heart sound signal. a, A heart sound signal segmented using
recurrent neural network algorithm. b, Individual heart sound states are aligned using their cross-correlation. Shown is each individual
state section and their median in bold. c, Median spectrogram is computed of the aligned heart sound states. d, Power spectral density
(PSD) is computed for each state by averaging the power in each spectrogram frame, with 1V 2/Hz as a reference. e, The signal-to-noise
gap is taken as the maximum sound PSD (S1, S2) compared to the silent state PSDs (systole, diastole). The final SNR calculated is 9.3
dB, indicating a moderate-quality signal with some background noise.

logarithmic scale:
SNRdB = 10 log10(SNR) (1)

In contrast to previous approaches, this SNR is invariant to digital filtering of the
signal, as the filtering impacts both the noise and signal equally. As a result, the effects
cancel out when their ratio is computed.

The method described does not consider the presence of murmur sounds, as only
healthy patients were included in the validation study. However, it could trivially be
adapted for abnormal sounds, by including the segmented ‘murmur’ state as a ‘signal’
PSD and extending the frequency range beyond 200Hz.
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Appendix A Extended Data

Extended Fig. E1 2D layout of sensors within the device. Sensors are arranged in a pentagon,
with a single sensor in the centre. All dimensions are in millimetres.

Extended Fig. E2 Locations recorded by patients. (1): Aortic area, second intercostal space (ICS)
on the right sternal border. (2): Tricuspid area, fourth ICS on left sternal border. (3): Mitral area,
under left breast (approximately fifth ICS) on midclavicular line (dashed blue line). (4): Mitral left
area, under left breast with patch edge on midclavicular line.
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Extended Fig. E3 Sensitivity analysis of pass rate on SNR threshold. (a) shows the SNR distribution for segmentable recordings,
for all sensors in the dataset, just the central sensor, and the chosen best sensor. (b) shows how the signal quality pass rate at the
mitral site varies depending on the SNR threshold chosen. This is split into non-overweight and obese/overweight patients.
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