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Abstract 
 
Federated learning (FL) offers a decentralized approach to model training, allowing for data-
driven insights while safeguarding patient privacy across institutions. In the Personal Health 
Train (PHT) paradigm, it is local model gradients from each institution, aggregated over a 
sample size of its own patients that are transmitted to a central server to be globally merged, 
rather than transmitting the patient data itself. However, certain attacks on a PHT 
infrastructure may risk compromising sensitive data. This study delves into the privacy-
accuracy tradeoff in federated Cox Proportional Hazards (CoxPH) models for survival 
analysis by assessing two Privacy-Enhancing Techniques (PETs) added on top of the PHT 
approach. In one, we implemented a Discretized Cox model by grouping event times into 
finite bins to hide individual time-to-event data points. In another, we explored Local 
Differential Privacy by introducing noise to local model gradients. Our results demonstrate 
that both strategies can effectively mitigate privacy risks without significantly compromising 
numerical accuracy, reflected in only small variations of hazard ratios and cumulative 
baseline hazard curves. Our findings highlight the potential for enhancing privacy-preserving 
survival analysis within a PHT implementation and suggest practical solutions for multi-
institutional research while mitigating the risk of re-identification attacks. 
 
Keywords: Federated Learning, Privacy Enhancing Techniques, Survival Analysis, 
Differential Privacy, Event Times Binning, Personal Health Train. 
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Introduction 
 
Federated learning (FL) has emerged as a groundbreaking class of decentralized 
approaches to training machine learning models and solving complex problems, particularly 
in scenarios where data sensitivity precludes traditional data-sharing methods [1]. The 
imperative to relocate or centralize privacy-sensitive data from its original sources is 
bypassed. Instead, the learning process occurs synchronously over multiple participating 
institutions or devices, sharing only individual results in the form of local model gradients, 
which are then merged into a global model. This approach has garnered significant attention 
and research interest across various sectors, like healthcare and medicine, but also extends 
to other domains [2]. As the digital landscape continues to evolve and data privacy 
regulations become increasingly stringent, FL stands out as a promising solution.  
 
The Personal Health Train (PHT) [3-6], a manifesto implementing the FL principles, has 
recently seen significant traction [7-10]. This integrates several critical components to enable 
secure and privacy-preserving data analysis, including the technical, legal and governance 
aspects. Within this framework, "Stations" serve as local data repositories where data is 
securely stored and accessed under predefined rules. "Trains" refer to the algorithms or 
workflows that visit these stations to conduct data analysis locally at the data's location, 
thereby bypassing the need to transfer individual-level data. The "Track" or handler 
orchestrates the interactions between trains and stations, ensuring compliance with security 
protocols and facilitating the aggregation of results. The "Aggregator" combines the local 
gradients from various stations, integrating distributed data sources while preserving privacy. 
 
While this framework is designed to maintain data within its originating institution, recent 
studies have uncovered that FL methods are susceptible to specific attacks resulting in 
potential data leakage [11-16]. Kairouz et al. [17] have comprehensively analyzed the open 
challenges in FL and proposed potential solutions. Key threats identified include 
Unauthorized Access, where breaches in infrastructure security could expose sensitive 
information to unauthorized entities. Poisoning Attacks include data poisoning, where 
malicious actors introduce misleading data into the training process, and model poisoning, 
where harmful local updates are transmitted that compromise the integrity of the global 
model. Inference Attacks include membership inference attacks, where attackers can 
determine if specific data subjects were part of the training set by analyzing model updates, 
especially when sample sizes are limited, and model inversion attacks, where adversaries 
can reconstruct training data from model gradients, revealing sensitive information. 
 
Recent research has explored implementing Cox Proportional Hazards (CoxPH) models 
within an FL framework [18], where data stations transmit subjects’ unique event times 
together with model gradients. However, this approach may potentially expose sensitive data 
to inference attacks, compromising data privacy. Brink et al. [19] demonstrated that the local 
model gradients shared by data stations for aggregation of the CoxPH model can lead to 
information leakage, particularly in cases where event times lack ties or censoring. This may 
make model inversion attacks easier since the federated Cox model sends repeated queries 
requesting local gradients until model convergence. 
 
This paper investigates the tradeoff between privacy and accuracy in federated Cox analysis 
by experimenting with two Privacy-Enhancing Techniques (PETs). We build upon the 
implementation of federated Cox analysis as described by Lu et al. [18]. One of our proposed 
methods is discretized Cox analysis, where event times are grouped into bins by the 
participating data stations prior to fitting the local model, in the hope of increasing 
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confidentiality in case of an adversarial attack. The other, we aim to address the vulnerability 
of sharing model gradients by incorporating Differential Privacy (DP) [20, 21]. This addresses 
inference risks by adding noise to model updates, ensuring that individual data points remain 
indistinguishable within the aggregated results [22]. Our main goal is to minimize privacy 
risks while maintaining the model's overall accuracy. Lastly, we apply these methods to 
derive the cumulative baseline hazard curve in a federated setting and compare the results 
to the hazards estimated using the standard federated Cox results. 
 
Methods 
 
Data and infrastructure 
 
For this study, three public datasets from The Cancer Imaging Archive (TCIA) - HN1 [23], 
HEAD-NECK [24], and OPC [25] - were used. Full details of the datasets can be found in the 
corresponding references. These datasets were reformatted to ensure a consistent 
nomenclature for compatibility with the federated algorithms used. The study used Vantage6 
[26], an open-source federated framework based on the PHT approach. We leveraged the 
demo-network functionality of Vantage6, which allows users to set up a server along with the 
necessary data stations on the local machines, thereby simulating a test environment for 
enabling the execution and evaluation of user-defined tasks and algorithms. A visual 
representation of this setup is provided in Fig 1. The primary focus of this work is on the 
partial results (highlighted by red arrows) shared by the data stations for aggregation. The 
federated Cox algorithm used in this study had been previously adapted for the Vantage6 
infrastructure [27]. It was further upgraded to be compatible with the latest version of 
Vantage6 (v4.5) for this work. The complete code for the algorithm can be accessed at 
https://github.com/MaastrichtU-CDS/v6-coxph/releases/tag/2.0.0. 
 
 

  
 

Fig 1. Visual illustration of Vantage6 setup used in this work 
 
 
Discretized Cox Analysis 
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Our initial experiment for federated Cox analysis involved implementing a discretized time 
approach rather than the standard continuous time method, which transmits unique event 
times from the institution as partial results. In the discretized method, event times are 
grouped into intervals before being sent to the central server for aggregation. Within this 
approach, we explored two binning strategies: 
 

• Fixed Binning: Events are divided into equal-sized bins across all data stations 
based on optimal bin values determined beforehand. 

• Quantile Binning: Events are categorized based on an optimal number of quantiles 
identified using the optimal bin values calculated beforehand by the algorithm. 
Quantile binning ensures that events are evenly distributed across each bin. 
 

To determine the optimal number of bins for both strategies, we applied Sturges’ rule [28], 
defined as: 

Optimal Bins=⌈log2n+1⌉ 

 
Where n represents the total sample size, and ⌈⌉ indicates rounding to the nearest integer.  
 
For fixed bins, the stations were instructed to locally assign intervals using the 
"histogram_bin_edges" function from the Python NumPy package, based on the optimal 
value. These intervals were shared with the server, which computed the global bin edges 
using the overall minimum and maximum values. For quantile bins, each station calculated 
the quantile edges for its data based on the optimal value, utilizing the "quantile" function 
from the NumPy package. These quantile edges were shared with the server to determine 
the global edges.  
 
The global edges in both scenarios were then sent back to the stations to compute the event 
counts for their respective bins, which were subsequently aggregated for the Cox analysis. 
Differential Privacy 
 
Differential privacy (DP) reduces the risk of inference attacks by introducing noise either to 
the data or to the model updates, thereby increasing the likelihood that individual data points 
remain indistinguishable. Andreux et al., [29] discussed that introducing noise to local model 
gradients is sufficient to prevent attackers from reconstructing data. For this work, we applied 
Local Differential Privacy (LDP), where each data station perturbs its local gradients by 
introducing differential noise sampled from a Laplacian distribution before transmitting them 
to the server. This approach eliminates the need to trust the infrastructure's integrity or rely 
solely on the server, as the noise is added directly at the data source. By doing so, the risk of 
inference attacks or the possibility of malicious actors posing as the server to extract private 
information is significantly reduced. In addition to perturbing the gradients, we also 
experimented with applying Laplacian noise to the input variables (model predictors) for 25% 
of the samples (patients) locally before the gradient computation at each data station. 
 
The key privacy parameter in differential privacy, epsilon (ε), quantifies the extent of privacy 
loss by controlling the amount of randomness added to the data. A smaller epsilon value 
indicates stronger privacy, as it means less information about any individual data point can 
be inferred from the output. Epsilon provides a quantifiable way to balance the trade-off 
between data utility and privacy. To determine the optimal epsilon and the corresponding 
noise scale (sensitivity/epsilon), we conducted a series of Cox models using the three public 
datasets. We applied a combination of noise scales (the parameter ranging from 0.25 to 10) 
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to the local gradients. The results were validated using a private dataset from Maastro - HN3, 
which includes 165 samples. The resulting Harrell's concordance indices (C-Indices) are 
plotted in Fig 3. 
  
Ground Truth for Cumulative Baseline Hazards 
 
Initially, for the standard federated Cox model, the Breslow estimator [30] was used to 
calculate the cumulative baseline hazard at each event time, which is defined as follows: 

 

 

 
Where di represents the number of events at each unique time t and Xβ denotes the Linear 
Predictor (LP) scores. 
 
Cumulative Baseline Hazard for PETs 
 

Following the derivation of the Cox model results for each PET experiment, we computed the 
cumulative baseline hazard using the Breslow estimator, either at each event bin edge (for 
binning) or at each event time (for DP), using the aggregated results from each dataset.  
 

Results 
 
Event Times Binning 
 
The total sample size from the three public datasets consisted of 1,041 patients. The binning 
process began by requesting each data station to share its sample size. It was then 
aggregated on the server to compute the optimal bin size using Sturges’ rule, resulting in 12 
bins for the datasets used. We subsequently experimented with our binning strategies using 
this optimal value. Fig 2 compares the hazard ratios (HR) of the clinical predictors and their 
95% confidence intervals (CI) for both binning strategies relative to the standard federated 
Cox model.  
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Fig 2. Comparison of Hazard Ratios (HR) with 95% Confidence Intervals (CI) of the clinical predictors for the two  

binning strategies relative to the standard federated Cox model. 
 
Differential Privacy on Partials 
 
The results of our experiments to determine an optimal ε are presented in Fig 3. The C-
Indices (shown in blue) remain relatively stable and comparable to the C-Index of the 
standard Cox model (shown in red) when the noise scale is low. However, beyond a certain 
threshold (around 4), the C-Index decreases, indicating a decline in model accuracy due to 
excessive noise. For our current models, we arbitrarily chose to investigate a noise scale of 
3.3 (sensitivity = 1, epsilon = 0.3) to balance added noise and model accuracy.  
 
 

 
Fig 3. Accuracy (C-Indices) for different noise scales 

 
We initially compared the outcomes of the model where noise was introduced to the partial 
results, specifically the partial gradients, before transmitting them to the server against those 
of the standard Cox model. In a follow-up analysis, noise was introduced to a 25% subset of 
input variables (predictors) at the local stations before computing the partial gradients. The 
HRs are presented alongside the standard Cox model results in Fig 4 and Fig 5. 
Comprehensive results of the models can be found in the Supplementary Materials. 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 9, 2024. ; https://doi.org/10.1101/2024.10.09.24315159doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.09.24315159
http://creativecommons.org/licenses/by/4.0/


 
 

Fig 4. Comparison of Hazard Ratios (HR) with 95% Confidence Intervals (CI) of the clinical predictors when 
differential noise was added to partials relative to the standard federated Cox model. 

 

 
 

Fig 5. Comparison of Hazard Ratios (HR) with 95% Confidence Intervals (CI) of the clinical predictors when 
differential noise was added to partials and 25% subset of predictors relative to the standard federated Cox 

model. 
 

Cumulative Baseline Hazards 
 
The cumulative baseline hazard curves for each strategy were individually derived from the 
Cox model results using the Breslow estimator. Fig 6 shows the total number of patients at 
risk at each event time. The baseline hazard curves are presented in Fig 7, 8, and 9, 
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representing event time binning, noise applied to the local gradients, and noise applied to 
both the predictors (25% subset) and gradients, respectively, for comparative analysis. Fig 
10 illustrates the differences in hazard values calculated in each PETs compared to the 
standard model. 
 

 
Fig 6. Total number of individuals at risk over time for all three datasets 

 

 
Fig 7. Cumulative baseline hazards for the two binning strategies relative to the standard Cox model. 
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Fig 8. Cumulative baseline hazards when differential noise was added to partials, relative to the standard 

federated Cox model. 
 

 
Fig 9. Cumulative baseline hazards when differential noise was added to partials and 25% subset of predictors, 

relative to the standard federated Cox model. 
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Fig 10. Differences in cumulative baseline hazards calculated for each privacy-enhancing technology (PET) 

relative to the standard federated Cox model. 
 

 
PET Predictor Wald Statistic p-value 

DP on Aggregates Chemotherapy 0.01 0.92 

HPV Negative 0.03 0.86 

HPV Positive 0.03 0.87 

T3 (or higher) 0.01 0.91 

DP on Aggregates & 25% 
Predictors 

Chemotherapy 0.50 0.48 

HPV Negative 1.67 0.20 

HPV Positive 1.75 0.19 

T3 (or higher) 1.18 0.28 

Fixed Bins Chemotherapy 0.04 0.84 

HPV Negative 0.01 0.92 

HPV Positive 0.02 0.88 

T3 (or higher) 0.05 0.82 

Quantile Bins Chemotherapy 0.02 0.89 

HPV Negative 0.01 0.92 

HPV Positive 0.03 0.87 

T3 (or higher) 0.01 0.92 

 
Table 1. Wald Test Statistic results for assessing the statistical differences for each privacy-enhancing technology 

(PET) results relative to the standard Cox model. 
 
 
Discussion 
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In this study, we explored two potential enhancements to address possible data leakage 
issues in federated survival analysis when subjected to certain attacks, as was reported by 
recent research in the field. Our findings demonstrate that enhancing privacy in a federated 
learning environment is not only feasible but can also be tailored to meet project-specific 
requirements. 
 
The Vantage6 software used in this work instantiates a PHT-type infrastructure with a client-
server network topology, allowing for the analysis of multi-institutional datasets without the 
need to exchange sensitive patient-level data among collaborating parties. Instead, only 
aggregated cohort summaries or statistical model coefficients are shared through a mutually 
trusted third-party server, thus eliminating the need for direct peer-to-peer interactions 
between institutions. Moreover, Vantage6 supports web-industry-grade End-to-End (E2E) 
encryption. Even if an attacker were to intercept the transmissions between a local data 
station and the aggregator, it would remain indecipherable without the appropriate decryption 
keys, which are securely protected by the system.  
 
We assessed two discretization strategies—Fixed and Quantile Bins—for additional privacy 
and compared them to traditional standard federated Cox models. Despite the binning 
implementation, the predictors' HRs remained consistent across all models. This consistency 
indicates that the binned models maintain their predictive power with minimal effect on the 
overall associations within the data in the range of binning strategies we tested.  
 
For the cumulative baseline hazard curves, fixed binning shows a steep initial rise, 
suggesting that while privacy is improved, there is a slight compromise in the hazard 
estimation. Meanwhile, the baseline curves for quantile binning closely align with those of the 
standard Cox model during the initial follow-up periods. However, some divergence is 
observed later, which may indicate increased sensitivity to data sparsity over time, as shown 
in Fig 6.  
 
Experiments incorporating Differential Privacy (DP) into the Cox model yielded the following 
insights. Adding noise to the local gradients in the Cox model preserves the model's utility 
while enhancing privacy. The HRs for the predictors remain consistent with those of the 
standard Cox model in our experiments, indicating that the noise added with the chosen 
epsilon value to the local gradients does not significantly alter the estimated effect sizes. 
Furthermore, the cumulative baseline hazard curves show minimal deviation between the 
standard model and the model with noise on local gradients, suggesting that the overall risk 
estimation remains reliable under this approach. When additional noise is applied to a 25% 
subset of the predictors along with the noise on local gradients, the results reveal a more 
pronounced divergence. This suggests that while the combination further enhances privacy, 
it may introduce a degree of overestimation in the baseline hazard values, especially over 
longer follow-up periods.  
 
The epsilon parameter controls the trade-off between privacy and accuracy when 
incorporating DP. A smaller epsilon provides stronger privacy by introducing more noise but 
at the cost of compromising model performance. Conversely, a larger epsilon offers less 
privacy protection but retains more of the original data utility. In practice, choosing epsilon a 
priori depends on the sensitivity of the data. While the literature does not provide an ideal 
threshold for selecting epsilon to balance data utility and privacy, we propose the following 
for a systematic approach: 
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• Initial testing: Beginning with an intermediate epsilon value (e.g., 1.0 or 0.5) based 
on the project’s privacy requirements.  

• Sensitivity analysis: Re-running the model with varying values of epsilon. For 
instance, in the case of survival analysis, if the HRs remain consistent across a range 
of epsilon (from 0.5 to 1.0), it indicates that model performance is largely unaffected 
by noise, and any value within this range is acceptable. 

• Divergence thresholds: If significant deviations are observed in model outputs at 
lower epsilon values (e.g., ε < 0.5), it suggests that the noise is too disruptive. In such 
cases, reducing the noise may be necessary while still considering the acceptable 
level of privacy risk. 

 
A Wald test was conducted to assess whether the models incorporating PETs yielded 
significantly different estimates for the effects of each predictor compared to the standard 
Cox model (refer Table 1 for results). The Wald statistics for the predictors in each PET 
model were relatively low, suggesting a likely non-significant difference. Moreover, the p-
values were considerably above the 0.05 significance level, suggesting no statistically 
significant difference between the coefficients of the PET and standard models. These 
findings indicate that incorporating PETs in our Cox analysis resulted in comparable 
outcomes while preserving the overall predictive accuracy of the models. Although the 
experiments were not directly compared to a centralized Cox model, the standard federated 
Cox model used in this analysis was reported to produce similar results to that of a 
centralized analysis in the relevant literature [18]. 
 
In this work, we exclusively sampled noise from a Laplacian distribution for differential 
privacy. Alternatively, depending on the project's preferences, one could opt to sample noise 
from a truncated Gaussian distribution. We experimented with adding Laplacian noise to 
25% of the predictors and the partial results, increasing the complexity of data reconstruction 
in the event of a security breach. Applying noise to 100% of the predictors before computing 
local gradients would mean effectively transforming the data, making the computations 
resemble those performed on a completely different dataset. This can significantly alter the 
underlying relationships within the data, potentially resulting in biased estimates and 
misleading conclusions. 
 
An alternative is synthetic data, which involves generating a new dataset that mimics the 
statistical properties of the original data. While both these methods aim to enhance privacy, 
they differ fundamentally in their implementation and implications. Synthetic data preserves 
the original data structure and relationships, whereas indiscriminately applying differential 
noise can obscure these relationships and degrade model performance. Researchers may 
opt for differential noise when strict privacy guarantees are essential [31], but they should be 
mindful of the potential loss of data utility. Synthetic data may be preferable when the 
objective is to maintain analytical utility while still protecting sensitive information. However, a 
synthetic data engine is a machine learning algorithm. Training such an algorithm requires 
access to the original data, which introduces its own privacy risks and – if learned too “deep” 
– is not guaranteed to be privacy-preserving [32]. Also, the final version must be based on 
real-world data for trust in prediction models. 
 
Another potential PET is using secure aggregation techniques such as Secure Multi-Party 
Computation (SMPC) [33], which ensures strong privacy protections by aggregating model 
updates without disclosing individual contributions. However, SMPC can be computationally 
demanding. In our study, we experimented with event time binning and differential privacy, 
which offer a balance between privacy and computational efficiency. These methods provide 
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adequate protection against inference attacks while remaining practical for applications with 
limited resources and time.  
 
Introducing binning strategies, particularly quantile-based approaches, offers a viable method 
for enhancing privacy in federated survival analysis. Future research could explore 
optimizing these binning strategies to minimize any observed trade-offs, such as the 
variability in cumulative hazard estimation, and to assess their performance across larger 
datasets. Improvements could also include incorporating outlier detection when calculating 
bin edges and setting a minimum threshold for the number of data points in each bin. 
Applying DP highlights the importance of carefully balancing the noise level with the need to 
maintain model accuracy (privacy vs utility), particularly in sensitive applications like 
federated survival analysis.  
 
Selecting the appropriate PET is crucial and should be guided by the specific needs of the 
users and the data. In most federated modeling, End-to-end encryption (E2E) may provide 
sufficient privacy protection. However, in more sensitive cases where additional layers of 
privacy are necessary, both binning and DP offer valid options. Binning is more suited for 
defending against membership inference attacks, where the adversary tries to determine 
whether an individual is part of the dataset. On the other hand, DP helps protect against 
model inversion attacks, where the aim is to reverse-engineer individual data points using 
model gradients. For instance, in Cox analysis, researchers could begin with binning event 
times and then layer DP as required, adjusting the noise based on privacy requirements.  
 
While the study demonstrates the feasibility of incorporating PETs into the federated Cox 
model, we also acknowledge the following limitations. Firstly, the experiments were 
conducted using public Head & Neck (HNC) datasets, which may not fully represent other 
datasets, particularly those with higher sensitivity. The equivalency of the privacy protections 
offered by our approach could be data-dependent. Different data distributions or patterns 
may introduce variations affecting the balance between privacy and utility, potentially leading 
to unreliable hazard estimates. Therefore, the generalizability of the PETs may vary when 
applied to different types of data, such as lung or prostate cancer datasets. 
  
Secondly, we used the C-index to measure model performance while choosing the optimal 
epsilon value for the experiments. However, it is crucial to recognize that while the C-index 
may remain stable, the HRs could still vary, leading to inaccuracies in interpreting the effects 
of the predictors. Future studies might consider additional performance metrics or sensitivity 
analyses to ensure that noise introduced by DP does not mask critical shifts in HRs, which 
could influence clinical interpretations. Future work might also explore using PETs to protect 
more advanced analysis techniques, such as plotting Schoenfeld residuals to validate Cox 
model assumptions or constructing Kaplan-Meier curves within a federated framework. 
 
Conclusion  
 
This study evaluated two PETs—event times binning and differential privacy (DP)—to 
mitigate data leakage risks in federated survival analysis. Using the Vantage6 infrastructure, 
we enabled secure multi-institutional analysis without sharing sensitive patient data. Both 
fixed and quantile binning strategies maintained consistent hazard ratios, although fixed 
binning showed slight distortions in cumulative hazard curves, indicating a minor trade-off 
between privacy and model accuracy. DP enhanced data security by adding noise to local 
gradients, preserving model fidelity, and minimizing privacy risks. However, adding noise to 
both gradients and a subset of predictors introduced some risk overestimation, highlighting 
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the need to carefully calibrate privacy parameters to balance accuracy and privacy. Our 
findings suggest that these techniques can effectively enhance privacy in federated learning 
settings, but the choice of method should be tailored to specific project requirements. Future 
research aims to explore optimizing these strategies for larger datasets and in different 
applications. 
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