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ABSTRACT 

Inferential statistics traditionally used in clinical trials can miss relationships between clinical 
phenotypes and treatment responses. We simulated a randomised clinical trial to explore how 
gradient boosting (XGBoost) machine learning (ML) compares with traditional analysis when 
‘ground truth’ treatment responsiveness depends on the interaction of multiple phenotypic 
variables. As expected, traditional analysis detected a significant treatment benefit (outcome 
measure change from baseline = 4.23; 95% CI 3.64–4.82). However, recommending treatment 
based upon this evidence would lead to 56.3% of patients failing to respond. In contrast, ML 
correctly predicted treatment response in 97.8% (95% CI 96.6–99.1) of patients, with model 
interrogation showing the critical phenotypic variables and the values determining treatment 
response had been identified. Importantly, when a single variable was omitted, accuracy 
dropped to 69.4% (95% CI 65.3–73.4). ML has the potential to maximise the value of clinical 
research studies but requires phenotypes to be comprehensively captured. 

 

INTRODUCTION 

The clinical phenotype refers to the observable characteristics of a disease, and is a crucial 
indicator of both its presence and how it manifests in an individual. A clinical phenotype includes 
numerous variables, such as a patient’s age and other demographic factors, co-morbidities, 
symptoms, and examination findings. Clinical phenotypes can be expanded by measuring and 
understanding more variables, including genetic, physical, environmental, radiological, 
electrophysiological, biochemical, and molecular characteristics, i.e., so-called ‘deep 
phenotyping’. An important motivation for clinical phenotyping is the idea that, somewhere within 
the phenotype, are variables that inform how a disease can be optimally treated within an 
individual. 

For example, the management of headache depends upon numerous, interacting, variables 
within the clinical phenotype. These variables include whether the headache is migrainous, the 
presence and type of aura, and the presence of co-morbidities, like gastritis, asthma, or anxiety1. 
Within broad diagnostic categories, there are often distinct clinical phenotypes, which can be 
driven by diƯerent underlying disease processes that require tailored management approaches. 
Consequently, the optimal treatment strategy for a young female in full-time work with menstrual 
migraine and aura diƯers significantly from that of a retired older male with migranous 
cervicogenic headache. Even single variables within an individual’s phenotype can change an 
otherwise eƯective treatment into something likely to cause harm, e.g., carbamazepine as a 
treatment of epilepsy in people of Han Chinese ethnicity2. 

For new treatments, particularly of heterogenous diseases, it can take decades to determine 
whether patients with a given clinical phenotype may benefit, or, in fact, not at all3. Without this 
understanding, groups of patients may receive treatments that provide no benefit and/or may 
cause harm. For example, aspirin was used for decades to prevent cardiovascular disease before 
evidence showed its benefit in primary prevention was minimal and that additional clinical 
variables needed to be considered to balance the benefits for high-risk patients against the 
associated bleeding risks4,5. Many similar examples exist, where targeting treatments based on 
specific clinical phenotypes has become necessary, such as beta-blockers in heart failure6,7, 
calcium channel blockers in hypertension8,9, and antidepressants in major depressive disorder10. 
In each case, certain patient groups have historically unknowingly received ineƯective 
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treatments for many years. Understanding and managing the heterogeneity of clinical 
phenotypes is therefore critical for personalised and eƯective care. However, building the 
evidence base to support this level of precision medicine requires time and, crucially, appropriate 
methodologies that can deconstruct this phenotypic heterogeneity. 

Randomised controlled trials (RCTs) are among the highest levels of evidence in clinical research. 
Designing, funding, conducting, and publishing RCTs takes many years or even decades11. Given 
this investment, it is crucial to maximise the information gained from RCTs, to realise the greatest 
benefits for patients. Advances in machine learning (ML) and other multivariate analysis 
techniques oƯer opportunities to identify complex relationships between clinical phenotype and 
treatment response, which the inferential statistical methods traditionally used for RCT analysis 
may miss12,13. However, the eƯectiveness of ML models, as for all methodologies, critically 
depends on the quality and quantity of the data available to them14. 

In this study, we investigated how both the analysis approach and characterisation of clinical 
phenotype within an RCT influences our ability to infer underlying 'ground truth'. We simulated a 
clinical cohort undergoing a RCT, providing ground truth information about how variables within 
the clinical phenotype determine responses to the treatment. We compared this ground truth 
information with the conclusions that would be drawn by investigators when analysing the RCT 
data using traditional inferential statistics. We then examined the capability of ML to uncover 
additional insights from the same data. We used XGBoost (XGB), a form of gradient boosting ML 
which has demonstrated state-of-the-art performance on a range of problems involving complex, 
non-linear interactions between variables15,16. We evaluated the additional benefits of XGB 
analysis, including the ability to reveal the phenotypic variables and values which critically 
determine treatment response. Finally, we examined how the comprehensiveness of clinical 
phenotyping might impact conclusions when using XGB analysis, considering the eƯects both of 
data deficiency and excess. 

 

RESULTS 

Creation of simulated clinical cohort data and determinants of ‘ground truth’ treatment 
response in a randomised control trial  

We created simulated clinical cohort data, modelling a group of 1000 patients with a disease for 
which a new treatment improves outcomes in those with certain clinical phenotypes, but not 
others. These patients are subsequently enrolled in a parallel group randomised placebo-
controlled trial (1:1 randomisation). (See Methods for full details of the cohort’s characteristics 
and modelling of treatment response.) 

For each patient, the clinical phenotype consists of their age, sex, and several additional clinical 
variables. Both binary and continuous variables are simulated; binary variables being analogous 
to, e.g., sex or presence/absence of a symptom, and continuous variables analogous to, e.g., age 
or a numerical symptom severity score.  

There are three such clinical variables that critically determine which patients are responsive to 
the treatment: ‘X’, ‘Y’ and ‘Z’. X and Y are continuous; Z is binary. This scenario is analogous to, 
e.g., real-world clinical variables such as (respectively) bone mineral density, age, and sex, which 
jointly help determine which bone protection interventions are suitable for a given clinical 
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phenotype17. Importantly, the investigators in our scenario have no knowledge of this ground truth 
information about which variables determine treatment response. 

A non-linear relationship between these three variables (X, Y, Z) determines which patients will 
be responsive to the treatment, illustrated in Figure 1 (green indicates treatment responsive 
conditions, red indicates not responsive), and described as follows: Any patient with a value of X 
above 95 is responsive to the treatment, no matter whether Z is present (left plot) or absent (right 
plot). For lower values of X (X<=95), if Z is present (left plot) and Y is between 50 and 90 then the 
patient is treatment responsive. If Z is absent (right plot) and X is between 90 and 95, then a 
patient is treatment responsive if Y is between 50 and 90. 

With these conditions, 43.7% of patients are potentially responsive to treatment; 56.3% are not. 
Additional information is captured in further variables, but importantly, these have no bearing on 
treatment response (Figure 1). To aid interpretation, we denote these uninformative variables with 
numbers (i.e. ‘V1’ and ‘V2’) rather than the letters which denote the treatment response-
determining variables above.  

Treatment response, or non-response, is reflected in a distinct, continuous, outcome measure 
with arbitrary units. Patients responsive to the treatment will, on average, have a positive change 
in the outcome measure after receiving treatment; patients not responsive to treatment will, on 
average, have no change in the outcome measure with treatment. Non-responsive patients 
include those receiving placebo and those who receive treatment yet who are not responsive to 
it. To reflect the clinical reality of trial outcome measures having a degree of variability, the change 
in the trial outcome measure is modelled as being drawn from one of two normal distributions, 
of mean +10 or mean 0, for treatment responsive and non-responsive patients, respectively. Both 
distributions have standard deviation 3. 

We simulated an RCT in which the 1000 patients are randomised to receive either the treatment 
or a placebo in a 1:1 ratio. The value for each patient’s change in the trial outcome measure is 
determined by their ground truth treatment responsivity (above) and their treatment/placebo 
group allocation. Patients of all clinical phenotypes were eligible for inclusion in the study. The 
RCT was rigorously conducted and well-powered, without loss to follow-up. The investigators 
collected and have available to them the complete information about all the variables described 
above (Figure 1), but not the ground truth treatment responsiveness – this information is what the 
trail aims to infer. 

 

An analysis of the randomised control trial data using traditional inferential statistics 

The RCT was designed to investigate whether a new treatment improves a clinical outcome 
measure versus placebo. There is clinical cohort data for 1000 patients with the phenotypes 
described above.  Following randomisation, 509 patients were allocated to receive treatment, 
491 to receive placebo. Using traditional statistical methods, absolute changes in the outcome 
measure for the treatment group are compared with the placebo group. These results are 
illustrated with Forest plots, including subgroup analyses, in Figure 2. This traditional style of 
reporting of the outcome for each intervention group, including the estimated eƯect sizes and 
associated precision, aligns with consensus recommendations for presenting primary RCT 
outcomes, as outlined in the CONSORT statement18.  
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There is a significant improvement in the outcome measure in patients who received the 
treatment compared with placebo (mean change 4.23, 95% CI 3.64 to 4.82). All subgroups, 
defined by the seven phenotypic variables, showed improved outcomes with the treatment 
compared with placebo. The size of treatment-related benefit varied according to the values of 
the critical response-determining variables (X, Y and Z), but not others (age, sex, V1 and V2) 
(Figure 2). 

If we assume that changes in the outcome measure of 5 or above are clinically meaningful, the 
RCT evidence estimates that the number needed to treat (NNT) to achieve this clinically 
meaningful benefit is 2.62. This favourable NNT suggests that the new treatment is an eƯective 
one, although it would be important to weigh its benefits against any potential adverse eƯects, 
not modelled here. Importantly, based upon the results of this RCT, the new treatment appears 
to be an eƯicacious option for all patient groups. 

 

An analysis of the same randomised control trial data using machine learning  

Despite the apparently positive RCT results, the ground truth is that 563 of the 1000 patients are 
not responsive to treatment (Figure 1). Clinical application of the RCT-based evidence from the 
previous section (in addition to further RCTs conducted) could result in 56.3% of patients being 
prescribed a treatment from which they receive no benefit, while being exposed to any side 
eƯects and risks associated with the treatment. This 56.3% of patients are unknowingly 
disadvantaged by the RCT analysis based on traditional statistics. These disadvantaged patients 
disproportionately include those with lower X values (non-responsive patient mean 70.3, SD 12.1 
versus responsive patient mean 79.8, SD 15.2, p for diƯerence <0.0001), higher Y values (non-
responsive patient mean 71.1, SD 20.1 versus responsive patient mean 68.6, SD 12.5, p = 0.02) 
and patients without Z (proportion of non-responsive patients with Z 0.255, SD 0.43 versus 
responsive patients 0.817, SD 0.39, p <0.0001). Therefore, even with a perfect collection of all the 
phenotypic variables necessary to determine which patients are treatment responsive, most 
patients nonetheless receive ineƯective treatment, with systematic disadvantage to patients 
with low X values, high Y values or those for whom Z is not present. 

ML analysis could help reveal insights which traditional analysis methods do not. Using the exact 
same simulated data as in the traditional RCT analysis described above, we next examined the 
capabilities of XGB ML analysis. 

We first used XGB to identify whether it is possible to predict which patients benefit from 
treatment based upon their clinical phenotype, and who should avoid ineƯective treatment. (See 
Methods for full details and XGB model parameters.) This analysis included only patients 
allocated to the treatment arm. We defined treatment responsiveness as an outcome measure 
of 5 or above, and non-response as values below 5. Using simulated data allowed us to compare 
the XGB predictions with the ground truth treatment response, in addition to the trial’s outcome 
measure, which may not always reflect true responsiveness. This comparison of XGB predictions 
with ground truth helps assess the generalisability of predictions beyond this individual trial’s 
outcome data. Importantly, model training relied solely on data available to investigators, with 
the ground truth used exclusively for evaluation of prediction accuracy, not training. 

Figure 3 shows the classification performance metrics for the XGB analysis compared with trial 
outcomes and ground truth responsivity. The XGB analysis predictions were 92.5% (95% CI 90.3 
– 94.8) accurate according to the trial outcome data (Figure 3A) and 97.8% (95% CI 96.6 – 99.1) 
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accurate according to ground truth (Figure 3B).  The fact that XGB demonstrated higher accuracy 
compared to ground truth labels than the trial’s outcome measure suggests that the model did 
not overfit to the noisy surrogate outcome data. Rather, XGB identified patterns in the underlying 
clinical phenotype data which oƯer generalisable insights that more accurately reflect the true 
treatment response. 

We also considered another commonly used form of ML analysis, logistic regression (LR). Using 
LR, predictions were 78.4% (95% CI 74.8 – 82.0) accurate according to the trial outcome data and 
82.1% (78.8 – 85.5) accurate according to ground truth. The lower accuracy of LR compared to 
XGB is commonly found for non-linear multivariate interactions, such as in this analysis15. 

Even with perfect measurement of key variables, RCT analyses can miss crucial patterns. 
Conclusions drawn from traditional RCT analysis in the previous section could lead to 43.7% of 
patients benefitting from treatment, with the remaining majority of patients receiving an 
ineƯective treatment. In contrast, XGB analysis of data from only half as many patients 
(specifically, those in the treatment group rather than the placebo group, which provides no 
insight into treatment responses) accurately predicted patients being treatment responsive or 
non-responsive in 97.8% of cases. 

 

Additional benefits of a machine learning analysis 

The XGB approach enables interrogation of the model using SHAP (SHapley Additive 
exPlanations) values, to identify phenotypic variables which are influential in determining the 
model’s predictions about treatment response19. Here, each SHAP value indicates how much an 
input variable contributed to the model’s prediction of each patient’s treatment response, shown 
in Figure 4. A large positive SHAP value indicates an influence for predictions of treatment 
responsive, whereas a large negative value indicates an influence for predictions of non-
responsive. The colour of the plots indicates the value of the associated variable: dark blue 
represents higher values of a continuous variable or the presence of a binary variable, while white 
indicates lower values of the continuous variable or the absence of the binary variable. All seven 
phenotypic variables are ranked from highest to lowest influence on model predictions, based on 
the total magnitude of SHAP values across all predictions. This ranking reflects the relative 
importance of each variable in influencing the model’s decisions. We see that the three true 
response-determining variables – X, Y and Z – are identified as being the ones which most strongly 
influence the model outputs (Figure 4). 

From Figure 4, we also observe that certain values of the X variable have a substantial impact on 
the model’s predictions of treatment responsiveness, as evidenced by large positive SHAP 
values. The dark blue shading of these points indicates that high values of X have large impact on 
the model predicting a patient as being treatment responsive. To explore this relationship further, 
in Figure 5, we plotted X values (x-axis) for each patient against their corresponding SHAP values 
(y-axis), coloured by the XGB prediction (green for treatment-responsive, red for non-responsive). 
Overlaid histograms show a summary of the proportion of responsive (green) and non-responsive 
(red) predictions for the corresponding X values. Figure 5A shows that X values greater than 90 
are associated with very high SHAP values, indicating a strong influence on the model's output 
being that the patient is treatment responsive. Specifically, X values above 95 almost always 
predict treatment responsiveness, while those between 90 and 95 still frequently result in a 
prediction of treatment responsiveness. This demonstrates that X values above 90 are highly 
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influential in predicting treatment responsiveness. Conversely, when X values are below 90, their 
impact on the model’s predictions is diminished. 

Figure 4 also reveals that certain Y values significantly aƯect predictions of non-treatment 
responsiveness, as indicated by large negative SHAP values. Figure 5B examines the role of Y 
values when X is not influential (i.e., X is below 90). It shows that Y values below 50 or above 90 
are linked to large negative SHAP values, suggesting these Y values are strong predictors of non-
responsiveness in cases where X is below 90. Consequently, most predictions in these scenarios 
are for non-responsiveness. Additionally, Figure 4 indicates that Z generally has a significant 
influence on model predictions. Figure 5C focuses on cases where X is below 90 and Y is between 
50 and 90. It shows that the presence of Z is associated with high positive SHAP values, 
correlating with a high likelihood of treatment responsiveness. Conversely, the absence of Z is 
associated with low negative SHAP values, indicating non-responsiveness. Thus when X is below 
90 and Y is between 50 and 90, Z’s presence predicts treatment responsiveness, while its 
absence suggests non-responsiveness. 

In summary: 

- X values above 90, especially those above 95, are strong predictors of treatment 
responsiveness. 

- When X is below 90, Y values below 50 or above 90 suggest non-responsiveness. 
- For X below 90 and Y between 50 and 90, Z’s presence indicates treatment 

responsiveness, whereas its absence indicates non-responsiveness. 

This analysis clarifies how X, Y, and Z values contribute to the model’s predictions of treatment 
response. All these values align closely with the ground truth (see Figure 1). 

With XGB, it is straightforward to identify key variables contributing to the model’s accurate 
predictions of treatment response, as well as important values of these variables.  

 

Impact of data deficiency upon the machine learning analysis 

We next considered an alternative scenario, which is identical to the original RCT, in the same 
patients, except that one response-determining clinical variable, Z, was not collected by the 
investigators. With this single data deficiency, the accuracies of the XGB model’s predictions 
were 68.8% (95% CI 64.7 – 72.8) and 69.4% (95% CI 65.3 – 73.4) relative to trial outcomes and 
ground truth, respectively (Supplementary Figure 1). 

In this scenario, the XGB predictions still outperform treatment recommendations drawn from 
traditional RCT-based analysis (i.e., where only 43.7% of patients receive appropriate treatment). 
However, a single piece of missing clinical information results in far less accurate predictions by 
the XGB model compared with analysis with complete information (Figure 3). This finding 
highlights the important of comprehensive clinical data collection to realise the potential of ML 
analysis techniques. If the binary variable Z was not accounted for and characterised during data 
collection, investigators will inevitably be blind to its importance, regardless of the sophistication 
of the analytical methods used. 

 

Impact of data excess upon the machine learning analysis 
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To address the problem of potential data deficiency, collection of additional variables is 
necessary. However, this solution must be balanced against the potential drawbacks of data 
excess. To evaluate the potential disadvantages of gathering more clinical data, we finally 
considered scenarios in which many more variables are collected and incorporated into the 
analysis. 

In our previous RCT scenarios, only three of the seven clinical variables (X, Y, Z) were meaningful 
for understanding treatment response, while the other four (Age, Sex, V1, V2) were ‘noise’, that 
XGB models had to ‘filter’ from the true ‘signal’. We conducted similar XGB analyses, but in 
addition to these seven clinical variables, we progressively introduced further noisy variables, to 
evaluate the ability of XGB analysis to accurately detect true signals amidst increasing noise. 
These noisy variables were generated as a mix of binary and continuous types, with some 
covarying with X, Y or Z, while others remained completely independent of the existing variables. 
(For full details, see Methods.) While all other aspects of the analysis approach and XGB model 
parameters remained unchanged, the clinical cohort was resampled to include these new noisy 
variables. 

Figure 6 shows the accuracy of XGB treatment response predictions (based upon trial outcomes, 
in orange, and compared to ground truth, in green) as the number of additional noisy variables 
increases up to 10,000. Despite the increasing noise, XGB analysis consistently maintained high 
classification accuracy, with no observable decline in accuracy up to 10,000 variables.  

The XGB analysis predictions again more closely mirrored ground truth treatment response, 
indicating they identified generalisable patterns rather than overfitting to a larger amount of noisy 
uninformative information. 

With appropriate use of an XGB classifier, even the addition of up to 10,000 noisy clinical variables 
did not reduce classification accuracy, create spurious associations, or obscure true underlying 
eƯects. 

DISCUSSION 

Our analyses highlight two crucial points for clinical research: the potential benefits of ML 
analysis over traditional analysis approaches, and the necessity for comprehensive clinical 
phenotyping, to fully realise these benefits. 

Crucial insights can be missed on account of how data are analysed. XGB detected critical 
information about the relationship between clinical phenotype and treatment response, 
information that traditional inferential methods had overlooked. Conclusions drawn from 
standard analysis of our simulated RCT could lead to just 43.7% of patients receiving appropriate 
treatment, and incorrect treatment would systematically disadvantage specific patient groups 
(those with low X, high Y, or absent Z). Subgroup analyses can identify broad diƯerences in the 
primary outcome eƯect sizes based on individual clinical variables. However, as shown in Figure 
2, these analyses may still indicate significant improvements compared to baseline when there 
is heterogeneity within the subgroups or multivariate relationships. Just because we cannot 
detect discrimination, it does not mean it is not there; the problem of “unknown unknowns” 
persists. In contrast, XGB analysis of the same RCT data correctly predicted treatment response 
in 97.8% of patients, removing the discrimination of these patient groups. 

Not all forms of ML may fully capture complex relationships. Here, we observed that LR had lower 
accuracy (82.1%) than XGB. LR may fail to detect nonlinearities, which likely accounts for its 
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reduced accuracy in predicting treatment responses15, highlighting that it is not simply a matter 
of "ML is good, non-ML is bad". Indeed, inferential statistics oƯers several advantages over ML, 
such as providing clearer insights into causality and being more robust to overfitting15. Our 
recommendation is to integrate traditional inferential statistics from RCTs with ML analysis 
tailored to the data and specific research question(s). While RCT statistics provide valuable 
insights, ML can uncover more complex, multivariate, and non-linear patterns within the data that 
standard methods may overlook, thereby maximising the research value derived from clinical 
datasets. 

To fully realise the benefits of ML analysis for patients, clinical phenotypes need to be 
characterised comprehensively. Here, the exclusion or inclusion of a single phenotypic variable 
(Z) determined whether the accuracy of XGB treatment predictions was 69.4% or 97.8%, 
respectively. This 28.4% diƯerence is larger than the 19.4% diƯerence between random chance 
predictions (50%) and using ML for analysis of incompletely characterised clinical phenotypes 
(69.4%). This underscores the need for "deep phenotyping", capturing detailed and diverse 
clinical data20–22. 

Clinical phenotypes are the most direct indicator of how disease is manifesting in patients. Many 
conditions sharing a diagnostic label are formed of a highly heterogeneous set of underlying 
pathologies. Treatment options for these conditions can be similarly diverse. For example, a 
range of autoimmune conditions are treated with various combinations of steroids, intravenous 
immunoglobulins, plasma exchange, monoclonal antibodies, methotrexate, azathioprine and 
mycophenolate mofetil. Similar diversity in disease processes and available treatment options is 
present for conditions like epilepsy and headache. In clinical practice, we collect detailed 
information to understand how, when, where, and why diƯerent symptom combinations 
manifest, which ultimately guides patient care. However, this level of detail is often lacking in 
research settings, where there is instead a tendency to simplify and isolate a few factors, often 
with strict exclusion criteria and randomisation, to minimise the influence of comorbidities and 
other variables. For example, highly impactful and rigorous trials in stroke medicine often reduce 
a complex clinical syndrome to a quantified NIH Stroke Scale (NIHSS) score, time since symptom 
onset, and a limited number of comorbidities such as diabetes, atrial fibrillation, and 
hypertension23–25. However, critical nuances in the clinical history, such as previous recurrent 
episodes which might indicate cerebral amyloid angiopathy, which can increase the risk of 
haemorrhagic complications from thrombolysis, may be overlooked in initial trials and can take 
several years to become apparent26. 

Collecting and analysing detailed patient data has traditionally presented challenges for clinical 
research. Using univariate statistical analysis, multiple comparisons across subgroups increases 
the risk of identifying spurious associations, and necessitates adjustments to statistical 
significance thresholds, which can obscure genuine trends27. Consequently, interventional 
studies using traditional inferential methods often limit data collection and/or analysis to a small 
subset of variables to verify the similarity between treatment and control groups at baseline. 
While this approach helps control confounding factors, it can produce findings that are less 
representative of the broader clinical population, and resulting evidence on the most eƯective 
treatments for specific patient subgroups is, therefore, limited. 

ML analysis can instead allow variance across diverse clinical features to be embraced, studied 
and understood. The XGB analysis eƯectively identified and filtered relevant variables, providing 
insights which more accurately reflected ground truth than the imperfect surrogate trial outcome 
measure. Even in the presence of 10,000 additional pieces of noisy, covarying clinical 
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information, the XGB analysis remained sensitive to true trends, without making spurious 
associations.  

Collecting more detailed phenotype data from existing patients can also be less resource-
intensive than recruiting additional patients. Recruiting a single new patient involves multiple 
time-consuming steps, including consent, eligibility screening, assessments, treatment, 
monitoring, and follow-up. In contrast, gathering additional phenotypic variables for each patient 
potentially takes seconds, or minutes, even across an entire cohort.  If these variables are 
extracted automatically from an electronic health record (EHR), it may require no additional 
researcher time at all. 

Advances in natural language processing techniques enable large-scale extraction of clinical 
information from EHRs28–31, and there is a growing use of information captured during routine 
clinical care and stored within EHRs for research32–35. Utilising data from EHRs and routine clinical 
practice could allow researchers to compare diƯerent management strategies with outcomes in 
patient populations that better reflect real-world settings, providing larger-scale insights at lower 
cost. The most accurate reflection of a broad clinical population is the clinical population itself. 
However, the feasibility and insights possible from this form of research will entirely depend upon 
how comprehensively phenotypes and clinical outcomes are documented in routine care. 

ML analysis can also help inform whether a more detailed clinical phenotype is required. In our 
analysis, the much lower accuracy of XGB predictions when a single, key, variable was missing, 
indicates that treatment eƯects are not fully understood, and gathering more phenotypic 
information could be beneficial. Conversely, very high prediction accuracy indicates that 
treatment responses are well understood, and that further data collection might yield diminishing 
returns, suggesting that research eƯorts could be more eƯectively focused elsewhere. With 
traditional inferential analysis, the same missing information does not directly aƯect the primary 
outcome measure; the analysis is “blind” to the existence and impact of such “data gaps”. 

A common concern with ML models is their lack of interpretability, which can impede clinicians' 
understanding and trust in their outputs, limiting adoption into clinical practice. However, we 
have demonstrated that thorough interrogation of a trained XGB ML model can reveal which 
variables, and their specific values, determine clinical treatment response. This information 
could aid in the development of treatment algorithms similar to those used for mitigating 
cardiovascular disease risk, which take into account specific ranges of values for blood pressure, 
cholesterol levels, weight, height, and various other variables36. This interrogative approach to ML 
can highlight critical aspects of a disease that warrant further attention, in clinical practice, 
research, and model development. 

We advocate that a post-hoc data-driven ML analysis, such as those described here, should 
become a routine part of any clinical research study with a suitably detailed and large dataset. 
While XGB can function eƯectively with smaller datasets of a few hundred patients, as is 
illustrated here, its predictive power is enhanced with larger and more diverse datasets. As the 
number of clinical phenotype variables increases, the 'curse of dimensionality' demands more 
patients to ensure reliable results, as the data required for accurate generalisation grows 
exponentially37,38.  XGB typically performs best with thousands to hundreds of thousands of 
samples, enabling it to capture complex relationships and nuances within the data16,39. This 
approach could help reveal novel hypothesis generating information and lead to clinically 
meaningful insights which might otherwise have been missed and taken decades to eventually 
become apparent. 
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ML analysis need not be complex or resource intensive. All the analyses presented here were run 
within a minute on a single desktop computer.  Our analyses serve as a clear example of how a 
straightforward gradient boosting ML classifier (XGB) can be eƯectively used in clinical research 
to achieve high predictive performance, versatility, scalability, and interpretability, to produce 
generalisable results. While this specific example used a binary classification predicting 
treatment response, the XGB algorithm can be easily adapted to perform regression, ranking, or 
other forms of prediction16. 

Quality evaluations of clinical trials should arguably place greater emphasis on both how data 
are analysed and the extent of clinical phenotyping, the two topics we examined here. The 
purpose of evaluating trial quality is to establish their ability to reliably identify key information. 
Our findings clearly indicate that both the analysis methods used and the extent of clinical 
phenotyping directly influences a study’s ability to identify such key information. Various 
frameworks exist to evaluate clinical trial quality18,40–43. Assessments currently centre around 
details such as randomisation, blinding, follow-up, analysis, and reporting of a pre-registered 
primary outcome. There is emphasis on ensuring patient sample sizes are suƯiciently large to 
produce accurate estimates of population averages. As the number of patients in a study 
increases, the ability to detect smaller eƯect sizes improves, allowing identification of subtle 
associations between variables. However, once an appropriately powered sample size is 
reached, further increases yield diminishing returns. In our simulations, expanding the sample 
size to millions of patients would not have significantly changed the conclusions, but a single 
missing piece of clinical phenotype information greatly limited the insights gleaned. Rather than 
considering whether this type of insight is being missed, current evaluation frameworks generally 
focus on clinical data collection only as a means to confirm treatment arm similarity at 
baseline42, for reporting of baseline characteristics, or ancillary analyses including subgroup 
evaluations18. Our traditional RCT analysis was conducted in a manner which could score “full 
marks” on relevant current evaluation metrics. However, without using XGB analysis and 
capturing Z, the treatment recommendations from the RCT are a poor representation of the 
ground truth, causing the majority of patients to receive inappropriate treatment. Current trial 
evaluation quality criteria credit a study’s ability to detect very small eƯect sizes more than the 
ability to detect much larger, impactful, eƯects demonstrated here. 

Another key aspect of evaluating trial quality is identifying and minimising potential sources of 
bias. We have already discussed how, in our analysis, traditional inferential methods resulted in 
systematic discrimination against certain patient groups. Limiting the breadth of data collection 
can introduce bias by systematically disadvantaging certain patient groups, and the omission of 
important information may lead to trial outcomes that misrepresent these patients in direct 
proportion to how much they deviate from the mean of the uncollected data44. 

This work has limitations. We modelled data as complete, though missing data is common in real-
world scenarios. However, XGB models can handle missing data eƯectively. ML models can 
sometimes overfit with complex, high-dimensional data, making predictions from a single cohort 
less generalisable to the broader population14. To address this, we set the XGB model parameters 
to reduce overfitting while preserving classification accuracy, thereby identifying generalisable 
trends. Smaller cohorts and eƯect sizes could make it challenging for ML to reliably detect trends, 
so ML analysis is not suitable for all clinical research studies. This work demonstrates what can 
be achieved with a few hundred well-characterised cases, rather than the tens of thousands of 
data points required for some more complex, computationally intensive ML analyses. 
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ML techniques can deliver highly accurate, explainable, and generalisable predictions by 
analysing intricate interactions among multiple clinical variables. When appropriate analysis 
techniques are used, every piece of new clinical information collected has the potential to unlock 
new understanding of a disease which could benefit patients. There should be a greater drive to 
more comprehensively capture how diseases manifest with better clinical data, to enable 
patients to benefit from the potential insights which ML makes possible. 

 

METHODS 

Creation of simulated clinical cohort data and determinants of ‘ground truth’ treatment 
response in a randomised control trial 

For each member of the simulated clinical cohort of 1000 patients, data for several clinical 
phenotype variables were independently modelled as follows: 

- Age – an integer uniformly distributed between 18 and 100. 
- Sex – a binary variable with equal probability for the outcomes 0 and 1. 
- V1 - a binary variable with equal probability for the outcomes 0 and 1. 
- V2 - an integer uniformly distributed between 0 and 200. 
- X - an integer uniformly distributed between 50 and 100. 
- Y - an integer uniformly distributed between 40 and 100. 
- Z - a binary variable with equal probability for the outcomes 0 and 1. 

These variables represented both binary and continuous data to reflect heterogeneous types of 
data used in clinical research. 

Whether or not a patient would be responsive to the treatment was determined by the non-linear 
multivariable relationship between X, Y and Z illustrated in Figure 1 and explained in the 
associated text of the results section. In summary, patients were responsive to the treatment if X 
was 95 or above; if Z was present and Y was between 50 and 90; if Y was between 50 and 90 and 
X was between 90 and 95. 

For the simulated RCT, all members of the cohort were randomly assigned in a 1:1 ratio to receive 
either the treatment or placebo. Trial outcome data were then drawn from either of two 
distributions: 

- A ‘responsive’ distribution - for patients receiving treatment who are treatment 
responsive, where the outcome measure change was drawn from a distribution with 
mean 10 and standard deviation 3. 

- A ‘non-responsive’ distribution - for patients receiving placebo or treatment which they 
are not responsive to, where the trial outcome measure change was drawn from a 
distribution with mean 0 and standard deviation 3. 

For the analysis considering data deficiency, the Z variable was omitted from the data used for 
model training in the XGB analysis. All other values and variables were kept unchanged. 

For the analysis considering data excess, additional 'noisy' variables were generated, starting 
with 5 noisy variables and increasing by 100 at each step, up to a total of 10,000 variables. One-
sixth of the noisy variables were continuous and covaried with X. This covariance was established 
by taking the patient’s X value and adding a noise signal randomly drawn from a normal 
distribution with a mean of 0 and a standard deviation of 10. Another sixth of the noisy variables 
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were continuous and covaried with Y, following the same method. Additionally, another sixth of 
the noisy variables were binary and covaried with Z, where the covariance was defined as a 
random selection of two-thirds of the values matching the patient's Z value. The remaining half of 
the noisy variables were independent of all other variables, comprising either binary variables 
(randomly drawn from a probability distribution where the variable was present in 10% of patients 
and absent in 90%) or continuous variables (random integers between 18 and 100). The clinical 
cohort was resampled for this analysis, using the exact same distributions and definitions as 
above. 

 

Analysis of the randomised control trial data using traditional inferential statistics 

All statistical analyses illustrated in Figure 2 were performed using the NumPy toolbox45 in Python 
version 3.11.5. The sample size of 1000 patients provides 80% power to detect an eƯect size of 
1.064. All outcome end points are reported in terms of the mean absolute change in the outcome 
variable and 95% confidence intervals for that change in the treatment group versus placebo. The 
subgroup confidence intervals have not been adjusted for multiple comparisons which limits the 
ability to infer definitive treatment eƯects based upon them in isolation. Forest plots were 
produced using the Python forestplot toolbox46. All mean and 95% confidence interval values are 
reported to 2 decimal places. 

 

Machine learning analyses 

We conducted XGB ML analyses to examine the relationship between the simulated clinical 
phenotype variables and treatment responsiveness. The XGB models were trained to process all 
the variables known about each patient to make predictions about whether a patient is treatment 
responsive. In real life, clinical investigators would not be aware of ground truth treatment 
response and would have to rely upon trial surrogate trial outcome data. For all model training, 
we therefore used only the trial outcome as a surrogate of treatment response and did not include 
ground truth information. The XGB models were trained to predict whether patients had a change 
in the outcome variable or 5 or more based upon information about all the clinical phenotype 
variables. Ground truth information was only used later, in evaluation of predictions made using 
the trial outcome data.  
 
Data preprocessing for all the XGB analyses used the same steps each time. Non-binary data 
were scaled by removing the mean and scaling to unit variance, to ensure that each variable 
contributed equally to the model’s training.   
 
An XGBoost binary classifier was initialised with a predefined set of hyperparameters16. The same 
model parameters were used in every analysis. The maximum depth of each tree was set to 3 to 
help prevent overfitting by limiting the complexity of the model. Learning rate was set to 0.1, this 
determines the step size at each iteration and the value was chosen to ensure a balance between 
model accuracy and computational eƯiciency. The number of the number of trees (or rounds) in 
the model was 100. The subsample parameter was set to 0.8, meaning that 80% of the training 
data was randomly sampled to grow each tree. Similarly, 80% of the features were randomly 
sampled when creating each tree, thus introducing randomness and reducing overfitting. These 
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pre-defined model hyperparameters were chosen to ensure performance and reliability of the 
models in each of the XGB analyses and minimise risk of overfitting. 
 
To ensure robust model evaluation, a five-fold cross-validation approach was implemented using 
the KFold method in all the XGB analyses. Out-of-fold predictions for each sample were obtained 
and these predictions on unseen data were used as the model prediction data. Predictions on 
the unseen data were compared with true treatment response (according to either trial outcome 
data values above/below five or ground truth) and sorted into confusion matrices (Figure 3 and 
Supplementary Figure 1) indicating the number of true positive (top left), false positive (top right), 
false negative (bottom left) and true negative (bottom right). Sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV) were calculated for each 
classification. The overall accuracy of predictions is indicated in the bottom right corner of each 
confusion matrix. 95% confidence intervals for the overall accuracy estimates were calculated 
using the normal approximation of the binomial distribution. 
 
To interpret XGB model predictions, SHAP (SHapley Additive exPlanations) values were 
computed for each of these XGB model predictions to determine how much each variable had 
impacted each prediction19. The SHAP values were then used to generate a summary plot, 
visualizing feature importance with a dot plot (Figure 4). 
 
Figure 4 revealed that variables X, Y, and Z were the most influential in determining model 
predictions. To understand which specific values of these key variables contributed to treatment 
response, we first examined X, which, in some instances, had a large impact on predictions, 
indicated by high positive SHAP values above 2 in Figure 4. We generated a scatter plot of X values 
on the x-axis and their corresponding SHAP values on the y-axis (Figure 5A). This plot showed that 
X had a less pronounced eƯect when its value was below 90. Next, we identified that certain Y 
values were associated with negative predictions, as indicated by SHAP values below -2 in Figure 
4. To investigate further, we plotted Y values against SHAP values for all patients when X was not 
influential i.e. X values below 90 (Figure 5B). This plot revealed that Y had a reduced impact when 
its values ranged between 50 and 90. Finally, for patients with X values below 90 and Y values 
between 50 and 90, we plotted Z values on the x-axis against SHAP values on the y-axis to explore 
Z's eƯect on predictions (Figure 5C). 
 
For the LR analysis, default model parameters from the scikit-learn toolbox47 were used. Data 
pre-processing followed the same steps as described above for the XGB analyses, with the 
exception that interaction terms between all combinations of variables were included for the LR 
model. This adjustment was made to account for potential interactions between the variables, 
ensuring the LR model's ability to accurately detect multivariate eƯects was not excessively 
compromised. L2 regularisation was applied to minimise overfitting. The optimization problem 
was solved using the 'lbfgs' algorithm. Tolerance for stopping criteria was set to 0.0001 and 
maximum number of iterations to 100. 
 

Data availability 

The datasets generated and/or analysed during the current study are available in the GitHub 
repository, https://github.com/stepdaug/ML-and-clinical-phenotyping. 

Code availability 
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The underlying code for the analyses in this study are available in the GitHub repository which 
can be accessed via this link https://github.com/stepdaug/ML-and-clinical-phenotyping .  
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FIGURE LEGENDS 

Figure 1 – Investigation outline. Clinical data were generated for a simulated cohort of 1000 
patients. The top panel shows the seven clinical phenotype variables. The range of values for 
each variable is shown in brackets. The plots indicate the combination of values of the critical 
variables determining treatment responsiveness: green areas indicate values associated with 
patients being responsive and red areas indicate non-response to treatment. The left and right 
plots indicate X and Y values when Z is present or absent respectively. By this arrangement 
43.7% are responsive and 56.3% not responsive to treatment. Patients were randomly assigned 
to a treatment or placebo group (1:1 randomisation), with trial outcomes based on their true 
responsiveness and assigned group. The numbers in the 'Treatment' and 'Placebo' boxes 
represent the change in outcome measures (mean +/- standard deviations) for each group, 
according to their true responsiveness. We performed traditional inferential statistical analysis 
on the trial outcome data, to obtain estimates of eƯect size (mean change) and precision (95% 
confidence intervals). Then, machine learning (ML) analysis with XGBoost was conducted to 
predict individual patient treatment responses and to identify which clinical phenotype 
variables influenced these predictions. Finally, we assessed how data deficiencies and 
excesses impact ML analysis. CI = confidence interval. 

 

Figure 2 - Forest plots illustrating mean and 95% confidence interval change in the outcome 
measure in patients receiving treatment compared with placebo, across the entire cohort 
(bottom plot) and subgroups. CI = confidence interval. 
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Figure 3 – Confusion matrices with classification metrics for predictions of treatment 
response using XGB. Predictions of treatment response using XGB analysis are compared with 
the treatment response apparent in the trial outcome measure (A) and the ground truth (B). 
Green shading denotes treatment responsive (suggested in the trial outcome or from ground 
truth) and red shading denotes non-treatment responsive cells; bold green/red denote correct 
treatment allocation according to the outcome; light green/red denote inappropriate treatment 
allocation. PPV: positive predictive value; NPV: negative predictive value. 

 

Figure 4 - SHAP (SHapley Additive exPlanations) values for each feature in the ML model. 
Each point on the plot represents a variable’s SHAP value for each of the 509 patients receiving 
treatment for whom predictions of treatment response were made. Colours represent the value 
of the variable from low (white) to high (dark blue). Variables are ordered by their impact on model 
outputs, from highest (top) to lowest (bottom), based on the sum of SHAP value magnitudes 
across all predictions.  

 

Figure 5 – A: Scatter plot of X values on the x-axis versus SHAP values (left y-axis). SHAP values 
reflect the importance of each X value in predicting treatment response, with higher positive 
values indicating greater importance for predicting treatment responsiveness. The colour of plots 
indicates what the prediction was, with green indicating a prediction of treatment responsive, and 
red non-responsive. Overlayed histograms show the proportion of predictions (right y-axis) for 
diƯerent X values: green bars denote treatment-responsive predictions, and red bars denote non-
treatment-responsive predictions. B: Scatter plot of Y values on the x-axis versus SHAP values, 
filtered to include only instances where X is below 90. This plot demonstrates the importance of 
Y values in the model's predictions, where lower negative SHAP values suggest higher importance 
for predicting non-responsive to treatment. Histograms overlayed on the scatter plot represent 
the proportion of predictions for diƯerent Y values, with green bars for treatment-responsive and 
red bars for non-treatment-responsive predictions. C: Scatter plot of Z values on the x-axis versus 
SHAP values, with data filtered to include only Y values between 50 and 90, as well as X values 
below 90. SHAP values indicate the importance of Z values in the model's predictions, 
considering the constraints on X and Y. The histograms show the proportion of predictions for Z 
values, with red bars representing treatment-responsive predictions and blue bars representing 
non-treatment-responsive predictions. 

 

Figure 6 - Scatter plot depicting the accuracy of XGB treatment response predictions in 
relation to the number of noisy variables added to the original seven clinical variables. 
Orange plots indicate accuracy compared with trial outcomes, while green plots indicate 
accuracy based on ground truth. 
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